10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet flowMNPC 1 1200V/80A Features flow0 12mm housing ● mixed voltage NPC topology ● reactive power capability ● low inductance layout ● Split output ● Common collector neutral connection Target Applications Schematic ● solar inverter ● UPS ● Active frontend Types ● 10-FY12NMA080SH-M427F ● 10-PY12NMA080SH-M427FY Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 12 17 A 14 A 27 42 W Halfbridge IGBT Inverse Diode VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp=10ms Maximum Junction Temperature Ptot Maximum Junction Temperature Tjmax 150 °C VDS 1200 V 62 80 A 240 A 133 201 W ±20 V 10 800 μs V 175 °C Repetitive peak reverse voltage DC forward current Th=80°C Tc=80°C Th=80°C Tc=80°C Halfbridge IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current ID IDpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V NP Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 50 67 A Tc=100°C 120 A Th=80°C 61 92 W Tjmax 175 °C VCE 600 V Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Tc=80°C NP IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature tSC VCC Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 51 71 A 225 A 76 116 W ±20 V 6 360 μs V 175 °C 600 V 19 25 A 30 A 29 44 W 185 °C 1200 V 31 41 A 200 A 62 94 W 175 °C NP Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tc=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Halfbridge Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature copyright by Vincotech VRRM IF IFRM Ptot Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tjmax 2 Th=80°C Tc=80°C Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 630 V DC link Capacitor Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 3 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Halfbridge IGBT Inverse Diode Forward voltage Vf 7 Threshold voltage (for power loss calc. only) Vto 7 Slope resistance (for power loss calc. only) rt 7 Reverse current Ir 1200 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,03 1,67 1,35 1,00 0,10 0,10 V V Ω 0,25 mA 2,55 K/W 1,68 Halfbridge IGBT Gate emitter threshold voltage 0,0015 VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(ON) Collector-emitter saturation voltage Rise time Turn-off delay time Fall time 80 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coos Reverse transfer capacitance Crrs Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5,2 5,8 6,4 1,7 2,05 2,37 2,4 0,01 240 Rgoff=8 Ω Rgon=8 Ω ±15 f=1MHz 0 ±15 350 50 25 960 80 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Thermal grease thickness≤50um λ = 1 W/mK V V mA nA Ω none tr td(OFF) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 125 127 23 26 215 271 38 72 0,97 1,64 1,28 2,00 ns mWs 4600 300 pF 270 370 nC 0,71 K/W 0,47 *additional value stands for built-in capacitor NP Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF trr Qrr Rgon=8 Ω ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright by Vincotech 50 IRRM Thermal grease thickness≤50um λ = 1 W/mK 4 350 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,97 1,46 38 56 30 118 0,83 2,73 4124 2769 0,10 0,41 2,74 V A ns μC A/μs mWs 1,56 K/W 1,03 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max NP IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0012 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5 5,8 6,5 1,05 1,45 1,60 1,85 0,0038 600 Rgoff=8 Ω Rgon=8 Ω ±15 350 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 145 151 22 24 212 250 151 119 1,12 1,39 1,71 2,32 ns mWs 4620 f=1MHz 0 Tj=25°C 25 pF 288 137 ±15 480 75 nC 470 Thermal grease thickness≤50um λ = 1 W/mK 1,25 K/W 0,82 NP Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 15 Tj=25°C Tj=125°C 1,3 Thermal grease thickness≤50um λ = 1 W/mK 1,6 1,5 2,0 V 3,24 K/W 2,14 Halfbridge Diode Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current 60 600 IRRM trr Qrr Rgon=8 Ω ±15 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 350 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,49 3,02 1,68 50 52 61 52 286 3,26 6,56 1921 4562 0,75 1,72 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC A/μs mWs 1,54 K/W 1,02 DC link Capacitor C value 100 C nF Thermistor Rated resistance R Deviation of R25 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Power dissipation constant Tc=100°C +5 200 mW Tj=25°C 2 mW/K K B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 copyright by Vincotech Tj=25°C 5 % Tj=25°C B-value Vincotech NTC Reference Ω 22000 -5 K B Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half Bridge IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 350 IC (A) IC (A) 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 5 V (V) CE 6 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 6 250 μs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 90 V CE (V) IF (A) IC (A) 250 75 200 60 150 45 100 Tj = Tjmax-25°C 30 Tj = 25°C 50 15 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = Tj = 2 250 10 25/125 copyright by Vincotech 4 6 8 10 V GE (V) 12 0 At tp = Tj = μs V °C 6 1 250 25/125 2 3 V F (V) 4 μs °C Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half Bridge half bridge IGBT and NP FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 4 4 E (mWs) E (mWs) Eon High T Eoff High T 3 Eon High T 3 Eon Low T Eon Low T Eoff High T Eoff Low T 2 2 Eoff Low T 1 1 0 0 0 20 40 60 80 0 100 I C (A) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 30 R G (Ω) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,6 E (mWs) 0,6 Erec High T 0,5 0,5 0,4 0,4 0,3 0,3 Erec High T 0,2 0,2 0,1 0,1 Erec Low T Erec Low T 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω copyright by Vincotech 10 20 30 R G (Ω) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A 7 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half Bridge half bridge IGBT and NP FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdon tdoff tdon 0,10 tf 0,10 tf tr tr 0,01 0,01 0,00 0,00 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 30 R G (Ω) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 50 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,20 0,25 t rr(ms) t rr(ms) trr High T 0,20 trr High T 0,15 0,15 0,10 0,10 0,05 trr Low T 0,05 trr Low T 0,00 0,00 0 20 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 copyright by Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 8 10 25/125 350 50 ±15 20 30 R gon (Ω) 40 °C V A V Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half Bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of JFET turn on gate resistor Qrr = f(Rgon) 5 Qrr (mC) Qrr (mC) 4 Qrr High T 4 3 3 Qrr High T 2 2 Qrr Low T 1 1 Qrr Low T 0 0 0 20 At At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 40 60 80 100 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 25/125 350 50 ±15 20 30 R g on ( Ω) 40 °C V A V FWD Figure 16 Typical reverse recovery current as a function of JFET turn on gate resistor IRRM = f(Rgon) 125 IrrM (A) 60 IrrM (A) IRRM High T 50 100 40 75 IRRM Low T 30 50 20 25 IRRM High T 10 IRRM Low T 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 copyright by Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 9 10 25/125 350 50 ±15 20 30 R gon (Ω) 40 °C V A V Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half Bridge FWD 5000 15000 dIrec/dt T di0/dtT 4000 dI0/dt T dIrec/dt T 12000 3000 9000 2000 6000 1000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8 40 60 I C (A) 80 100 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 JFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 25/125 350 50 ±15 20 R gon (Ω) 30 40 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 10-1 10 10 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of JFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10 -5 At D= RthJH = 10 -4 -3 10 -2 10 -1 10 0 10 t p (s) 1 10 tp / T 0,71 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10 -1 K/W -3 10-5 10-4 At D= RthJH = tp / T 1,56 10-3 FWD thermal model values R (C/W) 0,11 0,23 0,22 0,08 0,06 0,02 R (C/W) 0,07 0,19 0,65 0,39 0,16 0,10 copyright by Vincotech 10 10-1 100 t p (s) 101 K/W JFET thermal model values Tau (s) 2,9E+00 6,9E-01 2,5E-01 6,2E-02 1,7E-02 2,5E-03 10-2 Tau (s) 5,9E+00 1,1E+00 2,3E-01 7,4E-02 1,4E-02 2,1E-03 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half Bridge IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 250 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 IF (A) Ptot (W) 120 100 60 80 60 40 40 20 20 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 11 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half Bridge IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) IC (A) VGE (V) 16 14 3 10 240V 12 1mS 2 10 960V 100uS 10 100mS 10mS 8 101 6 DC 100 4 10-1 2 0 102 101 0 10 At D= 103 0 V CE (V) At ID = VDS= Tj = single pulse 80 ºC V 0 Tjmax ºC Th = VGE = Tj = 50 20 600 25 100 150 Q g (nC) 200 A V ºC IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 150 ICMAX Ic MODULE Ic CHIP 125 100 75 VCEMAX 50 25 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright by Vincotech 12 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 1 Typical output characteristics IC = f(VCE) NP IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 1 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V NP IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 V CE (V) 5 250 μs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 120 IC (A) IF (A) 75 100 60 80 45 60 30 40 15 20 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = Tj = 2 250 10 25/125 copyright by Vincotech 4 6 8 10 V GE (V) 0 12 At tp = Tj = μs V °C 13 1 250 25/125 2 3 V F (V) 4 μs °C Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) NP IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 4 E (mWs) E (mWs) 4 Eoff High T Eon High T Eon Low T 3 3 Eoff Low T Eoff High T Eon High T Eoff Low T 2 2 Eon Low T 1 1 0 0 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 30 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,5 E (mWs) E (mWs) 2,5 Erec High T 2,0 2,0 1,5 1,5 Erec High T Erec Low T 1,0 1,0 0,5 0,5 Erec Low T 0,0 0,0 0 20 40 60 80 100 0 I C (A) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω copyright by Vincotech 10 20 30 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A 14 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) 1 1 t ( μs) tdoff t ( μs) 0,1 NP IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) tf tdoff tf tdon 0,1 tr tdon 0,01 0,01 tr 0,001 0 20 40 60 80 0,001 100 0 I C (A) With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 30 R G( Ω ) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 50 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr(ms) t rr(ms) 0,4 trr High T trr High T 0,3 0,6 0,2 0,4 0,1 0,2 trr Low T trr Low T 0,0 0 0 20 40 60 80 100 0 I C (A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8,0 copyright by Vincotech At Tj = VR = IF = VGE = °C V V Ω 15 10 25/125 350 50 ±15 20 30 R gon (Ω) 40 °C V A V Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT neutral point IGBT and half bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr (mC) Qrr (mC) 8 Qrr High T Qrr High T 8 6 6 Qrr Low T 4 4 Qrr Low T 2 2 0 0 0 At At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8,0 40 60 80 0 100 I C (A) 10 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125 350 50 ±15 20 30 R g on ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 40 IrrM (A) IrrM (A) 120 100 80 IRRM High T 80 IRRM Low T 60 60 40 40 IRRM High T IRRM Low T 20 20 0 0 0 20 40 60 80 100 0 I C (A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8,0 copyright by Vincotech At Tj = VR = IF = VGE = °C V V Ω 16 10 25/125 350 50 ±15 20 30 R gon (Ω) 40 °C V A V Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT neutral point IGBT and half bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIo/dt T direc / dt (A/ms) direc / dt (A/ms) 6000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt T 5000 10000 dI0/dt T dIrec/dt T 8000 4000 6000 3000 4000 2000 2000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8,0 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω NP IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 25/125 350 50 ±15 20 30 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 40 R gon (Ω) 100 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10 10-3 -3 10 10-5 At D= RthJH = 10-4 tp / T 1,25 10-3 10-2 10-1 100 t p (s) 101 1 K/W 10-5 10-4 10-3 At D= RthJH = tp / T 1,54 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,13 0,28 0,48 0,20 0,13 R (C/W) 0,20 0,36 0,33 0,28 0,20 Tau (s) 4,53 1,03 0,25 0,07 0,02 copyright by Vincotech 17 10-2 10-1 100 t p (s) 101 1 Tau (s) 7,23 1,40 0,34 0,08 0,02 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) NP IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 150 IC (A) Ptot (W) 100 120 80 90 60 60 40 30 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 120 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT neutral point IGBT NP IGBT Figure 25 Reverse bias safe operating area IC = f(VCE) IC (A) 1400 Ic MODULE 1000 VCEMAX 800 Ic CHIP IC MAX 1200 600 400 200 0 0 100 200 300 400 500 600 700 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright by Vincotech 19 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet NP IGBT Inverse Diode NP Inverse Diode Figure 25 Typical FWD forward current as a function of forward voltage IF = f(VF) NP Inverse Diode Figure 26 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 70 1 ZthJC (K/W) IF (A) 10 60 50 100 40 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 Tj = Tjmax-25°C 10 Tj = 25°C 0 0 At tp = 0,5 1 1,5 2 2,5 V F (V) -2 10 3 10-5 At D= RthJH = μs 250 NP Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 3,24 10-2 100 t p (s) 1011 K/W NP Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 60 10-1 IF (A) Ptot (W) 30 50 25 40 20 30 15 20 10 10 5 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 20 50 175 100 150 Th ( o C) 200 ºC Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Half bridge Inverse Diode Halfbridge JFET Inverse Diode Figure 1 Typical FWD forward current as a function of forward voltage IF= f(VF) Halfbridge JFET Inverse Diode Figure 2 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 35 ZthJC (K/W) IF (A) 101 30 25 100 20 15 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = 25°C 5 0 0 At tp = 1 2 3 V F (V) -2 4 10 10-5 At D= RthJH = μs 250 Halfbridge JFET Inverse Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 100 t p (s) 1011 tp / T 2,548 K/W Halfbridge JFET Inverse Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 10-1 IF (A) Ptot (W) 25 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 21 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 22 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Switching Definitions half bridge IGBT General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω half bridge IGBT Figure 1 half bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % % 100 IC 200 VGE 90% 75 150 IC VGE VCE 90% VCE 50 100 tEoff VGE tdon VCE 25 50 0 -25 -0,2 VCE 5% IC 10% tEon VGE 10% 0 IC 1% -50 0 0,2 0,4 0,6 0,8 3,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 700 50 0,27 0,61 4 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs half bridge IGBT Figure 3 4,1 -15 15 700 50 0,13 0,28 4,2 4,3 4,4 V V V A μs μs half bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 250 % % fitted IC Ic 200 100 IC 90% 150 75 IC 60% 100 50 IC 90% IC 40% tr VCE 50 25 VCE IC10% 0 IC 10% 0 tf -50 -25 0,1 0,15 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,2 700 50 0,07 0,25 0,3 4 0,35 0,4 time (us) 4,05 4,1 4,15 4,2 4,25 4,3 time(us) VC (100%) = IC (100%) = tr = V A μs 23 700 50 0,03 V A μs Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Switching Definitions half bridge IGBT half bridge IGBT Figure 5 half bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Eoff 100 Eon 100 Pon 75 75 50 50 25 25 Poff VGE 90% VGE10% 0 tEoff -25 -0,2 VCE3% 0 tEon -25 0 0,2 0,4 0,6 0,8 3,9 4 4,1 4,2 4,3 time (us) Poff (100%) = Eoff (100%) = tEoff = 35,18 2,00 0,61 Pon (100%) = Eon (100%) = tEon = kW mJ μs half bridge IGBT Figure 7 Gate voltage vs Gate charge (measured) 35,18 1,64 0,28 time(us) 4,4 kW mJ μs neutral point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 150 % Id 15 100 10 trr 50 5 Vd fitted 0 0 IRRM 10% -5 -50 -10 -100 IRRM 90% IRRM 100% -15 -20 -100 -150 0 100 200 300 400 500 4,1 600 4,15 4,2 4,25 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech -15 15 700 50 546,28 4,3 4,35 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 700 50 -56 0,12 V A A μs Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Switching Definitions half bridge FWD neutral point FWD Figure 9 neutral point FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Qrr Id 100 Erec 100 tQrr 50 75 0 50 -50 25 tErec Prec -100 0 -150 -25 4,1 4,15 4,2 4,25 4,3 4,35 4,4 4,1 4,15 4,2 4,25 Id (100%) = Qrr (100%) = tQrr = 50 2,73 0,23 4,3 4,35 4,4 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A μC μs 35,18 0,41 0,23 kW mJ μs half bridge switching measurement circuit Figure 111 copyright by Vincotech half bridge IGBT 25 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Switching Definitions neutral point IGBT General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω neutral point IGBT Figure 1 neutral point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 125 tdoff % % 100 200 VGE 90% IC IC 75 150 VGE 50 100 VCE tEoff VGE 90% tdon VCE 25 50 VGE 10% VCE 0 IC -25 -0,2 IC 10% 0 VCE 3% tEon 1% -50 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 700 50 0,10 0,17 0,4 0,6 time (us) 0,8 3,9 4 4,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs neutral point IGBT Figure 3 -15 15 700 50 0,15 0,12 4,2 4,3 V V V A μs μs neutral point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 250 125 fitted % % IC Ic 100 200 IC 90% 75 150 IC 60% 50 100 IC 90% IC 40% tr VCE 25 50 IC 10% VCE 0 IC 10% 0 tf -25 -50 0,0 0,1 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,2 700 50 0,119 0,3 0,4 time (us) 0,5 4,1 VC (100%) = IC (100%) = tr = V A μs 26 4,15 4,2 700 50 0,024 4,25 time(us) 4,3 V A μs Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Switching Definitions neutral point IGBT neutral point IGBT Figure 5 neutral point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 130 125 % Eon % IC 1% 100 Eoff 100 75 70 50 40 Poff 25 Pon Uge90% 10 0 Uge10% tEoff tEon -25 -0,2 0 0,2 0,4 0,6 3,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 34,87 2,32 0,17 4 Pon (100%) = Eon (100%) = tEon = kW mJ μs neutral point IGBT Figure 7 4,1 34,8684 0,38 0,12 4,2 time(us) 4,3 kW mJ μs half bridge FWD Figure 8 Gate voltage vs Gate charge (measured) Uge (V) UCE 3% -20 Turn-off Switching Waveforms & definition of trr 20 150 % 15 100 10 50 5 0 0 -50 -5 -100 Id trr Ud fitted IRRM 10% IRRM 90% IRRM 100% -10 -15 -200 -150 -200 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech 200 -15 15 700 50 3441,54 400 600 800 1000 Qg (nC) 4,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 27 4,2 4,3 700 50 -61 0,04 4,4 time(us) 4,5 V A A μs Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Switching Definitions neutral point IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) half bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 half bridge FWD 125 % Id Erec % Qrr 100 100 tQint 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 4,1 4,2 Id (100%) = Qrr (100%) = tQint = 4,3 50 6,56 0,09 4,4 4,5 time(us) 4,6 4,1 Prec (100%) = Erec (100%) = tErec = A μC μs 4,2 4,3 34,87 1,72 0,09 4,4 4,5 time(us) 4,6 kW mJ μs neutral point IGBT switching measurement circuit Figure 11 copyright by Vincotech 28 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 12mm housing with pressfit pin Ordering Code 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY in DataMatrix as M427F M427FY in packaging barcode as M427F M427FY Outline Pinout copyright by Vincotech 29 Revision: 1 10-FY12NMA080SH-M427F 10-PY12NMA080SH-M427FY preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 30 Revision: 1