70-W224NIA400SH-M400P flow NPC 4w 2400V/400A Features flow SCREW 4w housing ● 2400V NPC-topology ● Low inductive ● High power screw interface ● Integrated DC-snubber capacitors Target Applications ● Solar inverter ● Wind Power Schematic ● Motor Drive Types ● 70-W224NIA400SH-M400P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 326 400 A tp limited by Tjmax 1200 A VCE ≤ 1200V, Tj ≤ Top max 800 A Buck IGBT ( T1 , T4 ) Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 881 1335 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 270 356 A 800 A 565 857 W 175 °C Tj≤150°C VGE=15V Buck Diode ( D5 , D6 ) Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp=10ms, sin 180° Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 70-W224NIA400SH-M400P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 316 400 A 1200 A 800 A 826 1252 W ±20 V µs Boost IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpuls Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Maximum Junction Temperature Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Short circuit ratings Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C tSC Tj≤150°C 10 VCC VGE=15V 800 V 175 °C 1200 V 252 337 A 600 A 452 687 W 175 °C 1200 V 257 342 A 600 A 452 685 W 175 °C Tjmax Boost Inverse Diode ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Boost Diode ( D2 , D3 ) Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 70-W224NIA400SH-M400P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Snubber Diode ( D7 , D8 ) Repetitive peak reverse voltage VRRM Forward average current IFAV Tj=Tjmax Power dissipation per diode Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 136 140 436 660 A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Stage Vis t=2s DC voltage CTI Copyright by Vincotech >200 3 Revision: 1 70-W224NIA400SH-M400P Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,2 5,8 6,4 1,7 2,14 2,44 2,4 Buck IGBT ( T1 , T4 ) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0136 400 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 960 Rgoff=1 ۷ Rgon=1 ۷ ±15 600 398 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA ۷ 0,5 tr td(off) 0,048 V 171 172 24 29 238 290 21 38 9,03 14,33 13,20 21,33 ns mWs 22160 f=1MHz 0 25 Tj=25°C 1520 pF 1280 ±15 960 400 Tj=25°C 1840 nC 0,11 Phase-Change Material K/W 0,07 Buck Diode ( D5 , D6 ) Diode forward voltage VF Reverse leakage current IR Peak reverse recovery current trr Reverse recovered charge Qrr Rgon=1 ۷ ±15 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 400 398 Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,34 2,38 2,52 480 506 624 86 117 34,86 57,89 14614 15212 15,14 26,14 V µA A ns µC A/µs mWs 0,17 Phase-Change Material K/W 0,11 4 Revision: 1 70-W224NIA400SH-M400P Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,80 6,5 1,91 2,14 2,05 Boost IGBT ( T2 , T3 ) VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,0152 15 400 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,052 2400 tr 233 242 44 49 334 405 43 99 15,2 21,5 td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Rgoff=1 ۷ Rgon=1 ۷ ±15 600 398 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA ۷ 1,875 td(on) V ns mWs 24,2 37,6 24600 f=1MHz 25 0 398 1620 Tj=25°C pF 1380 480 15 75 Tj=25°C nC 3800 0,12 Phase-Change Material K/W 0,08 Boost Inverse Diode ( D1 , D4 ) Diode forward voltage Reverse leakage current VF 300 Ir 1200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,90 1,84 2,05 V 56 Thermal resistance chip to heatsink per chip RthJH 0,21 Thermal resistance chip to case per chip RthJC 0,14 K/W Boost Diode ( D2 , D3 ) Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF Ir 1200 IRRM trr Qrr Rgon=1 ۷ ±15 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 300 398 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=125°C Tj=125°C 1,35 1,90 1,84 2,05 56 368 403 251 341 34 59 3292 3343 13,60 24,53 V µA A ns µC A/µs mWs 0,21 Phase-Change Material K/W 0,14 5 Revision: 1 70-W224NIA400SH-M400P Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,91 1,85 2,54 Snubber Diode ( D7 , D8 ) Forward voltage Reverse current VF 100 Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 1200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,06 V mA 0,59 Phase-Change Material K/W 0,14 Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 ۷ Tc=100°C Power dissipation constant ۷ 22000 -12 14 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference B Module Properties Module inductance (from chips to PCB) LsCE C-PCB 12 Module inductance (from PCB to PCB using Intercon Lboard) sCE PCB-PCB Mounting torque M Mounting torque M Terminal connection torque M Weight G Copyright by Vincotech nH 5 Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 6 nH 2 2,2 Nm 4 6 Nm 5 Nm 580 g 2,5 Revision: 1 70-W224NIA400SH-M400P Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT IGBT 1000 1000 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE from 1 2 3 4 VCE (V) 5 0 1 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 VCE (V) 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 1000 IF (A) IC (A) 350 5 300 800 250 600 200 150 400 100 Tj = 125°C Tj = 125°C 200 50 Tj = 25°C 0 2 4 6 8 10 12 0 VGE (V) At tp = VCE = Tj = 25°C 0 0 350 10 At tp = µs V Copyright by Vincotech 7 1 350 2 3 VF (V) 4 µs Revision: 1 70-W224NIA400SH-M400P Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 140 E (mWs) 50 Eoff High T 120 Eon High T 40 100 Eon Low T 30 80 Eon High T Eoff Low T 60 20 Eon Low T 40 10 Eoff High T 20 Eoff Low T 0 0 0 200 400 600 800 IC(A) 1000 0 2 4 6 8 10 RG(Ω) With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 1 ۷ Rgoff = With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V IC = 398 A ۷ 1 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 40 E (mWs) 40 Erec High T 32 32 24 24 Erec Low T 16 16 Erec High T 8 8 Erec Low T 0 0 0 200 400 600 800 IC(A) 0 1000 4 6 8 10 RG(Ω) With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 1,0 ۷ Copyright by Vincotech 2 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 398 A 8 Revision: 1 70-W224NIA400SH-M400P Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff tdon t (ms) t (ms) 1,00 tdoff tdon 0,10 tr 0,10 tf tf tr 0,01 0,01 0,00 0,00 0 200 400 600 800 0 1000 2 4 6 8 IC(A) With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 1 ۷ Rgoff = 10 RG(Ω) With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 398 A ۷ 1 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,0 t rr(ms) t rr(ms) 0,2 trr High T 0,8 0,2 trr High T 0,6 0,1 trr Low T trr Low T 0,4 0,1 0,2 0,0 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 400 600 800 IC(A) 0 1000 4 6 8 10 Rgon(Ω) At Tj = VR = IF = VGE = °C V V ۷ Copyright by Vincotech 2 9 25/125 600 398 ±15 °C V A V Revision: 1 70-W224NIA400SH-M400P Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 100 Qrr (mC) Qrr (mC) 100 Qrr High T 80 80 60 60 Qrr Low T Qrr High T 40 40 20 20 Qrr Low T 0 0 0 200 400 600 800 0 1000 2 4 6 8 IC(A) At At Tj = VCE = VGE = Rgon = 25/125 600 °C V ±15 1,0 V ۷ At Tj = VR = IF = VGE = FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 Rgon(Ω) 25/125 600 °C V 398 ±15 A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 1000 IrrM (A) IrrM (A) 1000 800 800 IRRM High T IRRM Low T 600 600 400 400 200 200 IRRM High T IRRM Low T 0 0 0 200 400 600 800 0 1000 2 4 At Tj = VCE = VGE = Rgon = 25/125 600 ±15 1,0 At Tj = VR = IF = VGE = °C V V ۷ Copyright by Vincotech 6 8 10 Rgon(Ω) IC(A) 10 25/125 600 398 ±15 °C V A V Revision: 1 70-W224NIA400SH-M400P Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 20000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dt T dIo/dt T 16000 28000 dI0/dt T dIrec/dt T 24000 20000 12000 16000 12000 8000 8000 4000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 25/125 25/125 600 °C V ±15 1,0 V ۷ 600 800 1000 IC(A) 0 At Tj = VR = IF = VGE = IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 4 25/125 25/125 600 °C V 398 ±15 A V 6 8 Rgon(Ω) FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 tp (s) 1 101 10-5 At D= RthJH = tp / T 0,210 K/W RthJC = 0,139 K/W IGBT thermal model values With thermal grease R (C/W) Tau (s) 0,02 5,238 0,07 1,193 0,05 0,295 0,05 0,030 0,01 0,008 0,01 0,001 Copyright by Vincotech 10-4 10-3 10-2 10-1 100 tp (s) 1 101 tp / T 0,168 K/W RthJC = 0,111 K/W FWD thermal model values With phase change material R (C/W) 0,02 5,08 0,07 1,16 0,05 0,29 0,05 0,03 0,01 0,01 0,01 0,00 With thermal grease R (C/W) Tau (s) 0,02 7,43 0,03 1,59 0,03 0,29 0,04 0,06 0,03 0,02 0,01 0,00 11 With phase change material R (C/W) 0,02 7,21 0,03 1,54 0,03 0,28 0,04 0,06 0,03 0,02 0,01 0,00 Revision: 1 70-W224NIA400SH-M400P Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 400 IC (A) Ptot (W) 900 300 600 200 300 100 0 0 0 At Tj = 50 100 150 Th (oC) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 Th (oC) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 500 IF (A) Ptot (W) 1200 200 1000 400 800 300 600 200 400 100 200 0 0 0 At Tj = 50 175 100 150 Th (oC) 200 0 At Tj = °C Copyright by Vincotech 12 50 175 100 150 Th (oC) 200 °C Revision: 1 70-W224NIA400SH-M400P Buck T1,T4 / D5,D6 Buck IGBT and Buck FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) VGE (V) IC (A) 17,5 103 15 10uS 240V 12,5 102 100uS 960V 10 1mS 101 7,5 10mS 100 100mS 5 DC 2,5 10-1 0 102 101 100 At D= 0 103 At IC = single pulse Th = VGE = 80 ±15 Tjmax Tj = 300 600 VCE(V) 400 900 1200 1500 Qg (nC) 1800 A ºC V ºC IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 1000 IC MAX Ic CHIP 800 600 VCE Ic MODULE MAX 400 200 0 0 200 400 600 800 1000 1200 1400 VCE(V) At Uccminus=Uccplus Switching mode : 3 level switching Copyright by Vincotech 13 Revision: 1 70-W224NIA400SH-M400P Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT IGBT 1000 1000 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE from 1 2 3 4 VCE (V) 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V IGBT 2 3 4 VCE (V) 500 1000 IF (A) 400 800 300 600 200 400 5 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 1 Tj = 125°C 100 200 Tj = 25°C Tj = 125°C 0 0 At tp = VCE = Tj = 25°C 0 2 350 10 4 6 8 10 VGE (V) 12 0 At tp = µs V Copyright by Vincotech 14 1 350 2 3 VF (V) 4 µs Revision: 1 70-W224NIA400SH-M400P Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 100 E (mWs) E (mWs) 100 Eon High T 80 80 Eon Low T Eoff High T 60 60 Eoff Low T Eon High T 40 40 Eoff High T Eon Low T Eoff Low T 20 20 0 0 0 200 400 600 800 IC(A) 0 1000 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 1,0 ۷ Rgoff = 2 4 6 8 RG ( Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 398 A ۷ 1,0 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 40 E (mWs) 40 Erec High T 30 30 20 20 Erec Low T Erec High T 10 10 Erec Low T 0 0 0 200 400 600 800 IC (A) 0 1000 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 1,0 ۷ Copyright by Vincotech 2 4 6 8 RG ( Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 398 A 15 Revision: 1 70-W224NIA400SH-M400P Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) tdoff tdon 1 t (µs) t (µs) 1 tdoff tdon tf 0,1 tr 0,1 tr tf 0,01 0,01 0,001 0,001 0 200 400 600 800 IC(A) 0 1000 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 1,0 ۷ Rgoff = 1,0 ۷ 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 398 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr(ms) t rr(ms) 0,8 trr High T 0,6 0,6 trr High T trr Low T 0,4 0,4 trr Low T 0,2 0,2 0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 400 600 800 IC(A) 0 1000 At Tj = VR = IF = VGE = °C V V ۷ Copyright by Vincotech 16 2 25/125 600 398 ±15 4 6 8 Rgon(Ω) 10 °C V A V Revision: 1 70-W224NIA400SH-M400P Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 100 Qrr (mC) Qrr (mC) 100 Qrr High T 80 80 60 60 Qrr High T Qrr Low T 40 40 Qrr Low T 20 20 0 0 At At Tj = VCE = VGE = 0 Rgon = 200 400 25/125 600 °C V ±15 1,0 V ۷ 600 800 0 1000 IC(A) 4 6 8 10 Rgon(Ω) At Tj = VR = IF = VGE = FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 600 °C V 398 ±15 A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 500 IrrM (A) IrrM (A) 500 IRRM High T IRRM Low T 400 400 300 300 200 200 100 100 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 600 ±15 1,0 400 600 800 IC(A) 0 1000 At Tj = VR = IF = VGE = °C V V ۷ Copyright by Vincotech 17 2 25/125 600 398 ±15 4 6 8 Rgon(Ω) 10 °C V A V Revision: 1 70-W224NIA400SH-M400P Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD FWD direc / dt (A/ms) 15000 dIrec/dt T di0/dt T 12000 15000 12000 9000 6000 6000 3000 3000 0 0 0 Rgon = dI0/dt T dIrec/dt T 9000 At Tj = VCE = VGE = FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 200 400 25/125 25/125 600 °C V ±15 1,0 V ۷ 600 800 1000 IC(A) 0 At Tj = VR = IF = VGE = IGBT 100 100 ZthJH (K/W) 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 4 25/125 25/125 600 °C V 398 ±15 A V 6 8 Rgon(Ω) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 10-3 10-5 At D= RthJH = 10-4 tp / T 0,115 10-3 K/W 10-2 RthJC = 10-1 100 tp (s) 101 0,076 IGBT thermal model values With thermal grease R (C/W) Tau (s) 0,01 6,35 0,05 1,77 0,02 0,39 0,01 0,09 0,02 0,02 Copyright by Vincotech 10-5 10-4 10-3 At D= RthJH = tp / T 0,210 K/W 10-2 RthJC = 10-1 100 tp (s) 101 0,139 FWD thermal model values With phase change material R (C/W) Tau (s) 0,01 6,16 0,05 1,71 0,02 0,38 0,01 0,08 0,02 0,02 With thermal grease R (C/W) Tau (s) 0,02 5,24 0,07 1,19 0,05 0,30 0,05 0,03 0,01 0,01 18 With phase change material R (C/W) Tau (s) 0,02 5,08 0,07 1,16 0,05 0,29 0,05 0,03 0,01 0,01 Revision: 1 70-W224NIA400SH-M400P Boost T2,T3 / D2,D3 Boost IGBT and Boost FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 500 IC (A) Ptot (W) 1800 1500 400 1200 300 900 200 600 100 300 0 0 0 At Tj = 50 100 150 Th(oC) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 Th(oC) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 900 200 IF (A) Ptot (W) 400 750 300 600 450 200 300 100 150 0 0 0 50 100 150 200 0 Th (oC) At Tj = 175 At Tj = ºC Copyright by Vincotech 19 50 175 100 150 Th (oC) 200 ºC Revision: 1 70-W224NIA400SH-M400P Boost T2,T3 / D2,D3 Boost IGBT IGBT Figure 25 Reverse bias safe operating area IC = f(VCE) IC (A) 1000 IC MAX Ic CHIP 800 Ic MODULE 600 400 VCE MAX 200 0 0 200 400 600 800 1000 1200V (V)1400 CE At Uccminus=Uccplus 12 Ls= Switching mode : nH 3 level switching Copyright by Vincotech 20 Revision: 1 70-W224NIA400SH-M400P Boost Inverse Diode D1,D4 Boost Inverse Diode D1,D4 Figure 25 Typical FWD forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode D1,D4 Figure 26 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 1000 ZthJC (K/W) IF (A) 100 800 10-1 600 400 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 200 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 1 2 3 VF (V) 10-3 4 10-5 At D= RthJH = µs 250 10-4 Boost Inverse Diode D1,D4 Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 tp / T 0,21 10-2 100 tp (s) 101 K/W Boost Inverse Diode D1,D4 Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 400 IF (A) Ptot (W) 900 10-1 750 300 600 200 450 300 100 150 0 0 0 At Tj = 50 175 100 150 Th (oC) 0 200 At Tj = ºC Copyright by Vincotech 21 50 175 100 150 Th (oC) 200 ºC Revision: 1 70-W224NIA400SH-M400P Snubber Diode D7, D8 Snubber Diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Snubber Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJC (K/W) IF (A) 600 500 400 10-1 Tj = 25°C 300 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = Tjmax-25°C 200 10-2 100 0 10-3 0 At tp = 1 2 3 4 VF (V) 5 10-5 At D= RthJH = µs 250 10-4 Snubber Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 101 tp / T 0,59 K/W Snubber Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 150 IF (A) Ptot (W) 300 t10 2 p (s) 250 120 200 90 150 60 100 30 50 0 0 0 At Tj = 50 175 100 150 Th (oC) 200 0 At Tj = ºC Copyright by Vincotech 22 50 175 100 150 Th (oC) 200 ºC Revision: 1 70-W224NIA400SH-M400P Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) R/Ω NTC-typical temperature characteristic 24000 20000 16000 12000 8000 4000 0 25 50 75 100 125 T (°C) Copyright by Vincotech 23 Revision: 1 70-W224NIA400SH-M400P Switching Definitions Buck General conditions Tj = 125 °C Rgon = 1Ω Rgoff = 1Ω Buck IGBT Figure 1 Buck IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 % 300 % VCE 125 250 tdoff IC 100 VGE 90% 200 VCE 90% 75 VGE 150 IC 50 tEoff VCE 100 25 VGE tdon 50 IC 1% 0 VGE 10% IC 10% tEon 0 -25 VCE 3% -50 -50 -0,3 -0,15 0 0,15 0,3 0,45 time (us) 3,8 0,6 3,95 4,1 4,25 VGE (0%) = VGE (100%) = VC (100%) = -15 15 600 V V V VGE (0%) = VGE (100%) = VC (100%) = -15 15 600 V V V IC (100%) = tdoff = tEoff = 402 0,29 0,45 A µs µs IC (100%) = tdon = tEon = 402 0,17 0,30 A µs µs Buck IGBT Figure 3 4,4 4,55 Buck IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 150 % 300 % Ic 250 125 fitted VCE IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% tr IC 40% 50 25 IC 10% 0 IC 10% 0 tf -50 -25 0,1 VC (100%) = IC (100%) = tf = 0,15 0,2 600 402 0,04 Copyright by Vincotech 0,25 0,3 4,1 0,35 time(us) 0,4 VC (100%) = IC (100%) = tr = V A µs 24 4,15 4,2 600 402 0,03 4,25 4,3 time(us) 4,35 V A µs Revision: 1 70-W224NIA400SH-M400P Switching Definitions Buck Buck IGBT Figure 5 Buck IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % Poff % Eoff Eon 100 100 75 75 50 50 Pon 25 25 IC 1% VGE 10% VGE90% VCE 3% 0 0 tEon tEoff -25 -25 -0,2 -0,05 Poff (100%) = Eoff (100%) = tEoff = 0,1 241,06 21,33 0,45 0,25 3,95 0,4 time (us) 0,55 4,05 Pon (100%) = Eon (100%) = tEon = kW mJ µs Buck IGBT Figure 7 Gate voltage vs Gate charge (measured) 4,15 241,06 14,33 0,30 4,25 time(us) 4,35 kW mJ µs Buck FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 % 15 100 VGE (V) 20 Id trr 10 50 5 Vd 0 IRRM 10% 0 -50 -5 -100 -10 IRRM 90% IRRM 100% -150 -15 fitted -200 -20 -500 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 600 1700 -15 15 600 402 4439,94 Copyright by Vincotech 2800 3900 Qg (nC) 4 5000 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 25 4,1 4,2 600 402 -624 0,12 4,3 4,4 time(us) 4,5 V A A µs Revision: 1 70-W224NIA400SH-M400P Switching Definitions Buck Buck FWD Figure 9 Buck FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 150 % Qrr Id Prec % 100 150 tQrr 50 Erec 100 0 tErec -50 50 -100 0 -150 -50 -200 4 Id (100%) = Qrr (100%) = tQrr = 4,2 4,4 402 57,89 1,00 Copyright by Vincotech 4,6 4,8 5 5,2 time(us) 4 5,4 Prec (100%) = Erec (100%) = tErec = A µC µs 26 4,2 4,4 241,06 26,14 1,00 4,6 4,8 5 5,2 5,4 time(us) kW mJ µs Revision: 1 70-W224NIA400SH-M400P Switching Definitions Boost General conditions Tj = #REF! Rgon = 1Ω Rgoff = 1Ω Boost IGBT Figure 1 Boost IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 IC % % 125 tdoff 150 100 VCE VGE 90% 90% VCE 100 75 VGE IC tdon 50 50 tEoff 25 IC VCE VCE 3% IC 10% VGE 10% 1% 0 tEon 0 VGE -25 -50 -0,2 0 0,2 0,4 0,6 0,8 time (us) 1 2,7 2,9 3,1 3,3 VGE (0%) = VGE (100%) = VC (100%) = #REF! #REF! #REF! V V V VGE (0%) = VGE (100%) = VC (100%) = #REF! #REF! #REF! V V V IC (100%) = tdoff = tEoff = #REF! 0,40 0,76 A µs µs IC (100%) = tdon = tEon = #REF! #REF! 0,48 A µs µs Boost IGBT Figure 3 3,5 3,7 3,9 Boost IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 200 fitted % VCE IC Ic % 100 150 Ic 90% 75 VCE 100 Ic 60% IC 90% 50 tr Ic 40% 50 25 Ic 10% IC 10% 0 0 tf -25 -50 0,1 VC (100%) = IC (100%) = tf = 0,2 0,3 #REF! #REF! #REF! Copyright by Vincotech 0,4 0,5 0,6 0,7 time (us) 3,1 VC (100%) = IC (100%) = tr = V A µs 27 3,2 3,3 #REF! #REF! #REF! 3,4 3,5 time(us) 3,6 V A µs Revision: 1 70-W224NIA400SH-M400P Switching Definitions Boost Boost IGBT Figure 5 Boost IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Poff Eon Eoff 100 100 Pon 75 75 50 50 IC 1% 25 25 Uge 90% Uce 3% Uge 10% 0 0 tEoff tEon -25 -25 -0,2 Poff (100%) = Eoff (100%) = tEoff = 0 0,2 0,4 #REF! #REF! 0,76 kW mJ µs 0,6 0,8 time (us) 2,9 1 Pon (100%) = Eon (100%) = tEon = Boost IGBT Figure 7 3,2 #REF! 13,39 0,48 3,35 3,5 time(us) 3,65 kW mJ µs Boost FWD Figure 8 Gate voltage vs Gate charge (measured) Turn-off Switching Waveforms & definition of trr 150 20 Uge (V) 3,05 % Id 15 100 10 trr 50 5 Ud 0 fitted 0 IRRM 10% -5 -50 -10 IRRM 90% IRRM 100% -100 -15 -20 -150 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 500 #REF! #REF! #REF! #REF! 3441,54 Copyright by Vincotech 1000 1500 Qg (nC) 2000 2,9 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 28 3,1 3,3 #REF! #REF! #REF! #REF! 3,5 3,7 time(us) 3,9 V A A µs Revision: 1 70-W224NIA400SH-M400P Switching Definitions Boost Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Boost FWD Boost FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Qrr Id Erec 100 100 tErec 75 tQint 50 50 0 25 Prec -50 0 -25 -100 3 Id (100%) = Qrr (100%) = tQint = 3,2 3,4 #REF! #REF! 0,69 Copyright by Vincotech 3,6 3,8 3 4 time(us) 4,2 Prec (100%) = Erec (100%) = tErec = A µC µs 29 3,2 3,4 3,6 #REF! #REF! 0,69 kW mJ µs 3,8 4 time(us) 4,2 Revision: 1 70-W224NIA400SH-M400P Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W224NIA400SH-M400P in DataMatrix as M400P in packaging barcode as M400P Outline Driver pins Pin 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 X1 Y1 Function -2,15 84,85 G1-1 -2,15 81,95 E1-1 46,15 84,85 G1-2 46,15 81,95 E1-2 19,45 93,05 DC+ desat 24,55 93,05 DC+ desat -7,65 70,05 G2-1 -7,65 67,15 E2-1 51,65 70,05 G2-2 51,65 67,15 E2-2 16,75 75,35 GND desat 27,25 75,35 GND desat -2,55 28 G3-1 -5,45 28 E3-1 46,55 28 G3-2 49,45 28 E3-2 -4,8 50,85 G4-1 -1,6 49,05 E4-1 48,8 50,85 G4-2 45,6 49,05 E4-2 67,65 89,8 NTC1 67,65 86,7 NTC2 Low current connections M4 screw 3.1 X3 Y3 -39,1 89,8 TR+ 3.2 3.3 3.4 -39,1 -39,1 83,1 89,8 89,8 89,8 GND DC+ TR+ 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 83,1 89,8 83,1 89,8 -39,1 65,2 -39,1 65,2 -39,1 65,2 83,1 65,2 83,1 65,2 83,1 65,2 -39,1 45,2 -39,1 45,2 -39,1 45,2 83,1 45,2 83,1 45,2 83,1 45,2 -39,1 20,6 -39,1 20,6 -39,1 20,6 83,1 20,6 83,1 20,6 83,1 20,6 Power connections M6 screw 2.1 2.2 2.3 2.4 2.5 2.6 Group T1 T1 T1 T1 T1 T1 T2 T2 T2 T2 D5 D5 T3 T3 T3 T3 T4 T4 T4 T4 Function GND DC+ T2C GND Phase T2C GND Phase Phase GND DK Phase GND DK DCGND TRDCGND TR- X2 Y2 Function 0 22 44 0 22 44 0 0 0 110,4 110,4 110,4 Phase Phase Phase DC+ GND DC- Copyright by Vincotech 30 Revision: 1 70-W224NIA400SH-M400P Ordering Code and Marking - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W224NIA400SH-M400P in DataMatrix as M400P in packaging barcode as M400P Pinout Copyright by Vincotech 31 Revision: 1 70-W224NIA400SH-M400P DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 32 Revision: 1