V23990-P586-*2*-PM flow PIM 1 600V/50A Features flow 1 housing ● 3~rectifier, optional BRC, Inverter, NTC ● Very compact housing, easy to route ● IGBT! / EmCon4 technology for low saturation losses Solder pins and improved EMC behaviour Target Applications Press fit pins Schematic ● Industrial drives ● Embedded drives Types ● V23990-P586-A20-PM ● V23990-P586-A20Y-PM ● V23990-P586-A208-PM ● V23990-P586-C20-PM ● V23990-P586-C20Y-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 33 47 A 250 A 310 A2s 37 60 W Tjmax 150 °C VCE 600 V 38 48 A tp limited by Tjmax 150 A VCE ≤ 1200V, Tj ≤ Top max 150 A Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax tp=10ms 50 Hz half sine wave Tj=Tjmax Th=80°C Tc=80°C Tj=25°C Th=80°C Tc=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 70 106 W ±20 V 6 360 µs V 175 °C Revision: 2.1 V23990-P586-*2*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 36 48 A 100 A Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 58 W 87 Tjmax 175 °C VCE 600 V 26 33 A 90 A 90 A 46 70 W ±20 V µs Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Th=80°C Tc=80°C Tj=Tjmax tSC Tj≤150°C 6 VCC VGE=15V 360 V Tjmax 175 °C VRRM 600 V 13 18 A 40 A 20 30 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Short circuit ratings Maximum Junction Temperature Brake Diode Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2.1 V23990-P586-*2*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0,8 1,16 1,13 0,90 0,78 8 11 1,6 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir 1500 Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material VGE(th) VCE=VGE 0,83 V V mΩ 2 mA 1,89 K/W 1,19 K/W Inverter Transistor Gate emitter threshold voltage 0,0008 VCE(sat) 15 ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode Rise time Turn-off delay time Fall time 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1,76 2,06 Rgoff=16 Ω Rgon=16 Ω 300 ±15 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,04 1 600 mA nA Ω - tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 168 171 23 27 213 228 84 100 1,19 1,60 1,20 1,55 ns mWs 3140 f=1MHz 25 0 Tj=25°C 200 pF Tj=25°C 310 nC Thermal grease thickness≤50um λ = 1 W/mK 1,25 K/W Preapplied Phase change material 1,06 K/W 93 ±15 Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 50 IRRM trr Qrr Rgon=16 Ω di(rec)max /dt Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,2 1,85 1,94 37 42 144 217 1,9 3,4 1568 1145 0,31 0,60 1,9 V A ns µC A/µs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 1,65 K/W Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material 1,4 K/W copyright Vincotech 3 mWs Revision: 2.1 V23990-P586-*2*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 4,1 4,9 5,7 1,1 1,55 1,74 0,04 1,00 1,9 Brake Transistor Gate emitter threshold voltage VGE(th) VCE=VGE 0,00043 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 30 - tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Rgoff=16 Ω Rgon=16 Ω ±15 300 30 V mA 300 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V nA Ω 95 95 16 19 141 157 86 99 0,50 0,72 0,63 0,85 ns mWs 1630 f=1MHz 0 25 Tj=25°C 108 Tj=25°C 167 nC pF Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 2,07 K/W Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material 1,78 K/W 50 Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 20 Ir 600 IRRM trr Qrr Rgon=16 Ω Rgon=16 Ω 300 15 di(rec)max /dt 20 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,25 1,42 1,28 1,95 27 19 20 33 237 0,81 0,81 1684 920 0,14 0,30 V µA A ns µC A/µs Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 3,58 K/W Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material 3,11 K/W mWs Thermistor Rated resistance R Tj=25°C Deviation of R25 ∆R/R T=25°C Power dissipation P T=25°C Power dissipation constant B-value B(25/50) B-value B(25/100) Tol. ±3% Vincotech NTC Reference copyright Vincotech 5 % 200 mW Tj=25°C 2 mW/K Tj=25°C 3950 K Tj=25°C 3996 K Tj=25°C 4 Ω 22000 -5 B Revision: 2.1 V23990-P586-*2*-PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 100 IC (A) IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 IF (A) IC (A) 55 4 50 44 40 33 30 22 20 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 11 10 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0,0 At tp = µs V 5 0,5 250 1,0 1,5 2,0 V F (V) 2,5 µs Revision: 2.1 V23990-P586-*2*-PM Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 4 4,5 E (mWs) Eon High T E (mWs) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon High T 4 Eon Low T 3,5 3 Eon Low T 3 Eoff High T 2,5 Eoff Low T 2 Eoff High T Eoff Low T 2 1,5 1 1 0,5 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 50 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,8 1 E (mWs) E (mWs) 10 Erec 0,7 0,8 Tj = Tjmax -25°C 0,6 0,5 0,6 Tj = Tjmax -25°C 0,4 Erec Tj = 25°C 0,4 0,3 Erec Tj = 25°C 0,2 Erec 0,2 0,1 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at 25/125 Tj = °C VCE = 300 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at 25/125 Tj = °C VCE = 300 V VGE = ±15 V IC = 50 A 6 Revision: 2.1 V23990-P586-*2*-PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 1,00 t ( µs) t ( µs) tdoff tdoff tdon tdon 0,10 0,10 tf tf tr tr 0,01 0,01 0,00 0,00 0 10 20 30 40 50 60 70 90I C (A) 100 80 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 50 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,3 0,35 trr t rr( µs) t rr( µs) trr Tj = Tjmax -25°C 0,3 0,28 Tj = Tjmax -25°C 0,2 Tj = 25°C trr 0,21 trr Tj = 25°C 0,2 0,14 0,1 0,07 0,1 0 0,0 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 16 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 7 10 25/125 300 50 ±15 20 30 40 50 60 R 70 g on ( Ω ) °C V A V Revision: 2.1 V23990-P586-*2*-PM Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 5 Qrr( µC) Qrr( µC) 4,2 Qrr Tj = Tjmax -25°C 3,6 Tj = Tjmax -25°C 4 Qrr 3 3 2,4 Qrr Tj = 25°C Tj = 25°C Qrr 1,8 2 1,2 1 0,6 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 16 40 60 80 I C (A) 100 °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 14 At Tj = VR = IF = VGE = 25/125 300 50 ±15 28 42 R g on ( Ω) 70 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) Tj = Tjmax -25°C IrrM (A) 90 IrrM (A) 50 56 IRRM IRRM 75 40 IRRM Tj = 25°C 60 IRRM 30 45 Tj = Tjmax - 25°C 20 30 Tj = 25°C 10 15 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 16 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 8 10 25/125 300 50 ±15 20 30 40 50 60 R gon ( Ω ) 70 °C V A V Revision: 2.1 V23990-P586-*2*-PM Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 7000 dI0/dt direc / dt (A/ µs) 2800 direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIo/dtLow T dIrec/dt 2400 dI0/dt dIrec/dt 6000 di0/dtHigh T 5000 2000 dIrec/dtLow T 1600 4000 3000 1200 dIrec/dtHigh T 800 2000 400 1000 di0/dtHigh T dIo/dtLow T dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 16 40 60 I C (A) 80 0 100 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Zth-JH (K/W) 100 10 -2 25/125 300 50 ±15 30 40 50 60 R ( Ω ) 70 gon °C V A V Output inverter FWD 101 100 10 20 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 tp / T 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = Phase change material 1,25 Thermal grease R (C/W) 0,07 0,28 0,66 0,23 0,05 0,06 10-3 K/W RthJH = 1,06 K/W IGBT thermal model values Phase change material Tau (s) 3,7E+00 5,5E-01 1,4E-01 1,9E-02 2,9E-03 3,0E-04 copyright Vincotech R (C/W) 3,15 0,47 0,12 0,02 0,00 0,00 10-4 tp / T 1,65 Thermal grease Tau (s) 3,7E+00 5,5E-01 1,4E-01 1,9E-02 2,9E-03 3,0E-04 R (C/W) 0,08 0,28 0,62 0,39 0,14 0,14 9 10-3 10-2 10-1 100 t p (s) 10110 Phase change material K/W RthJH = 1,40 K/W FWD thermal model values Phase change material Tau (s) 3,2E+00 4,6E-01 1,1E-01 1,8E-02 3,2E-03 4,1E-04 R (C/W) 2,79 0,39 0,10 0,02 0,00 0,00 Tau (s) 3,2E+00 4,6E-01 1,1E-01 1,8E-02 3,2E-03 4,1E-04 Revision: 2.1 V23990-P586-*2*-PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 150 125 50 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 Ptot (W) IF (A) 125 150 100 40 75 50 20 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 V23990-P586-*2*-PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 17,5 IC (A) VGE (V) 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 15 10uS 102 100uS 10 12,5 120V 480V 1mS 1 10 10mS 7,5 100mS 100 5 DC 10 -1 2,5 0 10 0 At D= Th = VGE = Tj = 10 1 10 V CE (V) 2 0 103 100 150 200 250 300 350 400 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 50 50 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) IC (sc) tsc (µS) 13 800 12 700 11 10 600 9 500 8 7 400 6 300 5 4 200 10 11 12 13 14 V GE (V) 15 12 14 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 11 16 18 V GE (V) 20 Revision: 2.1 V23990-P586-*2*-PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) 160 IC (A) IC MAX 140 120 MODULE Ic CHIP 100 Ic 80 60 VCE MAX 40 20 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 12 Revision: 2.1 V23990-P586-*2*-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 80 IC (A) IC (A) 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 IC (A) IF (A) 30 5 50 24 40 18 Tj = Tjmax-25°C 30 Tj = Tjmax-25°C 12 20 Tj = 25°C Tj = 25°C 6 10 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 13 0,5 250 1 1,5 2 2,5 V F (V) 3 µs Revision: 2.1 V23990-P586-*2*-PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,0 E (mWs) 1,8 E (mWs) Eon Eon Tj = Tjmax -25°C 1,5 1,5 Eon Tj = Tjmax -25°C Eon 1,2 Eoff Eoff 0,9 1,0 Eoff Eoff 0,6 0,5 Tj = 25°C 0,3 Tj = 25°C 0 0,0 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V IC = 29 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,35 0,4 Tj = Tjmax - 25°C E (mWs) E (mWs) 10 Erec 0,35 0,3 0,3 0,25 0,25 Tj = Tjmax -25°C 0,2 Tj = 25°C 0,2 0,15 Erec 0,15 Tj = 25°C 0,1 0,1 0,05 Erec 0,05 0 0 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at 25/125 Tj = °C VCE = 300 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 10 20 30 40 50 60 R ( Ω ) 70 G With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V IC = 29 A 14 Revision: 2.1 V23990-P586-*2*-PM Brake Brake IGBT 1,00 1,00 t ( µs) tdoff tdon tdoff tdon tf 0,10 Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) 0,10 tf tr tr 0,01 0,01 0,00 0,00 0 10 20 30 40 I C (A) 50 60 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω Brake IGBT 101 101 ZthJH (K/W) 0 10 -1 10 -2 20 30 40 50 60 R G ( Ω ) 70 Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 10 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 29 A 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 10-4 10-3 At Thermal grease RthJH = 2,07 D= copyright Vincotech K/W 10-2 10-1 100 t p (s) 101 10 10-5 tp / T Phase change material RthJH = 1,78 K/W 15 10-4 10-3 At Thermal grease RthJH = 3,58 D= K/W 10-2 10-1 100 t p (s) 101 10 tp / T Phase change material RthJH = 3,11 K/W Revision: 2.1 V23990-P586-*2*-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 40 IC (A) Ptot (W) 85 68 30 51 20 34 10 17 0 0 0 35 At Tj = 175 70 105 140 T h ( o C) 175 0 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 150 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 50 25 40 20 30 15 20 10 10 5 0 0 0 At Tj = 35 175 copyright Vincotech 70 105 140 Th ( o C) 175 0 At Tj = ºC 16 35 175 70 105 140 Th ( o C) 175 ºC Revision: 2.1 V23990-P586-*2*-PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 120 1 IF (A) ZthJC (K/W) 10 100 Tj = 25°C 80 10 0 Tj = Tjmax-25°C 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 0 0,0 0,4 0,8 1,2 1,6 10-2 V F (V) 2,0 10 At tp = 250 -5 10 -4 At tp / T D= Thermal grease RthJH = 1,89 µs Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 -3 K/W 10 -2 10 10 0 t p (s) 1 10 10 Phase change material RthJH = 1,62 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 80 -1 64 45 48 30 32 15 16 0 0 0 At Tj = 50 150 copyright Vincotech 100 T h ( o C) 150 0 At Tj = ºC 17 50 150 100 T h ( o C) 150 ºC Revision: 2.1 V23990-P586-*2*-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) R/Ω 22000 Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R(T ) = R25 ⋅ e 20000 [Ω] 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 copyright Vincotech 65 85 105 T (°C) 125 18 Revision: 2.1 V23990-P586-*2*-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 4Ω Rgoff = 4Ω Output inverter IGBT Figure 1 120 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 tdoff % Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) % VCE 175 VGE 90% IC VCE 90% 150 80 125 VCE IC VGE 100 40 tEoff 75 tdon 50 IC 1% 0 VGE IC10% 25 VCE 3% VGE10% 0 -40 -0,4 tEon -25 -0,2 0 0,2 0,4 0,6 0,8 4,8 5 5,2 5,4 time(us) time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 100 0,29 0,67 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 -15 15 600 100 0,11 0,39 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 5,6 Turn-on Switching Waveforms & definition of tr 140 200 % % Ic 175 120 fitted IC VCE 150 100 IC 90% 125 80 VCE 100 IC 60% 60 IC90% 75 40 tr IC 40% 50 20 25 IC10% 0 IC10% tf 0 -20 0,1 0,2 0,3 0,4 0,5 -25 0,6 4,9 5 5,1 5,2 VC (100%) = IC (100%) = tf = copyright Vincotech 600 100 0,11 5,3 5,4 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 19 600 100 0,03 V A µs Revision: 2.1 V23990-P586-*2*-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Eoff Poff Pon % 100 140 80 Eon 100 60 40 60 20 VGE 90% 20 VCE 3% VGE 10% 0 tEoff tEon IC 1% -20 -20 -0,2 0 0,2 0,4 0,6 4,8 0,8 4,9 5 5,1 5,2 time (us) Poff (100%) = Eoff (100%) = tEoff = 59,91 8,87 0,67 5,3 5,4 5,5 5,6 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 59,91 12,48 0,39 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd fitted 0 IRRM10% -40 IRRM90% -80 IRRM100% -120 5 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 5,2 5,4 600 100 -83 0,51 5,6 time(us) 5,8 V A A µs 20 Revision: 2.1 V23990-P586-*2*-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % 100 Erec 100 Qrr Id 80 tErec tQrr 50 60 40 0 20 -50 Prec 0 -100 -20 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 4,8 5 5,2 5,4 5,6 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 100 20,73 1,03 Prec (100%) = Erec (100%) = tErec = A µC µs 21 59,91 7,85 1,03 5,8 6 6,2 6,4 time(us) kW mJ µs Revision: 2.1 V23990-P586-*2*-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Ordering Code V23990-P586-A20-PM V23990-P586-A20Y-PM V23990-P586-A208-PM V23990-P586-C20-PM V23990-P586-C20Y-PM Version 17mm housing with solder pins and breake 17mm housing with pressfit pins and breake 12mm housing with solder pins and breake 17mm housing with solder pins w/o breake 17mm housing with pressfit pins w/o breake in DataMatrix as P586-A20-PM P586-A20Y-PM P586-A208-PM P586-C20-PM P586-C20Y-PM in packaging barcode as P586-A20-PM P586-A20Y-PM P586-A208-PM P586-C20-PM P586-C20Y-PM Features A version C version 3-leg 3-leg Rectifier Break IGBT w/o pin 1,31,32 Break FWD Inverter IGBT Inverter FWD Outline Pin table X Pin Y 1 52,55 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 47,7 44,8 37,8 37,8 35 35 28 25,2 22,4 19,6 16,8 14 11,2 8,4 5,6 2,8 0 0 0 0 0 2,8 0 2,8 0 0 0 0 0 0 0 0 0 0 0 19 20 0 2,8 28,5 28,5 21 22 7,5 14,5 28,5 28,5 25 26 29 31,8 28,5 28,5 29 30 52,55 52,55 25 16,9 23 24 17,3 22 28,5 28,5 27 28 36,5 43,5 28,5 28,5 31 32 52,55 52,55 8,6 2,8 Pin Pin table X Y Pin Pin table X Y Pinout copyright Vincotech 22 Revision: 2.1 V23990-P586-*2*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 23 Revision: 2.1