10-FZ06NRA075FU-P969F08 Maximum Ratings

10-FZ06NRA075FU-P969F08
preliminary datasheet
flowNPC 0
600V/ 75A
Features
flow0 12mm housing
● neutral point clamped inverter
● reactive power capability
● low inductance layout
● improved Low voltage write through capability
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ06NRA075FU-P969F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
65
88
A
225
A
113
171
W
±20
V
5
400
µs
V
150
A
175
°C
600
V
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 600V
Tvj max= 150°C
Tjmax
Buck FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
25
33
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
90
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
40
61
W
150
°C
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Revision: 2
10-FZ06NRA075FU-P969F08
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
58
76
A
225
A
93
141
W
±20
V
6
360
µs
V
150
A
175
°C
600
V
22
29
A
44
66
W
175
°C
1200
V
22
29
A
70
A
43
62
W
150
°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 600V
Tvj max= 150°C
Tjmax
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
Tc=25°C
IF
Tj=Tjmax
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
10-FZ06NRA075FU-P969F08
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright by Vincotech
Vis
t=2s
DC voltage
3
Revision: 2
10-FZ06NRA075FU-P969F08
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
3,5
4,5
6
1,78
1,79
2,5
Buck IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,00025
75
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
±400
Rgoff=8 Ω
Rgon=8 Ω
±15
350
40
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
87
89
11
11
140
165
6
6
0,30
0,51
0,26
0,51
0
25
Tj=25°C
nA
ns
mWs
pF
4000
f=1MHz
V
mA
Ω
none
tr
td(off)
0,25
V
400
pF
115
±15
400
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
94
nC
0,84
K/W
Buck FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
Ir
600
IRRM
trr
Qrr
Rgon=8 Ω
±15
350
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright by Vincotech
30
Thermal grease
thickness≤50um
λ = 1 W/mK
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,67
1,86
41
57
15
29
0,32
1,04
14583
7605
0,02
0,13
1,73
4
V
100
µA
A
ns
µC
A/µs
mWs
K/W
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,53
1,74
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
75
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,0038
600
Rgon=4 Ω
Rgoff=4 Ω
±15
350
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
85
87
11
13
177
209
78
102
0,39
0,66
1,56
2,18
ns
mWs
4620
f=1MHz
25
0
288
Tj=25°C
pF
137
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,02
K/W
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
20
Tj=25°C
Tj=125°C
1,25
Thermal grease
thickness≤50um
λ = 1 W/mK
1,90
1,54
1,95
2,17
V
K/W
Boost FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
trr
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovered charge
Peak rate of fall of recovery current
20
Rgon=4 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,51
2,10
3,3
100
79
90
26,3
121
3,0
6,2
11365
5907
0,87
1,86
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,87
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tj=100°C
Power dissipation constant
%
mW
Tj=25°C
3,5
mW/K
B(25/50)
Tol. ±3%
Tc=25°C
B-value
B(25/100)
Tol. ±3%
Tj=25°C
copyright by Vincotech
+5
210
B-value
Vincotech NTC Reference
-5
Tj=25°C
K
4000
K
A
5
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Buck
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
350
IC (A)
IC (A)
350
300
300
250
250
200
200
150
150
100
100
50
50
0
0
1
2
3
4
0
5
0
VCE (V)
At
tp =
Tj =
VGE from
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IF (A)
125
IC (A)
100
5
VCE (V)
80
100
60
75
40
50
Tj = Tjmax-25°C
20
25
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
2
4
6
0
8
0
VGE (V)
At
tp =
VCE =
250
10
copyright by Vincotech
At
tp =
µs
V
6
1
250
2
3
4
VF (V)
5
µs
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Buck
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
1,0
E (mWs)
1,2
Eon High T
1,0
Eon High T
0,8
Eoff High T
0,8
Eon Low T
0,6
Eoff High T
Eon Low T
0,6
0,4
Eoff Low T
Eoff Low T
0,4
0,2
0,2
0,0
0,0
0
20
40
60
80
0
10
20
30
IC(A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
40
RG(Ω )
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
40
A
FWD
Figure 7
Typical reverse recovery energy loss
FWD
Figure 8
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
as a function of gate resistor
Erec = f(RG)
0,15
E (mWs)
E (mWs)
0,25
Erec High T
0,12
0,20
Erec High T
0,15
0,09
0,10
0,06
0,03
0,05
Erec Low T
Erec Low T
0,00
0,00
0
20
40
60
0
80
10
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
copyright by Vincotech
20
30
40
RG(Ω )
IC(A)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
7
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Buck
IGBT
IGBT
1,00
1,00
t (ms)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t (ms)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdon
tdoff
0,10
0,10
tdon
tr
0,01
0,01
tf
tf
tr
0,00
0,00
0
20
40
60
0
80
IC(A)
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
RG(Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
FWD
Figure 11
Typical reverse recovery time as a
FWD
Figure 12
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,06
t rr(ms)
0,06
trr High T
trr High T
0,05
0,05
0,04
0,04
0,03
0,03
0,02
0,02
trr Low T
trr Low T
0,01
0,01
0,00
0,00
0
20
40
60
80
0
IC(A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
copyright by Vincotech
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
10
25/125
350
40
±15
20
30
Rgon(Ω )
40
°C
V
A
V
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (uC)
1,2
Qrr (uC)
1,8
Qrr High T
1
1,5
Qrr High T
1,2
0,8
0,9
0,6
0,4
0,6
Qrr Low T
Qrr Low T
0,2
0,3
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
40
60
IC(A)
0
80
At
Tj =
VR =
IF =
VGE =
FWD
Figure 15
Typical reverse recovery current as a
20
30
40
Rgon(Ω )
°C
V
V
Ω
25/125
350
±15
8
10
25/125
350
40
±15
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
function of IGBT turn on gate resistor
IRRM = f(Rgon)
80
IrrM (A)
IrrM (A)
80
IRRM High T
60
60
IRRM Low T
40
40
IRRM High T
20
20
IRRM Low T
0
0
0
20
40
60
80
0
10
20
IC(A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
copyright by Vincotech
30
40
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
25/125
350
40
±15
°C
V
A
V
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Buck
FWD
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
16000
dIrec/dt T
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dt T
24000
dIrec/dt T
dI0/dt T
20000
12000
16000
12000
8000
8000
4000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8
40
60
IC(A)
0
80
20
30
40
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
25/125
350
40
±15
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
tp (s)
1012
10
10-5
At
D=
RthJH =
tp / T
0,84
K/W
IGBT thermal model values
R (C/W)
Tau (s)
0,13
1,8E+00
0,20
2,7E-01
0,39
9,1E-02
0,09
1,4E-02
0,02
2,3E-03
copyright by Vincotech
10-4
10-3
10-2
10-1
100
tp (s)
1012
10
tp / T
1,73
K/W
FWD thermal model values
R (C/W)
Tau (s)
0,08
4,5E+00
0,17
9,6E-01
0,63
1,6E-01
0,53
5,6E-02
0,20
1,2E-02
0,12
2,3E-03
10
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
250
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
100
150
Th (oC)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
Th (oC)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
50
150
copyright by Vincotech
100
150
Th (oC)
200
0
At
Tj =
°C
11
50
150
100
150
Th (oC)
200
°C
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Buck
IGBT
Figure 25
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
Safe operating area as a function of collector-emitter voltage
IC = f(VCE)
103
VGE (V)
15
IC (A)
1
200V
100uS
12
102
400V
1mS
100mS
10mS
9
101
6
DC
100
3
0
10-1
At
D=
Th =
VGE =
Tj =
0
100
101
102
VCE(V)
80
120
160
200
240
280
320
Qg (nC)
At
IG(REF)=1mA, RL=15Ω
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright by Vincotech
40
103
12
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
1
2
3
4
0
5
0
VCE (V)
At
tp =
Tj =
VGE from
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
80
VCE (V)
IC (A)
IF (A)
120
100
60
80
40
60
40
20
Tj = Tjmax-25°C
Tj = 25°C
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
2
4
6
8
0
10
0
VGE (V)
At
tp =
VCE =
250
10
copyright by Vincotech
At
tp =
µs
V
13
1
250
2
3
4
VF (V)
5
µs
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
4
E (mWs)
E (mWs)
2,5
Eoff High T
Eoff High T
Eon High T
2
3
Eoff Low T
Eoff Low T
Eon Low T
1,5
2
1
Eon High T
1
Eon Low T
0,5
0
0
0
20
40
60
80
100
0
5
10
15
RG(Ω )
IC(A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
2,4
E (mWs)
3
Erec High T
2,5
2
2
1,6
Erec High T
1,2
1,5
Erec Low T
1
0,8
0,5
0,4
Erec Low T
0
0
0
20
40
60
80
0
100
5
IC (A)
15
20
RG (Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
14
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t (µs)
1
t (µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
80
IC(A)
100
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
5
10
15
RG(Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,15
0,4
t rr(ms)
t rr(ms)
trrHigh T
trr High T
0,12
0,3
trr Low T
0,09
0,2
0,06
trr Low T
0,1
0,03
0,00
0
20
40
60
80
0,0
100
0
IC(A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
copyright by Vincotech
5
10
15
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
25/125
350
50
±15
°C
V
A
V
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Boost
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10
Qrr (mC)
Qrr (mC)
8
Qrr High T
Qrr High T
8
6
6
4
Qrr Low T
4
Qrr Low T
2
2
0
0
0
20
40
60
80
0
100
5
10
15
IC(A)
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
20
Rgon(Ω )
25/125
350
50
±15
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
function of IGBT turn on gate resistor
IRRM = f(Rgon)
120
120
IrrM (A)
IrrM (A)
IRRM High T
100
IRRM Low T
90
80
60
60
IRRM High T
40
IRRM Low T
30
20
0
0
20
40
60
80
0
100
0
IC(A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
copyright by Vincotech
5
10
15
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
25/125
350
50
±15
°C
V
A
V
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Boost
FWD
15000
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a and reverse recovery current
dI0/dt,dIrec/dt = f(Rgon)
20000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIo/dt T
12000
dIrec/dt T
dI0/dt T
15000
9000
10000
6000
5000
3000
0
0
0
20
40
60
80
100
0
IC(A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
8
12
16
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
350
50
±15
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,02
copyright by Vincotech
10-3
10-2
10-1
100 102 tp (s)
101
10-5
At
D=
RthJH =
K/W
17
10-4
tp / T
1,87
10-3
10-2
10-1
100 102 tp (s)
101
K/W
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
180
IC (A)
Ptot (W)
100
150
80
120
60
90
40
60
20
30
0
0
0,00
At
Tj =
50,00
100,00
150,00
Th(oC)
0
200,00
At
Tj =
VGE =
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
100
150
200
Th(oC)
ºC
175
50
175
15
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
100
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
Th (oC)
200
0
At
Tj =
ºC
18
50
150
100
150
Th (oC)
200
ºC
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
50
40
100
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
10-1
Tj = Tjmax-25°C
10
Tj = 25°C
0
0
At
tp =
1
2
3
VF (V)
10-2
4
10-5
At
D=
RthJH =
µs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
2,17
K/W
10-2
100
tp (s)
1012
10
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
40
Ptot (W)
IF (A)
100
10-1
80
30
60
20
40
10
20
0
0
0
50
100
150
Th (oC)
0
200
At
Tj =
50
100
150
Th (oC)
200
At
175
copyright by Vincotech
Tj =
ºC
19
175
ºC
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values
R(T ) = R25 ⋅ e
NTC-typical temperature characteristic



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
75
100
125
T (°C)
copyright by Vincotech
20
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Switching Definitions BUCK IGBT
General conditions
= 125 °C
Tj
= 8Ω
Rgon IGBT
Rgoff IGBT
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
%
tdoff
100
%
IC
200
VGE 90%
IC
75
150
VGE
50
100
VCE 90%
tEoff
25
50
tdon
VCE
VGE
IC 1%
VGE10%
VCE
0
-25
-0,1
0
0,1
0,2
0,3
tEon
-50
2,95
0,4
VCE 3%
Ic 10%
0
3
3,05
3,1
3,15
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
700
40
0,17
0,33
Output inverter IGBT
Figure 3
3,2
time(us)
-15
15
700
40
0,09
0,15
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
IC
%
IC
200
100
IC
90%
150
75
IC 60%
50
100
IC 90%
IC 40%
50
25
VCE
IC
0
-25
0,08
tr
VCE
0,1
0,12
0,14
IC 10%
10%
0
tf
0,16
-50
3,06
0,18
3,08
3,1
3,12
time (us)
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
700
40
0,006
3,14
3,16
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
21
700
40
0,01
V
A
µs
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Eoff
100
Eon
100
75
75
50
50
Pon
Poff
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-25
-0,1
0
tEon
0,1
0,2
0,3
-25
2,95
0,4
3
3,05
3,1
3,15
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
27,78
0,51
0,33
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter IGBT
Figure 7
3,2
time(us)
27,78
0,51
0,15
kW
mJ
µs
Output inverter FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
120
150
Id
%
%
80
Qrr
Id
100
trr
tQrr
40
50
fitted
0
Vd
IRRM 10%
0
-40
-50
-80
-100
-120
IRRM 90%
IRRM 100%
-160
3,08
3,1
3,12
3,14
-150
3,05
3,16
3,1
3,15
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
700
40
-57
0,03
3,2
3,25
time(us)
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
µs
22
40
1,04
0,09
A
µC
µs
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
%
Prec
150
Erec
100
tErec
50
0
-50
3,08
3,12
Prec (100%) =
Erec (100%) =
tErec =
3,16
27,78
0,13
0,09
3,2
time(us)
3,24
kW
mJ
µs
125°C
125°C 25
25ooCC
100
oC
125 o125
C 25°C
25°C
25 oC
125 oC
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
23
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06NRA075FU-P969F08
in DataMatrix as
P969F08
in packaging barcode as
P969F08
Outline
Pinout
copyright by Vincotech
24
Revision: 4
10-FZ06NRA075FU-P969F08
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
25
Revision: 4