70-W224NIA400SH-M400P Maximum Ratings

70-W224NIA400SH-M400P
flow NPC 4w
2400V/400A
Features
flow SCREW 4w housing
● 2400V NPC-topology
● Low inductive
● High power screw interface
● Integrated DC-snubber capacitors
Target Applications
● Solar inverter
● Wind Power
Schematic
● Motor Drive
Types
● 70-W224NIA400SH-M400P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
326
400
A
tp limited by Tjmax
1200
A
VCE ≤ 1200V, Tj ≤ Top max
800
A
Buck IGBT ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
881
1335
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
270
356
A
800
A
565
857
W
175
°C
Tj≤150°C
VGE=15V
Buck Diode ( D5 , D6 )
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp=10ms, sin 180°
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
70-W224NIA400SH-M400P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
316
400
A
1200
A
800
A
826
1252
W
±20
V
µs
Boost IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpuls
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Maximum Junction Temperature
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Short circuit ratings
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
tSC
Tj≤150°C
10
VCC
VGE=15V
800
V
175
°C
1200
V
252
337
A
600
A
452
687
W
175
°C
1200
V
257
342
A
600
A
452
685
W
175
°C
Tjmax
Boost Inverse Diode ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Boost Diode ( D2 , D3 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
70-W224NIA400SH-M400P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Snubber Diode ( D7 , D8 )
Repetitive peak reverse voltage
VRRM
Forward average current
IFAV
Tj=Tjmax
Power dissipation per diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
136
140
436
660
A
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Stage
Vis
t=2s
DC voltage
CTI
Copyright by Vincotech
>200
3
Revision: 1
70-W224NIA400SH-M400P
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,2
5,8
6,4
1,7
2,14
2,44
2,4
Buck IGBT ( T1 , T4 )
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0136
400
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
960
Rgoff=1 ۷
Rgon=1 ۷
±15
600
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
۷
0,5
tr
td(off)
0,048
V
171
172
24
29
238
290
21
38
9,03
14,33
13,20
21,33
ns
mWs
22160
f=1MHz
0
25
Tj=25°C
1520
pF
1280
±15
960
400
Tj=25°C
1840
nC
0,11
Phase-Change
Material
K/W
0,07
Buck Diode ( D5 , D6 )
Diode forward voltage
VF
Reverse leakage current
IR
Peak reverse recovery current
trr
Reverse recovered charge
Qrr
Rgon=1 ۷
±15
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
400
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,34
2,38
2,52
480
506
624
86
117
34,86
57,89
14614
15212
15,14
26,14
V
µA
A
ns
µC
A/µs
mWs
0,17
Phase-Change
Material
K/W
0,11
4
Revision: 1
70-W224NIA400SH-M400P
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,80
6,5
1,91
2,14
2,05
Boost IGBT ( T2 , T3 )
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,0152
15
400
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,052
2400
tr
233
242
44
49
334
405
43
99
15,2
21,5
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Rgoff=1 ۷
Rgon=1 ۷
±15
600
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
۷
1,875
td(on)
V
ns
mWs
24,2
37,6
24600
f=1MHz
25
0
398
1620
Tj=25°C
pF
1380
480
15
75
Tj=25°C
nC
3800
0,12
Phase-Change
Material
K/W
0,08
Boost Inverse Diode ( D1 , D4 )
Diode forward voltage
Reverse leakage current
VF
300
Ir
1200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,90
1,84
2,05
V
56
Thermal resistance chip to heatsink per chip
RthJH
0,21
Thermal resistance chip to case per chip
RthJC
0,14
K/W
Boost Diode ( D2 , D3 )
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
Ir
1200
IRRM
trr
Qrr
Rgon=1 ۷
±15
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
300
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=125°C
Tj=125°C
1,35
1,90
1,84
2,05
56
368
403
251
341
34
59
3292
3343
13,60
24,53
V
µA
A
ns
µC
A/µs
mWs
0,21
Phase-Change
Material
K/W
0,14
5
Revision: 1
70-W224NIA400SH-M400P
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,91
1,85
2,54
Snubber Diode ( D7 , D8 )
Forward voltage
Reverse current
VF
100
Ir
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
1200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,06
V
mA
0,59
Phase-Change
Material
K/W
0,14
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 ۷
Tc=100°C
Power dissipation constant
۷
22000
-12
14
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
B
Module Properties
Module inductance (from chips to PCB)
LsCE C-PCB
12
Module inductance (from PCB to PCB using Intercon Lboard)
sCE PCB-PCB
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
Copyright by Vincotech
nH
5
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
6
nH
2
2,2
Nm
4
6
Nm
5
Nm
580
g
2,5
Revision: 1
70-W224NIA400SH-M400P
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
IGBT
1000
1000
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
VCE (V)
5
0
1
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
VCE (V)
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
1000
IF (A)
IC (A)
350
5
300
800
250
600
200
150
400
100
Tj = 125°C
Tj = 125°C
200
50
Tj = 25°C
0
2
4
6
8
10
12
0
VGE (V)
At
tp =
VCE =
Tj = 25°C
0
0
350
10
At
tp =
µs
V
Copyright by Vincotech
7
1
350
2
3
VF (V)
4
µs
Revision: 1
70-W224NIA400SH-M400P
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
140
E (mWs)
50
Eoff High T
120
Eon High T
40
100
Eon Low T
30
80
Eon High T
Eoff Low T
60
20
Eon Low T
40
10
Eoff High T
20
Eoff Low T
0
0
0
200
400
600
800
IC(A)
1000
0
2
4
6
8
10
RG(Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
1
۷
Rgoff =
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
IC =
398
A
۷
1
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
40
E (mWs)
40
Erec High T
32
32
24
24
Erec Low T
16
16
Erec High T
8
8
Erec Low T
0
0
0
200
400
600
800
IC(A)
0
1000
4
6
8
10
RG(Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
۷
Copyright by Vincotech
2
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
8
Revision: 1
70-W224NIA400SH-M400P
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
tdon
t (ms)
t (ms)
1,00
tdoff
tdon
0,10
tr
0,10
tf
tf
tr
0,01
0,01
0,00
0,00
0
200
400
600
800
0
1000
2
4
6
8
IC(A)
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
1
۷
Rgoff =
10
RG(Ω)
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
۷
1
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,0
t rr(ms)
t rr(ms)
0,2
trr High T
0,8
0,2
trr High T
0,6
0,1
trr Low T
trr Low T
0,4
0,1
0,2
0,0
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
400
600
800
IC(A)
0
1000
4
6
8
10
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
Copyright by Vincotech
2
9
25/125
600
398
±15
°C
V
A
V
Revision: 1
70-W224NIA400SH-M400P
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
100
Qrr (mC)
Qrr (mC)
100
Qrr High T
80
80
60
60
Qrr Low T
Qrr High T
40
40
20
20
Qrr Low T
0
0
0
200
400
600
800
0
1000
2
4
6
8
IC(A)
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
600
°C
V
±15
1,0
V
۷
At
Tj =
VR =
IF =
VGE =
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
Rgon(Ω)
25/125
600
°C
V
398
±15
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
1000
IrrM (A)
IrrM (A)
1000
800
800
IRRM High T
IRRM Low T
600
600
400
400
200
200
IRRM High T
IRRM Low T
0
0
0
200
400
600
800
0
1000
2
4
At
Tj =
VCE =
VGE =
Rgon =
25/125
600
±15
1,0
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
Copyright by Vincotech
6
8
10
Rgon(Ω)
IC(A)
10
25/125
600
398
±15
°C
V
A
V
Revision: 1
70-W224NIA400SH-M400P
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
20000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIrec/dt T
dIo/dt T
16000
28000
dI0/dt T
dIrec/dt T
24000
20000
12000
16000
12000
8000
8000
4000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
25/125
25/125
600
°C
V
±15
1,0
V
۷
600
800
1000
IC(A)
0
At
Tj =
VR =
IF =
VGE =
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
4
25/125
25/125
600
°C
V
398
±15
A
V
6
8
Rgon(Ω)
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
tp (s)
1
101
10-5
At
D=
RthJH =
tp / T
0,210
K/W
RthJC =
0,139
K/W
IGBT thermal model values
With thermal grease
R (C/W)
Tau (s)
0,02
5,238
0,07
1,193
0,05
0,295
0,05
0,030
0,01
0,008
0,01
0,001
Copyright by Vincotech
10-4
10-3
10-2
10-1
100
tp (s)
1
101
tp / T
0,168
K/W
RthJC =
0,111
K/W
FWD thermal model values
With phase change material
R (C/W)
0,02
5,08
0,07
1,16
0,05
0,29
0,05
0,03
0,01
0,01
0,01
0,00
With thermal grease
R (C/W)
Tau (s)
0,02
7,43
0,03
1,59
0,03
0,29
0,04
0,06
0,03
0,02
0,01
0,00
11
With phase change material
R (C/W)
0,02
7,21
0,03
1,54
0,03
0,28
0,04
0,06
0,03
0,02
0,01
0,00
Revision: 1
70-W224NIA400SH-M400P
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
400
IC (A)
Ptot (W)
900
300
600
200
300
100
0
0
0
At
Tj =
50
100
150
Th (oC)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
Th (oC)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
500
IF (A)
Ptot (W)
1200
200
1000
400
800
300
600
200
400
100
200
0
0
0
At
Tj =
50
175
100
150
Th (oC)
200
0
At
Tj =
°C
Copyright by Vincotech
12
50
175
100
150
Th (oC)
200
°C
Revision: 1
70-W224NIA400SH-M400P
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
VGE (V)
IC (A)
17,5
103
15
10uS
240V
12,5
102
100uS
960V
10
1mS
101
7,5
10mS
100
100mS
5
DC
2,5
10-1
0
102
101
100
At
D=
0
103
At
IC =
single pulse
Th =
VGE =
80
±15
Tjmax
Tj =
300
600
VCE(V)
400
900
1200
1500
Qg (nC)
1800
A
ºC
V
ºC
IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1000
IC MAX
Ic CHIP
800
600
VCE
Ic MODULE
MAX
400
200
0
0
200
400
600
800
1000
1200
1400
VCE(V)
At
Uccminus=Uccplus
Switching mode :
3 level switching
Copyright by Vincotech
13
Revision: 1
70-W224NIA400SH-M400P
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
IGBT
1000
1000
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
2
3
4
VCE (V)
500
1000
IF (A)
400
800
300
600
200
400
5
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
Tj = 125°C
100
200
Tj = 25°C
Tj = 125°C
0
0
At
tp =
VCE =
Tj = 25°C
0
2
350
10
4
6
8
10
VGE (V)
12
0
At
tp =
µs
V
Copyright by Vincotech
14
1
350
2
3
VF (V)
4
µs
Revision: 1
70-W224NIA400SH-M400P
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
100
E (mWs)
E (mWs)
100
Eon High T
80
80
Eon Low T
Eoff High T
60
60
Eoff Low T
Eon High T
40
40
Eoff High T
Eon Low T
Eoff Low T
20
20
0
0
0
200
400
600
800
IC(A)
0
1000
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
۷
Rgoff =
2
4
6
8
RG ( Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
۷
1,0
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
40
E (mWs)
40
Erec High T
30
30
20
20
Erec Low T
Erec High T
10
10
Erec Low T
0
0
0
200
400
600
800
IC (A)
0
1000
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
۷
Copyright by Vincotech
2
4
6
8
RG ( Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
15
Revision: 1
70-W224NIA400SH-M400P
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
tdoff
tdon
1
t (µs)
t (µs)
1
tdoff
tdon
tf
0,1
tr
0,1
tr
tf
0,01
0,01
0,001
0,001
0
200
400
600
800
IC(A)
0
1000
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
۷
Rgoff =
1,0
۷
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr(ms)
t rr(ms)
0,8
trr High T
0,6
0,6
trr High T
trr Low T
0,4
0,4
trr Low T
0,2
0,2
0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
400
600
800
IC(A)
0
1000
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
Copyright by Vincotech
16
2
25/125
600
398
±15
4
6
8
Rgon(Ω)
10
°C
V
A
V
Revision: 1
70-W224NIA400SH-M400P
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
100
Qrr (mC)
Qrr (mC)
100
Qrr High T
80
80
60
60
Qrr High T
Qrr Low T
40
40
Qrr Low T
20
20
0
0
At
At
Tj =
VCE =
VGE =
0
Rgon =
200
400
25/125
600
°C
V
±15
1,0
V
۷
600
800
0
1000
IC(A)
4
6
8
10
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
600
°C
V
398
±15
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
500
IrrM (A)
IrrM (A)
500
IRRM High T
IRRM Low T
400
400
300
300
200
200
100
100
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
400
600
800
IC(A)
0
1000
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
Copyright by Vincotech
17
2
25/125
600
398
±15
4
6
8
Rgon(Ω)
10
°C
V
A
V
Revision: 1
70-W224NIA400SH-M400P
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
FWD
direc / dt (A/ms)
15000
dIrec/dt T
di0/dt T
12000
15000
12000
9000
6000
6000
3000
3000
0
0
0
Rgon =
dI0/dt T
dIrec/dt T
9000
At
Tj =
VCE =
VGE =
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
200
400
25/125
25/125
600
°C
V
±15
1,0
V
۷
600
800
1000
IC(A)
0
At
Tj =
VR =
IF =
VGE =
IGBT
100
100
ZthJH (K/W)
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
4
25/125
25/125
600
°C
V
398
±15
A
V
6
8
Rgon(Ω)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
10-3
10-5
At
D=
RthJH =
10-4
tp / T
0,115
10-3
K/W
10-2
RthJC =
10-1
100
tp (s)
101
0,076
IGBT thermal model values
With thermal grease
R (C/W)
Tau (s)
0,01
6,35
0,05
1,77
0,02
0,39
0,01
0,09
0,02
0,02
Copyright by Vincotech
10-5
10-4
10-3
At
D=
RthJH =
tp / T
0,210
K/W
10-2
RthJC =
10-1
100
tp (s) 101
0,139
FWD thermal model values
With phase change material
R (C/W)
Tau (s)
0,01
6,16
0,05
1,71
0,02
0,38
0,01
0,08
0,02
0,02
With thermal grease
R (C/W)
Tau (s)
0,02
5,24
0,07
1,19
0,05
0,30
0,05
0,03
0,01
0,01
18
With phase change material
R (C/W)
Tau (s)
0,02
5,08
0,07
1,16
0,05
0,29
0,05
0,03
0,01
0,01
Revision: 1
70-W224NIA400SH-M400P
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
500
IC (A)
Ptot (W)
1800
1500
400
1200
300
900
200
600
100
300
0
0
0
At
Tj =
50
100
150
Th(oC)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
Th(oC)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
900
200
IF (A)
Ptot (W)
400
750
300
600
450
200
300
100
150
0
0
0
50
100
150
200
0
Th (oC)
At
Tj =
175
At
Tj =
ºC
Copyright by Vincotech
19
50
175
100
150
Th (oC)
200
ºC
Revision: 1
70-W224NIA400SH-M400P
Boost T2,T3 / D2,D3
Boost IGBT
IGBT
Figure 25
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1000
IC MAX
Ic CHIP
800
Ic MODULE
600
400
VCE MAX
200
0
0
200
400
600
800
1000
1200V (V)1400
CE
At
Uccminus=Uccplus
12
Ls=
Switching mode :
nH
3 level switching
Copyright by Vincotech
20
Revision: 1
70-W224NIA400SH-M400P
Boost Inverse Diode D1,D4
Boost Inverse Diode D1,D4
Figure 25
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode D1,D4
Figure 26
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
1000
ZthJC (K/W)
IF (A)
100
800
10-1
600
400
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
200
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
1
2
3
VF (V)
10-3
4
10-5
At
D=
RthJH =
µs
250
10-4
Boost Inverse Diode D1,D4
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
tp / T
0,21
10-2
100
tp (s)
101
K/W
Boost Inverse Diode D1,D4
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
400
IF (A)
Ptot (W)
900
10-1
750
300
600
200
450
300
100
150
0
0
0
At
Tj =
50
175
100
150
Th (oC)
0
200
At
Tj =
ºC
Copyright by Vincotech
21
50
175
100
150
Th (oC)
200
ºC
Revision: 1
70-W224NIA400SH-M400P
Snubber Diode D7, D8
Snubber Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Snubber Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJC (K/W)
IF (A)
600
500
400
10-1
Tj = 25°C
300
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = Tjmax-25°C
200
10-2
100
0
10-3
0
At
tp =
1
2
3
4
VF (V)
5
10-5
At
D=
RthJH =
µs
250
10-4
Snubber Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
101
tp / T
0,59
K/W
Snubber Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
150
IF (A)
Ptot (W)
300
t10
2
p (s)
250
120
200
90
150
60
100
30
50
0
0
0
At
Tj =
50
175
100
150
Th (oC)
200
0
At
Tj =
ºC
Copyright by Vincotech
22
50
175
100
150
Th (oC)
200
ºC
Revision: 1
70-W224NIA400SH-M400P
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
R/Ω
NTC-typical temperature characteristic
24000
20000
16000
12000
8000
4000
0
25
50
75
100
125
T (°C)
Copyright by Vincotech
23
Revision: 1
70-W224NIA400SH-M400P
Switching Definitions Buck
General conditions
Tj
= 125 °C
Rgon
= 1Ω
Rgoff
= 1Ω
Buck IGBT
Figure 1
Buck IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
%
300
%
VCE
125
250
tdoff
IC
100
VGE 90%
200
VCE 90%
75
VGE
150
IC
50
tEoff
VCE
100
25
VGE
tdon
50
IC 1%
0
VGE 10%
IC 10%
tEon
0
-25
VCE 3%
-50
-50
-0,3
-0,15
0
0,15
0,3
0,45
time (us)
3,8
0,6
3,95
4,1
4,25
VGE (0%) =
VGE (100%) =
VC (100%) =
-15
15
600
V
V
V
VGE (0%) =
VGE (100%) =
VC (100%) =
-15
15
600
V
V
V
IC (100%) =
tdoff =
tEoff =
402
0,29
0,45
A
µs
µs
IC (100%) =
tdon =
tEon =
402
0,17
0,30
A
µs
µs
Buck IGBT
Figure 3
4,4
4,55
Buck IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
150
%
300
%
Ic
250
125
fitted
VCE
IC
200
100
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
tr
IC 40%
50
25
IC 10%
0
IC 10%
0
tf
-50
-25
0,1
VC (100%) =
IC (100%) =
tf =
0,15
0,2
600
402
0,04
Copyright by Vincotech
0,25
0,3
4,1
0,35 time(us) 0,4
VC (100%) =
IC (100%) =
tr =
V
A
µs
24
4,15
4,2
600
402
0,03
4,25
4,3
time(us)
4,35
V
A
µs
Revision: 1
70-W224NIA400SH-M400P
Switching Definitions Buck
Buck IGBT
Figure 5
Buck IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
Poff
%
Eoff
Eon
100
100
75
75
50
50
Pon
25
25
IC 1%
VGE 10%
VGE90%
VCE 3%
0
0
tEon
tEoff
-25
-25
-0,2
-0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
241,06
21,33
0,45
0,25
3,95
0,4 time (us) 0,55
4,05
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Buck IGBT
Figure 7
Gate voltage vs Gate charge (measured)
4,15
241,06
14,33
0,30
4,25
time(us)
4,35
kW
mJ
µs
Buck FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
%
15
100
VGE (V)
20
Id
trr
10
50
5
Vd
0
IRRM 10%
0
-50
-5
-100
-10
IRRM 90%
IRRM 100%
-150
-15
fitted
-200
-20
-500
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
600
1700
-15
15
600
402
4439,94
Copyright by Vincotech
2800
3900
Qg (nC)
4
5000
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
25
4,1
4,2
600
402
-624
0,12
4,3
4,4
time(us)
4,5
V
A
A
µs
Revision: 1
70-W224NIA400SH-M400P
Switching Definitions Buck
Buck FWD
Figure 9
Buck FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
150
%
Qrr
Id
Prec
%
100
150
tQrr
50
Erec
100
0
tErec
-50
50
-100
0
-150
-50
-200
4
Id (100%) =
Qrr (100%) =
tQrr =
4,2
4,4
402
57,89
1,00
Copyright by Vincotech
4,6
4,8
5
5,2
time(us)
4
5,4
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
26
4,2
4,4
241,06
26,14
1,00
4,6
4,8
5
5,2
5,4
time(us)
kW
mJ
µs
Revision: 1
70-W224NIA400SH-M400P
Switching Definitions Boost
General conditions
Tj
=
#REF!
Rgon
= 1Ω
Rgoff
= 1Ω
Boost IGBT
Figure 1
Boost IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
IC
%
%
125
tdoff
150
100
VCE
VGE 90%
90%
VCE
100
75
VGE
IC
tdon
50
50
tEoff
25
IC
VCE
VCE 3%
IC 10%
VGE 10%
1%
0
tEon
0
VGE
-25
-50
-0,2
0
0,2
0,4
0,6
0,8
time (us)
1
2,7
2,9
3,1
3,3
VGE (0%) =
VGE (100%) =
VC (100%) =
#REF!
#REF!
#REF!
V
V
V
VGE (0%) =
VGE (100%) =
VC (100%) =
#REF!
#REF!
#REF!
V
V
V
IC (100%) =
tdoff =
tEoff =
#REF!
0,40
0,76
A
µs
µs
IC (100%) =
tdon =
tEon =
#REF!
#REF!
0,48
A
µs
µs
Boost IGBT
Figure 3
3,5
3,7
3,9
Boost IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
VCE
IC
Ic
%
100
150
Ic 90%
75
VCE
100
Ic 60%
IC
90%
50
tr
Ic 40%
50
25
Ic 10%
IC 10%
0
0
tf
-25
-50
0,1
VC (100%) =
IC (100%) =
tf =
0,2
0,3
#REF!
#REF!
#REF!
Copyright by Vincotech
0,4
0,5
0,6
0,7
time (us)
3,1
VC (100%) =
IC (100%) =
tr =
V
A
µs
27
3,2
3,3
#REF!
#REF!
#REF!
3,4
3,5
time(us)
3,6
V
A
µs
Revision: 1
70-W224NIA400SH-M400P
Switching Definitions Boost
Boost IGBT
Figure 5
Boost IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Poff
Eon
Eoff
100
100
Pon
75
75
50
50
IC 1%
25
25
Uge 90%
Uce 3%
Uge 10%
0
0
tEoff
tEon
-25
-25
-0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0
0,2
0,4
#REF!
#REF!
0,76
kW
mJ
µs
0,6
0,8
time (us)
2,9
1
Pon (100%) =
Eon (100%) =
tEon =
Boost IGBT
Figure 7
3,2
#REF!
13,39
0,48
3,35
3,5
time(us)
3,65
kW
mJ
µs
Boost FWD
Figure 8
Gate voltage vs Gate charge (measured)
Turn-off Switching Waveforms & definition of trr
150
20
Uge (V)
3,05
%
Id
15
100
10
trr
50
5
Ud
0
fitted
0
IRRM 10%
-5
-50
-10
IRRM 90%
IRRM 100%
-100
-15
-20
-150
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
500
#REF!
#REF!
#REF!
#REF!
3441,54
Copyright by Vincotech
1000
1500
Qg (nC)
2000
2,9
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
28
3,1
3,3
#REF!
#REF!
#REF!
#REF!
3,5
3,7
time(us)
3,9
V
A
A
µs
Revision: 1
70-W224NIA400SH-M400P
Switching Definitions Boost
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Boost FWD
Boost FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Qrr
Id
Erec
100
100
tErec
75
tQint
50
50
0
25
Prec
-50
0
-25
-100
3
Id (100%) =
Qrr (100%) =
tQint =
3,2
3,4
#REF!
#REF!
0,69
Copyright by Vincotech
3,6
3,8
3
4 time(us) 4,2
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
29
3,2
3,4
3,6
#REF!
#REF!
0,69
kW
mJ
µs
3,8
4
time(us)
4,2
Revision: 1
70-W224NIA400SH-M400P
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W224NIA400SH-M400P
in DataMatrix as
M400P
in packaging barcode as
M400P
Outline
Driver pins
Pin
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
X1
Y1
Function
-2,15
84,85
G1-1
-2,15
81,95
E1-1
46,15
84,85
G1-2
46,15
81,95
E1-2
19,45
93,05
DC+ desat
24,55
93,05
DC+ desat
-7,65
70,05
G2-1
-7,65
67,15
E2-1
51,65
70,05
G2-2
51,65
67,15
E2-2
16,75
75,35 GND desat
27,25
75,35 GND desat
-2,55
28
G3-1
-5,45
28
E3-1
46,55
28
G3-2
49,45
28
E3-2
-4,8
50,85
G4-1
-1,6
49,05
E4-1
48,8
50,85
G4-2
45,6
49,05
E4-2
67,65
89,8
NTC1
67,65
86,7
NTC2
Low current connections
M4
screw
3.1
X3
Y3
-39,1
89,8
TR+
3.2
3.3
3.4
-39,1
-39,1
83,1
89,8
89,8
89,8
GND
DC+
TR+
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
83,1
89,8
83,1
89,8
-39,1
65,2
-39,1
65,2
-39,1
65,2
83,1
65,2
83,1
65,2
83,1
65,2
-39,1
45,2
-39,1
45,2
-39,1
45,2
83,1
45,2
83,1
45,2
83,1
45,2
-39,1
20,6
-39,1
20,6
-39,1
20,6
83,1
20,6
83,1
20,6
83,1
20,6
Power connections
M6
screw
2.1
2.2
2.3
2.4
2.5
2.6
Group
T1
T1
T1
T1
T1
T1
T2
T2
T2
T2
D5
D5
T3
T3
T3
T3
T4
T4
T4
T4
Function
GND
DC+
T2C
GND
Phase
T2C
GND
Phase
Phase
GND
DK
Phase
GND
DK
DCGND
TRDCGND
TR-
X2
Y2
Function
0
22
44
0
22
44
0
0
0
110,4
110,4
110,4
Phase
Phase
Phase
DC+
GND
DC-
Copyright by Vincotech
30
Revision: 1
70-W224NIA400SH-M400P
Ordering Code and Marking - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W224NIA400SH-M400P
in DataMatrix as
M400P
in packaging barcode as
M400P
Pinout
Copyright by Vincotech
31
Revision: 1
70-W224NIA400SH-M400P
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
32
Revision: 1