V23990-P586-*2*-PM Maximum Ratings

V23990-P586-*2*-PM
flow PIM 1
600V/50A
Features
flow 1 housing
● 3~rectifier, optional BRC, Inverter, NTC
● Very compact housing, easy to route
● IGBT! / EmCon4 technology for low saturation losses
Solder pins
and improved EMC behaviour
Target Applications
Press fit pins
Schematic
● Industrial drives
● Embedded drives
Types
● V23990-P586-A20-PM
● V23990-P586-A20Y-PM
● V23990-P586-A208-PM
● V23990-P586-C20-PM
● V23990-P586-C20Y-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
33
47
A
250
A
310
A2s
37
60
W
Tjmax
150
°C
VCE
600
V
38
48
A
tp limited by Tjmax
150
A
VCE ≤ 1200V, Tj ≤ Top max
150
A
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
tp=10ms
50 Hz half sine wave
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=25°C
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
70
106
W
±20
V
6
360
µs
V
175
°C
Revision: 2.1
V23990-P586-*2*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
36
48
A
100
A
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
58
W
87
Tjmax
175
°C
VCE
600
V
26
33
A
90
A
90
A
46
70
W
±20
V
µs
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Th=80°C
Tc=80°C
Tj=Tjmax
tSC
Tj≤150°C
6
VCC
VGE=15V
360
V
Tjmax
175
°C
VRRM
600
V
13
18
A
40
A
20
30
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Short circuit ratings
Maximum Junction Temperature
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2.1
V23990-P586-*2*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0,8
1,16
1,13
0,90
0,78
8
11
1,6
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
1500
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
VGE(th)
VCE=VGE
0,83
V
V
mΩ
2
mA
1,89
K/W
1,19
K/W
Inverter Transistor
Gate emitter threshold voltage
0,0008
VCE(sat)
15
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
Rise time
Turn-off delay time
Fall time
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1,76
2,06
Rgoff=16 Ω
Rgon=16 Ω
300
±15
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,04
1
600
mA
nA
Ω
-
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
168
171
23
27
213
228
84
100
1,19
1,60
1,20
1,55
ns
mWs
3140
f=1MHz
25
0
Tj=25°C
200
pF
Tj=25°C
310
nC
Thermal grease
thickness≤50um
λ = 1 W/mK
1,25
K/W
Preapplied
Phase change
material
1,06
K/W
93
±15
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
50
IRRM
trr
Qrr
Rgon=16 Ω
di(rec)max
/dt
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,2
1,85
1,94
37
42
144
217
1,9
3,4
1568
1145
0,31
0,60
1,9
V
A
ns
µC
A/µs
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
1,65
K/W
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
1,4
K/W
copyright Vincotech
3
mWs
Revision: 2.1
V23990-P586-*2*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
4,1
4,9
5,7
1,1
1,55
1,74
0,04
1,00
1,9
Brake Transistor
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,00043
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
30
-
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Rgoff=16 Ω
Rgon=16 Ω
±15
300
30
V
mA
300
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
nA
Ω
95
95
16
19
141
157
86
99
0,50
0,72
0,63
0,85
ns
mWs
1630
f=1MHz
0
25
Tj=25°C
108
Tj=25°C
167
nC
pF
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
2,07
K/W
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
1,78
K/W
50
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
20
Ir
600
IRRM
trr
Qrr
Rgon=16 Ω
Rgon=16 Ω
300
15
di(rec)max
/dt
20
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,25
1,42
1,28
1,95
27
19
20
33
237
0,81
0,81
1684
920
0,14
0,30
V
µA
A
ns
µC
A/µs
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
3,58
K/W
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
3,11
K/W
mWs
Thermistor
Rated resistance
R
Tj=25°C
Deviation of R25
∆R/R
T=25°C
Power dissipation
P
T=25°C
Power dissipation constant
B-value
B(25/50)
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
copyright Vincotech
5
%
200
mW
Tj=25°C
2
mW/K
Tj=25°C
3950
K
Tj=25°C
3996
K
Tj=25°C
4
Ω
22000
-5
B
Revision: 2.1
V23990-P586-*2*-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IF (A)
IC (A)
55
4
50
44
40
33
30
22
20
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
11
10
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0,0
At
tp =
µs
V
5
0,5
250
1,0
1,5
2,0
V F (V)
2,5
µs
Revision: 2.1
V23990-P586-*2*-PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
4
4,5
E (mWs)
Eon High T
E (mWs)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon High T
4
Eon Low T
3,5
3
Eon Low T
3
Eoff High T
2,5
Eoff Low T
2
Eoff High T
Eoff Low T
2
1,5
1
1
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
IC =
50
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,8
1
E (mWs)
E (mWs)
10
Erec
0,7
0,8
Tj = Tjmax -25°C
0,6
0,5
0,6
Tj = Tjmax -25°C
0,4
Erec
Tj = 25°C
0,4
0,3
Erec
Tj = 25°C
0,2
Erec
0,2
0,1
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
25/125
Tj =
°C
VCE =
300
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
10
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
25/125
Tj =
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
6
Revision: 2.1
V23990-P586-*2*-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
1,00
t ( µs)
t ( µs)
tdoff
tdoff
tdon
tdon
0,10
0,10
tf
tf
tr
tr
0,01
0,01
0,00
0,00
0
10
20
30
40
50
60
70
90I C (A) 100
80
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
10
20
30
40
50
60 R G ( Ω ) 70
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,3
0,35
trr
t rr( µs)
t rr( µs)
trr
Tj = Tjmax -25°C
0,3
0,28
Tj = Tjmax -25°C
0,2
Tj = 25°C
trr
0,21
trr
Tj = 25°C
0,2
0,14
0,1
0,07
0,1
0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
16
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
10
25/125
300
50
±15
20
30
40
50
60 R
70
g on ( Ω )
°C
V
A
V
Revision: 2.1
V23990-P586-*2*-PM
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
5
Qrr( µC)
Qrr( µC)
4,2
Qrr
Tj = Tjmax -25°C
3,6
Tj = Tjmax -25°C
4
Qrr
3
3
2,4
Qrr
Tj = 25°C
Tj = 25°C
Qrr
1,8
2
1,2
1
0,6
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
16
40
60
80
I C (A)
100
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
14
At
Tj =
VR =
IF =
VGE =
25/125
300
50
±15
28
42
R g on ( Ω) 70
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
Tj = Tjmax -25°C
IrrM (A)
90
IrrM (A)
50
56
IRRM
IRRM
75
40
IRRM
Tj = 25°C
60
IRRM
30
45
Tj = Tjmax - 25°C
20
30
Tj = 25°C
10
15
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
16
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
10
25/125
300
50
±15
20
30
40
50
60 R gon ( Ω ) 70
°C
V
A
V
Revision: 2.1
V23990-P586-*2*-PM
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
7000
dI0/dt
direc / dt (A/ µs)
2800
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dtLow T
dIrec/dt
2400
dI0/dt
dIrec/dt
6000
di0/dtHigh T
5000
2000
dIrec/dtLow T
1600
4000
3000
1200
dIrec/dtHigh T
800
2000
400
1000
di0/dtHigh T
dIo/dtLow T
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
16
40
60
I C (A)
80
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Zth-JH (K/W)
100
10
-2
25/125
300
50
±15
30
40
50
60 R ( Ω ) 70
gon
°C
V
A
V
Output inverter FWD
101
100
10
20
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
tp / T
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
Phase change material
1,25
Thermal grease
R (C/W)
0,07
0,28
0,66
0,23
0,05
0,06
10-3
K/W
RthJH =
1,06
K/W
IGBT thermal model values
Phase change material
Tau (s)
3,7E+00
5,5E-01
1,4E-01
1,9E-02
2,9E-03
3,0E-04
copyright Vincotech
R (C/W)
3,15
0,47
0,12
0,02
0,00
0,00
10-4
tp / T
1,65
Thermal grease
Tau (s)
3,7E+00
5,5E-01
1,4E-01
1,9E-02
2,9E-03
3,0E-04
R (C/W)
0,08
0,28
0,62
0,39
0,14
0,14
9
10-3
10-2
10-1
100
t p (s)
10110
Phase change material
K/W
RthJH =
1,40
K/W
FWD thermal model values
Phase change material
Tau (s)
3,2E+00
4,6E-01
1,1E-01
1,8E-02
3,2E-03
4,1E-04
R (C/W)
2,79
0,39
0,10
0,02
0,00
0,00
Tau (s)
3,2E+00
4,6E-01
1,1E-01
1,8E-02
3,2E-03
4,1E-04
Revision: 2.1
V23990-P586-*2*-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
150
125
50
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
Ptot (W)
IF (A)
125
150
100
40
75
50
20
25
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-P586-*2*-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
17,5
IC (A)
VGE (V)
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
15
10uS
102
100uS
10
12,5
120V
480V
1mS
1
10
10mS
7,5
100mS
100
5
DC
10
-1
2,5
0
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
V CE (V)
2
0
103
100
150
200
250
300
350
400
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
50
50
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
IC (sc)
tsc (µS)
13
800
12
700
11
10
600
9
500
8
7
400
6
300
5
4
200
10
11
12
13
14
V GE (V)
15
12
14
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
11
16
18
V GE (V)
20
Revision: 2.1
V23990-P586-*2*-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
160
IC (A)
IC MAX
140
120
MODULE
Ic CHIP
100
Ic
80
60
VCE MAX
40
20
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
12
Revision: 2.1
V23990-P586-*2*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
80
IC (A)
IC (A)
80
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IC (A)
IF (A)
30
5
50
24
40
18
Tj = Tjmax-25°C
30
Tj = Tjmax-25°C
12
20
Tj = 25°C
Tj = 25°C
6
10
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V) 10
0
At
tp =
µs
V
13
0,5
250
1
1,5
2
2,5
V F (V)
3
µs
Revision: 2.1
V23990-P586-*2*-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,0
E (mWs)
1,8
E (mWs)
Eon
Eon
Tj = Tjmax -25°C
1,5
1,5
Eon
Tj = Tjmax -25°C
Eon
1,2
Eoff
Eoff
0,9
1,0
Eoff
Eoff
0,6
0,5
Tj = 25°C
0,3
Tj = 25°C
0
0,0
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
20
30
40
50
60 R G ( Ω ) 70
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
IC =
29
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,35
0,4
Tj = Tjmax - 25°C
E (mWs)
E (mWs)
10
Erec
0,35
0,3
0,3
0,25
0,25
Tj = Tjmax -25°C
0,2
Tj = 25°C
0,2
0,15
Erec
0,15
Tj = 25°C
0,1
0,1
0,05
Erec
0,05
0
0
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
25/125
Tj =
°C
VCE =
300
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
10
20
30
40
50
60 R ( Ω ) 70
G
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
IC =
29
A
14
Revision: 2.1
V23990-P586-*2*-PM
Brake
Brake IGBT
1,00
1,00
t ( µs)
tdoff
tdon
tdoff
tdon
tf
0,10
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
0,10
tf
tr
tr
0,01
0,01
0,00
0,00
0
10
20
30
40
I C (A)
50
60
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
Brake IGBT
101
101
ZthJH (K/W)
0
10
-1
10
-2
20
30
40
50
60 R G ( Ω )
70
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
10
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
IC =
29
A
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
10-4
10-3
At
Thermal grease
RthJH =
2,07
D=
copyright Vincotech
K/W
10-2
10-1
100
t p (s)
101 10
10-5
tp / T
Phase change material
RthJH =
1,78
K/W
15
10-4
10-3
At
Thermal grease
RthJH =
3,58
D=
K/W
10-2
10-1
100
t p (s)
101 10
tp / T
Phase change material
RthJH =
3,11
K/W
Revision: 2.1
V23990-P586-*2*-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
40
IC (A)
Ptot (W)
85
68
30
51
20
34
10
17
0
0
0
35
At
Tj =
175
70
105
140
T h ( o C) 175
0
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C) 200
150
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
50
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
35
175
copyright Vincotech
70
105
140
Th ( o C) 175
0
At
Tj =
ºC
16
35
175
70
105
140
Th ( o C) 175
ºC
Revision: 2.1
V23990-P586-*2*-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
120
1
IF (A)
ZthJC (K/W)
10
100
Tj = 25°C
80
10
0
Tj = Tjmax-25°C
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
0
0,0
0,4
0,8
1,2
1,6
10-2
V F (V) 2,0
10
At
tp =
250
-5
10
-4
At
tp / T
D=
Thermal grease
RthJH =
1,89
µs
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
-3
K/W
10
-2
10
10
0
t p (s)
1
10 10
Phase change material
RthJH =
1,62
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
80
-1
64
45
48
30
32
15
16
0
0
0
At
Tj =
50
150
copyright Vincotech
100
T h ( o C)
150
0
At
Tj =
ºC
17
50
150
100
T h ( o C)
150
ºC
Revision: 2.1
V23990-P586-*2*-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
R/Ω
22000
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
20000
[Ω]
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
copyright Vincotech
65
85
105
T (°C)
125
18
Revision: 2.1
V23990-P586-*2*-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 4Ω
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
120
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
tdoff
%
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
%
VCE
175
VGE 90%
IC
VCE 90%
150
80
125
VCE
IC
VGE
100
40
tEoff
75
tdon
50
IC 1%
0
VGE
IC10%
25
VCE 3%
VGE10%
0
-40
-0,4
tEon
-25
-0,2
0
0,2
0,4
0,6
0,8
4,8
5
5,2
5,4
time(us)
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
100
0,29
0,67
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
-15
15
600
100
0,11
0,39
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
5,6
Turn-on Switching Waveforms & definition of tr
140
200
%
%
Ic
175
120
fitted
IC
VCE
150
100
IC 90%
125
80
VCE
100
IC 60%
60
IC90%
75
40
tr
IC 40%
50
20
25
IC10%
0
IC10%
tf
0
-20
0,1
0,2
0,3
0,4
0,5
-25
0,6
4,9
5
5,1
5,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
100
0,11
5,3
5,4
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
600
100
0,03
V
A
µs
Revision: 2.1
V23990-P586-*2*-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Eoff
Poff
Pon
%
100
140
80
Eon
100
60
40
60
20
VGE 90%
20
VCE 3%
VGE 10%
0
tEoff
tEon
IC 1%
-20
-20
-0,2
0
0,2
0,4
0,6
4,8
0,8
4,9
5
5,1
5,2
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
59,91
8,87
0,67
5,3
5,4
5,5
5,6
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
59,91
12,48
0,39
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
fitted
0
IRRM10%
-40
IRRM90%
-80
IRRM100%
-120
5
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
5,2
5,4
600
100
-83
0,51
5,6
time(us)
5,8
V
A
A
µs
20
Revision: 2.1
V23990-P586-*2*-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
100
Erec
100
Qrr
Id
80
tErec
tQrr
50
60
40
0
20
-50
Prec
0
-100
-20
4,8
5
5,2
5,4
5,6
5,8
6
6,2
6,4
4,8
5
5,2
5,4
5,6
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
100
20,73
1,03
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
59,91
7,85
1,03
5,8
6
6,2
6,4
time(us)
kW
mJ
µs
Revision: 2.1
V23990-P586-*2*-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Ordering Code
V23990-P586-A20-PM
V23990-P586-A20Y-PM
V23990-P586-A208-PM
V23990-P586-C20-PM
V23990-P586-C20Y-PM
Version
17mm housing with solder pins and breake
17mm housing with pressfit pins and breake
12mm housing with solder pins and breake
17mm housing with solder pins w/o breake
17mm housing with pressfit pins w/o breake
in DataMatrix as
P586-A20-PM
P586-A20Y-PM
P586-A208-PM
P586-C20-PM
P586-C20Y-PM
in packaging barcode as
P586-A20-PM
P586-A20Y-PM
P586-A208-PM
P586-C20-PM
P586-C20Y-PM
Features
A version
C version
3-leg
3-leg
Rectifier
Break IGBT
w/o pin
1,31,32
Break FWD
Inverter IGBT
Inverter FWD
Outline
Pin table
X
Pin
Y
1
52,55
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
47,7
44,8
37,8
37,8
35
35
28
25,2
22,4
19,6
16,8
14
11,2
8,4
5,6
2,8
0
0
0
0
0
2,8
0
2,8
0
0
0
0
0
0
0
0
0
0
0
19
20
0
2,8
28,5
28,5
21
22
7,5
14,5
28,5
28,5
25
26
29
31,8
28,5
28,5
29
30
52,55
52,55
25
16,9
23
24
17,3
22
28,5
28,5
27
28
36,5
43,5
28,5
28,5
31
32
52,55
52,55
8,6
2,8
Pin
Pin table
X
Y
Pin
Pin table
X
Y
Pinout
copyright Vincotech
22
Revision: 2.1
V23990-P586-*2*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
Revision: 2.1