V23990-K239-F40-PM MiniSKiiP®2 PACK 1200V/50A Features MiniSKiiP®2 housing ● Solderless interconnection ● Trench Fieldstop IGBT technology 4 Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K239-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 53 A tp limited by Tjmax 150 A VCE ≤ 1200V, Tj ≤ Top max 100 A 133 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 47 A 94 A 100 W 175 °C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Gate-emitter peak voltage Short circuit ratings Maximum Junction Temperature Ptot Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C VGE tSC VCC Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 2 V23990-K239-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2 V23990-K239-F40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 1,92 2,33 2,15 T1,T2,T3,T4,T5,T6 VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0017 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,06 600 Rgoff=8Ω Rgon=8Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 4 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 101 106 19 25 224 296 89 116 2,64 4,62 2,89 4,75 ns mWs 2770 f=1MHz 25 0 Tj=25°C pF 205 160 ±15 Tj=25°C Thermal grease thickness≤50µm λ=1W/mK 380 nC 0,71 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 50 IRRM trr Qrr Rgon=8Ω ±15 600 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,3 Thermal grease thickness≤50µm λ=1W/mK 2,2 2,2 53,6 67 121 294 3,25 8,66 2708 467 1,12 3,35 2,6 V A ns µC A/µs mWs 0,95 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C P T=100°C Power dissipation constant -3 3 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Copyright by Vincotech Ω 1670,313 T=25°C Vincotech NTC Reference % 1/K 1/K² E 3 Revision: 2 V23990-K239-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 µs 350 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IF (A) IC (A) 50 4 40 120 30 90 20 60 10 30 0 0 0 2,4 Tj = tp = VCE = 25/150 350 10 4,8 7,2 9,6 V GE (V) 12 0 At 0,8 1,6 2,4 3,2 V F (V) 4 At °C µs V Copyright by Vincotech Tj = tp = 4 25/150 350 °C µs Revision: 2 V23990-K239-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 12 E (mWs) E (mWs) 12 Eon High T 10 10 Eon High T Eoff High T 8 8 Eon Low T 6 6 Eon Low T Eoff High T Eoff Low T 4 4 Eoff Low T 2 2 0 0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A D1,D2,D3,D4,D5,D6 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 5 E (mWs) 5 Erec 4 4 3 3 Erec 2 2 Erec 1 1 Erec 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A 5 Revision: 2 V23990-K239-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf tf 0,1 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 50 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr( µs) t rr( µs) 0,5 trr 0,4 0,6 trr 0,3 0,4 0,2 trr 0,2 trr 0,1 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 8 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 8 25/150 600 50 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 2 V23990-K239-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 12 Qrr( µC) Qrr( µC) 12 Qrr 10 10 8 8 6 6 Qrr Qrr 4 4 2 2 Qrr 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 8 40 60 80 I C (A) 100 0 8 At Tj = VR = IF = VGE = °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/150 600 50 ±15 24 32 R g on ( Ω) 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 120 IrrM (A) IrrM (A) 100 100 80 IRRM 80 60 IRRM 60 40 IRRM 40 IRRM 20 20 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 8 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/150 600 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 2 V23990-K239-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 12000 direc / dt (A/ µs) direc / dt (A/µ s) 5000 dI0/dt dIrec/dt D1,D2,D3,D4,D5,D6 FWD dI0/dt dIrec/dt 10000 4000 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 8 40 60 I C (A) 80 100 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 600 50 ±15 16 24 R gon ( Ω ) 32 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 100 10 8 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 1 1010 10-5 At D= RthJH = tp / T 0,71 K/W 10-4 10-3 R (C/W) 0,11 0,36 0,16 0,06 0,02 R (C/W) 0,06 0,21 0,44 0,17 0,07 8 100 t p (s) 1 1010 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 0,95 IGBT thermal model values Tau (s) 7,7E-01 1,3E-01 4,6E-02 8,2E-03 1,1E-03 10-2 Tau (s) 2,5E+00 3,5E-01 7,8E-02 1,7E-02 3,6E-03 Revision: 2 V23990-K239-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 Ptot (W) IC (A) 250 200 60 150 40 100 20 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 200 150 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2 V23990-K239-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 17,5 15 10 3 240V 10uS 12,5 960V 10 2 100uS 10 1mS 7,5 101 10mS 5 100mS 100 2,5 DC 0 10-1 0 10 At D= Th = VGE = 10 1 102 103 0 100 150 200 250 Q g (nC) At IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = 50 V CE (V) 50 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 10 Revision: 2 V23990-K239-F40-PM Switching Definitions Output Inverter General conditions = 150 °C Tj = 8Ω Rgon Rgoff = 8Ω T1,T2,T3,T4,T5,T6 IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 240 % % 120 T1,T2,T3,T4,T5,T6 IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC 200 tdoff VCE 100 VGE 90% 160 VCE 90% 80 120 IC 60 80 tEoff 40 VCE VGE tdon IC 1% 40 20 IC10% VGE10% 0 VCE 3% 0 VGE tEon -20 -0,3 -0,15 0 0,15 0,3 0,45 0,6 0,75 -40 3,25 0,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 50 0,30 0,67 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs T1,T2,T3,T4,T5,T6 IGBT Figure 3 3,4 3,55 3,7 -15 15 600 50 0,11 0,37 V V V A µs µs 4 time(us) 4,15 T1,T2,T3,T4,T5,T6 IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,85 Turn-on Switching Waveforms & definition of tr 140 240 % % 120 fitted Ic 200 VCE IC 100 160 IC 90% 80 120 60 VCE IC90% IC 60% 80 40 tr IC 40% 40 20 IC10% tf 0 -20 0,15 0,2 0,25 IC10% 0 0,3 0,35 0,4 -40 3,45 0,45 3,55 3,65 time (us) VC (100%) = IC (100%) = tf = 600 50 0,12 Copyright by Vincotech 3,75 3,85 time(us) VC (100%) = IC (100%) = tr = V A µs 11 600 50 0,03 V A µs Revision: 2 V23990-K239-F40-PM Switching Definitions Output Inverter T1,T2,T3,T4,T5,T6 IGBT Figure 5 T1,T2,T3,T4,T5,T6 IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 % Poff % Pon Eoff 100 180 80 140 Eon 60 100 40 60 20 VGE 90% 20 0 VCE 3% VGE 10% tEoff tEon IC 1% -20 -0,2 -20 -0,05 0,1 0,25 0,4 0,55 0,7 3,3 0,85 3,45 3,6 3,75 3,9 Poff (100%) = Eoff (100%) = tEoff = 30,22 4,75 0,67 4,05 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 30,22 4,62 0,37 kW mJ µs D1,D2,D3,D4,D5,D6 FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 0 IRRM10% Vd -40 fitted -80 IRRM90% -120 IRRM100% -160 3,3 3,5 3,7 3,9 4,1 4,3 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 12 600 50 -67 0,29 V A A µs Revision: 2 V23990-K239-F40-PM Switching Definitions Output Inverter D1,D2,D3,D4,D5,D6 FWD Figure 8 D1,D2,D3,D4,D5,D6 FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Id 100 Qrr Erec 100 80 50 tQrr tErec 60 0 40 -50 20 Prec -100 0 -20 -150 3,2 3,45 3,7 3,95 4,2 4,45 4,7 3,2 4,95 3,45 3,7 3,95 4,2 Id (100%) = Qrr (100%) = tQrr = 50 8,66 1,00 Copyright by Vincotech 4,45 4,7 4,95 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 30,22 3,35 1,00 kW mJ µs Revision: 2 V23990-K239-F40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K12-T-PM) with std lid (black V23990-K12-T-PM) and P12 with thin lid (white V23990-K13-T-PM) with thin lid (white V23990-K13-T-PM) and P12 Ordering Code in DataMatrix as V23990-K239-F40-/0A/-PM V23990-K239-F40-/1A/-PM V23990-K239-F40-/0B/-PM V23990-K239-F40-/1B/-PM K239F40 K239F40 K239F40 K239F40 in packaging barcode as K239F40-/0A/ K239F40-/1A/ K239F40-/0B/ K239F40-/1B/ Outline Pinout Copyright by Vincotech 14 Revision: 2 V23990-K239-F40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 2