10-FZ06NRA075FU-P969F08 preliminary datasheet flowNPC 0 600V/ 75A Features flow0 12mm housing ● neutral point clamped inverter ● reactive power capability ● low inductance layout ● improved Low voltage write through capability Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ06NRA075FU-P969F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 65 88 A 225 A 113 171 W ±20 V 5 400 µs V 150 A 175 °C 600 V Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 600V Tvj max= 150°C Tjmax Buck FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C 25 33 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 90 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 40 61 W 150 °C Maximum Junction Temperature copyright by Vincotech Tjmax 1 Revision: 2 10-FZ06NRA075FU-P969F08 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 58 76 A 225 A 93 141 W ±20 V 6 360 µs V 150 A 175 °C 600 V 22 29 A 44 66 W 175 °C 1200 V 22 29 A 70 A 43 62 W 150 °C Boost IGBT Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 600V Tvj max= 150°C Tjmax Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature VRRM Tc=25°C IF Tj=Tjmax Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 10-FZ06NRA075FU-P969F08 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright by Vincotech Vis t=2s DC voltage 3 Revision: 2 10-FZ06NRA075FU-P969F08 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 3,5 4,5 6 1,78 1,79 2,5 Buck IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,00025 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH ±400 Rgoff=8 Ω Rgon=8 Ω ±15 350 40 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 87 89 11 11 140 165 6 6 0,30 0,51 0,26 0,51 0 25 Tj=25°C nA ns mWs pF 4000 f=1MHz V mA Ω none tr td(off) 0,25 V 400 pF 115 ±15 400 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 94 nC 0,84 K/W Buck FWD Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF Ir 600 IRRM trr Qrr Rgon=8 Ω ±15 350 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright by Vincotech 30 Thermal grease thickness≤50um λ = 1 W/mK 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,67 1,86 41 57 15 29 0,32 1,04 14583 7605 0,02 0,13 1,73 4 V 100 µA A ns µC A/µs mWs K/W Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,53 1,74 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,0038 600 Rgon=4 Ω Rgoff=4 Ω ±15 350 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 85 87 11 13 177 209 78 102 0,39 0,66 1,56 2,18 ns mWs 4620 f=1MHz 25 0 288 Tj=25°C pF 137 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,02 K/W Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 20 Tj=25°C Tj=125°C 1,25 Thermal grease thickness≤50um λ = 1 W/mK 1,90 1,54 1,95 2,17 V K/W Boost FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time trr Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovered charge Peak rate of fall of recovery current 20 Rgon=4 Ω ±15 350 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,51 2,10 3,3 100 79 90 26,3 121 3,0 6,2 11365 5907 0,87 1,86 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,87 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tj=100°C Power dissipation constant % mW Tj=25°C 3,5 mW/K B(25/50) Tol. ±3% Tc=25°C B-value B(25/100) Tol. ±3% Tj=25°C copyright by Vincotech +5 210 B-value Vincotech NTC Reference -5 Tj=25°C K 4000 K A 5 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 350 IC (A) IC (A) 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0 1 2 3 4 0 5 0 VCE (V) At tp = Tj = VGE from At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IF (A) 125 IC (A) 100 5 VCE (V) 80 100 60 75 40 50 Tj = Tjmax-25°C 20 25 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 2 4 6 0 8 0 VGE (V) At tp = VCE = 250 10 copyright by Vincotech At tp = µs V 6 1 250 2 3 4 VF (V) 5 µs Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Buck IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 1,0 E (mWs) 1,2 Eon High T 1,0 Eon High T 0,8 Eoff High T 0,8 Eon Low T 0,6 Eoff High T Eon Low T 0,6 0,4 Eoff Low T Eoff Low T 0,4 0,2 0,2 0,0 0,0 0 20 40 60 80 0 10 20 30 IC(A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 40 RG(Ω ) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 40 A FWD Figure 7 Typical reverse recovery energy loss FWD Figure 8 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) as a function of gate resistor Erec = f(RG) 0,15 E (mWs) E (mWs) 0,25 Erec High T 0,12 0,20 Erec High T 0,15 0,09 0,10 0,06 0,03 0,05 Erec Low T Erec Low T 0,00 0,00 0 20 40 60 0 80 10 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω copyright by Vincotech 20 30 40 RG(Ω ) IC(A) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 40 A 7 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Buck IGBT IGBT 1,00 1,00 t (ms) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t (ms) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdon tdoff 0,10 0,10 tdon tr 0,01 0,01 tf tf tr 0,00 0,00 0 20 40 60 0 80 IC(A) With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 30 RG(Ω ) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 40 A FWD Figure 11 Typical reverse recovery time as a FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,06 t rr(ms) 0,06 trr High T trr High T 0,05 0,05 0,04 0,04 0,03 0,03 0,02 0,02 trr Low T trr Low T 0,01 0,01 0,00 0,00 0 20 40 60 80 0 IC(A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 copyright by Vincotech At Tj = VR = IF = VGE = °C V V Ω 8 10 25/125 350 40 ±15 20 30 Rgon(Ω ) 40 °C V A V Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (uC) 1,2 Qrr (uC) 1,8 Qrr High T 1 1,5 Qrr High T 1,2 0,8 0,9 0,6 0,4 0,6 Qrr Low T Qrr Low T 0,2 0,3 0 0 0 At At Tj = VCE = VGE = Rgon = 20 40 60 IC(A) 0 80 At Tj = VR = IF = VGE = FWD Figure 15 Typical reverse recovery current as a 20 30 40 Rgon(Ω ) °C V V Ω 25/125 350 ±15 8 10 25/125 350 40 ±15 °C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) function of IGBT turn on gate resistor IRRM = f(Rgon) 80 IrrM (A) IrrM (A) 80 IRRM High T 60 60 IRRM Low T 40 40 IRRM High T 20 20 IRRM Low T 0 0 0 20 40 60 80 0 10 20 IC(A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 copyright by Vincotech 30 40 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω 9 25/125 350 40 ±15 °C V A V Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Buck FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) 16000 dIrec/dt T direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIo/dt T 24000 dIrec/dt T dI0/dt T 20000 12000 16000 12000 8000 8000 4000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8 40 60 IC(A) 0 80 20 30 40 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 25/125 350 40 ±15 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 tp (s) 1012 10 10-5 At D= RthJH = tp / T 0,84 K/W IGBT thermal model values R (C/W) Tau (s) 0,13 1,8E+00 0,20 2,7E-01 0,39 9,1E-02 0,09 1,4E-02 0,02 2,3E-03 copyright by Vincotech 10-4 10-3 10-2 10-1 100 tp (s) 1012 10 tp / T 1,73 K/W FWD thermal model values R (C/W) Tau (s) 0,08 4,5E+00 0,17 9,6E-01 0,63 1,6E-01 0,53 5,6E-02 0,20 1,2E-02 0,12 2,3E-03 10 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 250 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 100 150 Th (oC) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 Th (oC) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 50 150 copyright by Vincotech 100 150 Th (oC) 200 0 At Tj = °C 11 50 150 100 150 Th (oC) 200 °C Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Buck IGBT Figure 25 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) Safe operating area as a function of collector-emitter voltage IC = f(VCE) 103 VGE (V) 15 IC (A) 1 200V 100uS 12 102 400V 1mS 100mS 10mS 9 101 6 DC 100 3 0 10-1 At D= Th = VGE = Tj = 0 100 101 102 VCE(V) 80 120 160 200 240 280 320 Qg (nC) At IG(REF)=1mA, RL=15Ω single pulse 80 ºC ±15 V Tjmax ºC copyright by Vincotech 40 103 12 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 1 2 3 4 0 5 0 VCE (V) At tp = Tj = VGE from At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 80 VCE (V) IC (A) IF (A) 120 100 60 80 40 60 40 20 Tj = Tjmax-25°C Tj = 25°C 20 Tj = Tjmax-25°C Tj = 25°C 0 0 2 4 6 8 0 10 0 VGE (V) At tp = VCE = 250 10 copyright by Vincotech At tp = µs V 13 1 250 2 3 4 VF (V) 5 µs Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 4 E (mWs) E (mWs) 2,5 Eoff High T Eoff High T Eon High T 2 3 Eoff Low T Eoff Low T Eon Low T 1,5 2 1 Eon High T 1 Eon Low T 0,5 0 0 0 20 40 60 80 100 0 5 10 15 RG(Ω ) IC(A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 2,4 E (mWs) 3 Erec High T 2,5 2 2 1,6 Erec High T 1,2 1,5 Erec Low T 1 0,8 0,5 0,4 Erec Low T 0 0 0 20 40 60 80 0 100 5 IC (A) 15 20 RG (Ω) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A 14 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t (µs) 1 t (µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr 0,01 0,01 tr 0,001 0,001 0 20 40 60 80 IC(A) 100 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 RG(Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,15 0,4 t rr(ms) t rr(ms) trrHigh T trr High T 0,12 0,3 trr Low T 0,09 0,2 0,06 trr Low T 0,1 0,03 0,00 0 20 40 60 80 0,0 100 0 IC(A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 copyright by Vincotech 5 10 15 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω 15 25/125 350 50 ±15 °C V A V Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr (mC) Qrr (mC) 8 Qrr High T Qrr High T 8 6 6 4 Qrr Low T 4 Qrr Low T 2 2 0 0 0 20 40 60 80 0 100 5 10 15 IC(A) At At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a 20 Rgon(Ω ) 25/125 350 50 ±15 °C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) function of IGBT turn on gate resistor IRRM = f(Rgon) 120 120 IrrM (A) IrrM (A) IRRM High T 100 IRRM Low T 90 80 60 60 IRRM High T 40 IRRM Low T 30 20 0 0 20 40 60 80 0 100 0 IC(A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 copyright by Vincotech 5 10 15 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω 16 25/125 350 50 ±15 °C V A V Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Boost FWD 15000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a and reverse recovery current dI0/dt,dIrec/dt = f(Rgon) 20000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIo/dt T 12000 dIrec/dt T dI0/dt T 15000 9000 10000 6000 5000 3000 0 0 0 20 40 60 80 100 0 IC(A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 8 12 16 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 350 50 ±15 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 1,02 copyright by Vincotech 10-3 10-2 10-1 100 102 tp (s) 101 10-5 At D= RthJH = K/W 17 10-4 tp / T 1,87 10-3 10-2 10-1 100 102 tp (s) 101 K/W Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 180 IC (A) Ptot (W) 100 150 80 120 60 90 40 60 20 30 0 0 0,00 At Tj = 50,00 100,00 150,00 Th(oC) 0 200,00 At Tj = VGE = FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 100 150 200 Th(oC) ºC 175 50 175 15 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 100 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 Th (oC) 200 0 At Tj = ºC 18 50 150 100 150 Th (oC) 200 ºC Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 50 40 100 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 10-1 Tj = Tjmax-25°C 10 Tj = 25°C 0 0 At tp = 1 2 3 VF (V) 10-2 4 10-5 At D= RthJH = µs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 2,17 K/W 10-2 100 tp (s) 1012 10 Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 40 Ptot (W) IF (A) 100 10-1 80 30 60 20 40 10 20 0 0 0 50 100 150 Th (oC) 0 200 At Tj = 50 100 150 Th (oC) 200 At 175 copyright by Vincotech Tj = ºC 19 175 ºC Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values R(T ) = R25 ⋅ e NTC-typical temperature characteristic B25/100⋅ 1 − 1 T T 25 [Ω] R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 75 100 125 T (°C) copyright by Vincotech 20 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Switching Definitions BUCK IGBT General conditions = 125 °C Tj = 8Ω Rgon IGBT Rgoff IGBT = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 % tdoff 100 % IC 200 VGE 90% IC 75 150 VGE 50 100 VCE 90% tEoff 25 50 tdon VCE VGE IC 1% VGE10% VCE 0 -25 -0,1 0 0,1 0,2 0,3 tEon -50 2,95 0,4 VCE 3% Ic 10% 0 3 3,05 3,1 3,15 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 700 40 0,17 0,33 Output inverter IGBT Figure 3 3,2 time(us) -15 15 700 40 0,09 0,15 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 250 fitted % IC % IC 200 100 IC 90% 150 75 IC 60% 50 100 IC 90% IC 40% 50 25 VCE IC 0 -25 0,08 tr VCE 0,1 0,12 0,14 IC 10% 10% 0 tf 0,16 -50 3,06 0,18 3,08 3,1 3,12 time (us) VC (100%) = IC (100%) = tf = copyright by Vincotech 700 40 0,006 3,14 3,16 time(us) VC (100%) = IC (100%) = tr = V A µs 21 700 40 0,01 V A µs Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Eoff 100 Eon 100 75 75 50 50 Pon Poff 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEoff -25 -0,1 0 tEon 0,1 0,2 0,3 -25 2,95 0,4 3 3,05 3,1 3,15 time (us) Poff (100%) = Eoff (100%) = tEoff = 27,78 0,51 0,33 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 3,2 time(us) 27,78 0,51 0,15 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 120 150 Id % % 80 Qrr Id 100 trr tQrr 40 50 fitted 0 Vd IRRM 10% 0 -40 -50 -80 -100 -120 IRRM 90% IRRM 100% -160 3,08 3,1 3,12 3,14 -150 3,05 3,16 3,1 3,15 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 700 40 -57 0,03 3,2 3,25 time(us) time(us) Id (100%) = Qrr (100%) = tQrr = V A A µs 22 40 1,04 0,09 A µC µs Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 % Prec 150 Erec 100 tErec 50 0 -50 3,08 3,12 Prec (100%) = Erec (100%) = tErec = 3,16 27,78 0,13 0,09 3,2 time(us) 3,24 kW mJ µs 125°C 125°C 25 25ooCC 100 oC 125 o125 C 25°C 25°C 25 oC 125 oC Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 23 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06NRA075FU-P969F08 in DataMatrix as P969F08 in packaging barcode as P969F08 Outline Pinout copyright by Vincotech 24 Revision: 4 10-FZ06NRA075FU-P969F08 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 25 Revision: 4