10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y flowNPC 0 600V/30A Features flow0 12mm housing ● neutral point clamped inverter ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ06NRA041FS02-P965F68 ● 10-PZ06NRA041FS02-P965F68Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Boost Inv. Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV DC current Maximum repetitive forward current IFRM Tjmax Th=80°C Tc=80°C 17 17 A 20 A I2t-value I2t tp=10ms Tj=25°C 9,5 A2s Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 44 61 W Tjmax 175 °C VRRM 600 V 19 24 A 66 A 32 49 W 150 °C Maximum Junction Temperature Buck Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Tc=80°C 29 35 A tp limited by Tjmax Tc=25°C 272 A Tj=Tjmax Th=80°C Tc=80°C 78 118 W Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID ID pulse Th=80°C Tj=Tjmax Power dissipation Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C VCE 600 V 58 77 A tp limited by Tjmax 225 A Tj≤175°C VCE<=VCES 225 A Maximum Junction Temperature Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C Tc=80°C Tj=Tjmax Th=80°C Tc=80°C 93 141 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 1200 V 17 23 A 36 A 33 50 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Tj≤150°C VGE=15V Boost Diode Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak surge current IFRM 20kHz Square Wave Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,25 1,88 1,22 1,37 0,70 0,04 0,04 1,95 Boost Inv. Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 10 Slope resistance (for power loss calc. only) rt 10 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 10 600 V Ω 0,027 Thermal grease thickness≤50um λ = 1 W/mK V 2,17 mA K/W Buck Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 10 Ir 600 IRRM trr Qrr Rgon=8 Ω 10 350 20 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,61 1,88 1,7 320 10 10 12 23 0,11 0,12 2333 1808 0,02 0,02 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 2,16 K/W Buck MOSFET Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th 10 30 VDS=VGS 0,00296 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time td(ON) tr td(OFF) Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Thermal resistance chip to heatsink per chip RthJH Rgoff=8 Ω Rgon=8 Ω 20 2,4 41 82 3 mΩ 3,6 100 5 34 32 11 12 270 293 0,13 0,15 0,07 0,07 V nA uA ns mWs 290 10 480 44,4 Tj=25°C 36 nC 150 6530 f=1MHz copyright by Vincotech 350 10 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0 100 Tj=25°C pF 360 Thermal grease thickness≤50um λ = 1 W/mK 0,90 3 K/W Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,22 1,29 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 30 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,0038 600 Rgoff=4 Ω Rgon=4 Ω ±15 350 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 84 84 7 8 204 242 55 90 0,26 0,39 0,99 1,36 ns mWs 4620 f=1MHz 0 25 15 480 Tj=25°C pF 288 137 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,02 K/W Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time trr Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 600 IRRM Reverse recovered charge Peak rate of fall of recovery current 18 Rgon=4 Ω ±15 350 di(rec)max /dt Erec RthJH 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,23 2,04 3,3 100 59 67 21 102 2,53 4,72 9919 5374 0,75 1,45 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 2,11 K/W 21511 Ω Thermistor Rated resistance R Tj=25°C Deviation of R25 ∆R/R Tj=25°C Power dissipation P Tj=25°C 210 mW Tj=25°C 4 mW/K Power dissipation constant -4,5 +4,5 % B-value B(25/50) Tj=25°C 3884 K B-value B(25/100) Tj=25°C 3964 K F Vincotech NTC Reference copyright by Vincotech 4 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Buck MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 90 IC (A) IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 0 V to 20 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 0 V to 20 V in steps of 2 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IC (A) IF (A) 50 5 40 40 30 30 20 20 Tj = 25°C Tj = Tjmax-25°C 10 10 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 1 250 10 copyright by Vincotech 2 3 4 5 V GE (V) 6 0 At tp = µs V 5 1 250 2 3 V F (V) 4 µs Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,5 E (mWs) E (mWs) 0,4 Eon High T Eon High T Eon Low T 0,4 0,3 Eon Low T Eoff High T 0,3 Eoff Low T Eoff High T 0,2 Eoff Low T 0,2 0,1 0,1 0,0 0,0 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 10 V Rgon = 8 Ω Rgoff = 8 Ω 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 10 V IC = 20 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,030 0,04 E (mWs) E (mWs) 8 Erec LowT 0,025 Erec High T 0,03 Erec Low T 0,020 Erec High T 0,015 0,02 0,010 0,01 0,005 0,000 0,00 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 10 V Rgon = 8 Ω copyright by Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 10 V IC = 20 A 6 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Buck MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdoff 0,10 0,10 tdon tr tdon tr 0,01 0,01 0,00 0,00 0 10 20 30 40 I C (A) 0 With an inductive load at Tj = °C 125 VCE = 350 V VGE = 10 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 40 RG( Ω ) With an inductive load at Tj = 125 °C VCE = 350 V VGE = 10 V IC = 20 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,08 t rr(ms) t rr(ms) 0,03 0,025 trr High T 0,06 0,02 0,015 0,04 trr High T trr Low T trr Low T 0,01 0,02 0,005 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 10 8 copyright by Vincotech 20 30 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/125 350 20 10 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,15 0,2 Qrr (mC) Qrr (mC) Qrr Low T Qrr High T 0,12 Qrr High T 0,15 Qrr Low T 0,09 0,1 0,06 0,05 0,03 0 0 At At Tj = VCE = VGE = Rgon = 0 8 25/125 350 10 8 16 24 32 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 350 20 10 16 24 32 °C V A V FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 12 40 R gon ( Ω) 30 IrrM (A) IrrM (A) IRRM Low T IRRM High T 25 9 20 6 15 10 3 5 0 IRRM Low T IRRM High T 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 350 10 8 copyright by Vincotech 16 24 32 I C (A) 40 0 At Tj = VR = IF = VGE = °C V V Ω 8 8 25/125 350 20 10 16 24 32 R gon (Ω) 40 °C V A V Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Buck FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 3000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIo/dt T dIrec/dt T 2500 8000 dI0/dt T dIrec/dt T 6000 2000 1500 4000 1000 2000 500 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 10 8 20 30 I C (A) 40 0 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) -2 32 40 R gon (Ω) °C V A V FWD ZthJH (K/W) ZthJH (K/W) 10 24 101 100 10 25/125 350 20 10 16 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 -1 8 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 10-4 At D= RthJH = tp / T R (C/W) 0,13 0,26 0,25 0,18 0,07 0,03 Tau (s) 4,5E+00 1,1E+00 2,4E-01 8,4E-02 1,5E-02 1,1E-03 10-3 10-2 10-1 100 t p (s) 10 10110 -2 10-5 0,90 K/W MOSFET thermal model values copyright by Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-4 At D= RthJH = tp / T R (C/W) 0,08 0,13 0,62 0,67 0,32 0,25 0,09 Tau (s) 4,4E+00 8,2E-01 1,3E-01 4,6E-02 8,2E-03 1,9E-03 5,1E-04 10-3 10-2 10-1 100 t p (s) 10110 2,16 K/W FWD thermal model values 9 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Buck MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 200 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 150 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 35 Ptot (W) IF (A) 80 200 30 60 25 20 40 15 10 20 5 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 150 100 150 T h ( o C) 200 °C Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Buck IGBT Figure 25 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) Safe operating area as a function of collector-emitter voltage IC = f(VCE) 103 IC (A) VGE (V) 16 14 100uS1 102 100mS 1mS 10mS 10 120V 12 480V 10 8 1 DC 6 10 4 0 2 0 10-1 10 At D= Th = VGE = Tj = 0 10 1 10 2 V CE (V) 10 0 3 100 150 Q g (nC) 200 At IG(REF)=1mA, RL=15Ω single pulse 80 ºC 15 V Tjmax ºC copyright by Vincotech 50 11 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 80 V CE (V) IC (A) IF (A) 75 60 60 45 40 30 20 15 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 V GE (V) 0 10 At tp = µs V 12 1 250 2 3 4 V F (V) 5 µs Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,5 Eoff High T E (mWs) E (mWs) 1,5 Eoff High T 2,0 1,2 Eon High T Eoff Low T Eoff Low T 1,5 0,9 1,0 0,6 Eon Low T Eon High T 0,5 0,3 Eon Low T 0,0 0,0 0 10 20 30 40 50 60 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2 E (mWs) 2 E (mWs) Erec High T 1,5 1,5 Erec High T 1 1 Erec Low T Erec Low T 0,5 0,5 0 0 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A 13 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 R G (Ω) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,35 t rr(ms) t rr(ms) 0,15 trr High T 0,30 trr High T 0,12 0,25 trr Low T 0,09 0,20 0,15 0,06 0,10 0,03 trr Low T 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 copyright by Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 14 4 25/125 350 30 ±15 8 12 16 R gon (Ω) 20 °C V A V Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 6 Qrr (mC) Qrr (mC) 8 Qrr High T 5 Qrr High T 6 4 3 4 Qrr Low T Qrr Low T 2 2 1 0 0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 30 40 50 I C (A) 60 0 4 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 350 30 ±15 12 R gon ( Ω) 16 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 IrrM (A) 80 20 IrrM (A) IRRM High T IRRM Low T 80 60 60 40 40 IRRM High T IRRM Low T 20 20 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 copyright by Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 15 4 25/125 350 30 ±15 8 12 16 R gon (Ω) 20 °C V A V Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Boost FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) direc / dt (A/ms) 12000 dIrec/dt T di0/dt T 10000 24000 dI0/dt T dIrec/dt T 20000 8000 16000 6000 12000 4000 8000 2000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 350 30 ±15 8 12 16 R gon (Ω) 20 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a and reverse recovery current dI0/dt,dIrec/dt = f(Rgon) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 tp / T 1,02 10-3 10-2 10-1 100 t p (s) 101 10 K/W 10-5 10-4 10-3 At D= RthJH = tp / T 2,11 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,08 0,12 0,47 0,26 0,08 R (C/W) 0,04 0,11 0,53 0,96 0,30 0,17 Tau (s) 4,30 1,00 0,15 0,05 0,01 copyright by Vincotech 16 10-2 10-1 100 t p (s) 101 10 Tau (s) 6,53 1,19 0,18 0,06 0,01 0,00 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 Ptot (W) IC (A) 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 Ptot (W) IF (A) 80 200 25 60 20 15 40 10 20 5 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 150 100 150 Th ( o C) 200 ºC Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Boost Inverse Diode IGBT Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) IGBT Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 IF (A) 101 ZthJC (K/W) Tj = Tjmax-25°C 25 Tj = 25°C 20 10 0 15 10 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 5 0 0 At tp = 0,5 1 1,5 2 2,5 V F (V) 3 µs 250 IGBT Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = tp / T 2,17 10-3 10-2 100 t p (s) 1021 K/W IGBT Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 20 Ptot (W) IF (A) 100 10-1 80 15 60 10 40 5 20 0 0 0 50 100 150 Th ( o C) 200 0 At Tj = 50 100 150 Th ( o C) 200 At 175 copyright by Vincotech Tj = ºC 18 175 ºC Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) R(T ) = R25 ⋅ e NTC-typical temperature characteristic B25/100⋅ 1 − 1 T T 25 [Ω] R/Ω 24000 Thermistor Figure 2 Typical NTC resistance values 20000 16000 12000 8000 4000 0 25 50 copyright by Vincotech 75 100 T (°C) 125 19 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Switching Definitions BUCK General conditions = 125 °C Tj = 8Ω Rgon IGBT Rgoff IGBT = 8Ω BUCK MOSFET Figure 1 BUCK MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 125 % tdoff IC % 125 100 IC VGE 90% 100 75 VGE 75 tdon 50 VCE 90% tEoff 25 50 IC 1% VGE VCE 25 VCE VGE 10% 0 VCE 3% IC10% 0 tEon -25 -0,1 0 0,1 0,2 0,3 -25 2,98 0,4 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 10 700 20 0,29 0,33 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs BUCK MOSFET Figure 3 3,02 0 10 700 20 0,03 0,07 3,04 3,06 3,08 V V V A µs µs BUCK MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 150 fitted % % IC 100 IC 125 IC 90% 100 75 IC90% VCE IC 60% 75 tr 50 VCE IC 40% 50 25 25 IC10% 0 IC10% tf 0 -25 0,2 0,25 0,3 0,35 -25 3,02 0,4 time (us) VC (100%) = IC (100%) = tf = copyright by Vincotech 700 20 2,756 VC (100%) = IC (100%) = tr = V A µs 20 3,03 3,04 700 20 0,01 3,05 3,06 time(us) 3,07 V A µs Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Switching Definitions BUCK BUCK MOSFET Figure 5 BUCK MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % 100 Eon 100 IC 1% Eoff 75 75 50 50 25 25 Pon VGE90% VCE 3% VGE 10% Poff 0 0 tEon tEoff -25 -0,1 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 13,98 0,07 0,33 0,2 0,3 time (us) -25 2,98 0,4 3,02 3,04 3,06 3,08 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs BUCK MOSFET Figure 7 13,98 0,15 0,07 kW mJ µs BUCK FWD Figure 8 Turn-off Switching Waveforms & definition of trr Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 125 % 3 150 Id % 100 Qrr Id 100 75 trr 50 tQrr 50 25 0 fitted Vd IRRM 10% 0 -25 -50 3,02 IRRM 90% IRRM 100% 3,04 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,06 700 20 -10 0,02 3,08 time(us) -50 3,02 3,1 Id (100%) = Qrr (100%) = tQrr = V A A µs 21 3,04 3,06 3,08 20 0,12 0,08 A µC µs 3,1 3,12 time(us) 3,14 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Switching Definitions BUCK BUCK FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 Erec % 100 tErec 75 50 25 Prec 0 -25 3 3,05 Prec (100%) = Erec (100%) = tErec = 3,1 13,98 0,02 0,08 3,15 time(us) 3,2 kW mJ µs Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 22 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Switching Definitions BOOST General conditions = 125 °C Tj = 4Ω Rgon IGBT Rgoff IGBT = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 350 150 % % 300 tdoff IC 250 100 VCE 90% VGE 90% 200 IC 150 50 tEoff IC 1% VCE 0 VGE VCE 100 tdon 50 VCE3% VGE Ic 10% VGE10% 0 tEon -50 -50 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 time (us) 3 0,6 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 350 30 0,24 0,52 3,05 Output inverter IGBT Figure 3 3,1 -15 15 350 30 0,08 0,10 3,15 3,2 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 350 % IC fitted % VCE Ic 300 100 IC 90% 250 75 200 IC 60% 50 150 IC 40% 100 VCE 25 IC90% tr 50 IC10% 0 tf -25 0 0,1 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,2 350 30 0,090 IC10% 0 0,3 0,4 time (us) -50 3,06 0,5 VC (100%) = IC (100%) = tr = V A µs 23 3,08 3,1 350 30 0,01 3,12 time(us) 3,14 V A µs Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Switching Definitions BOOST Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 200 125 % Poff 100 Eoff % IC 1% Pon 150 75 Eon 100 50 50 25 VCE 3% VGE 10% VGE 90% 0 0 tEon tEoff -25 -0,2 -50 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 10,46 1,36 0,52 0,4 time (us) 0,6 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 3,1 10,46 0,39 0,10 3,15 time(us) 3,2 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 % 3,05 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 150 Id % 100 Id Qrr 100 trr 50 tQrr 50 0 Vd fitted 0 IRRM 10% -50 -50 -100 -100 -150 -150 -200 -200 IRRM 90% IRRM 100% -250 3,05 -250 3,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,15 350 30 -67 0,10 3,2 time(us) 3,25 3 Id (100%) = Qrr (100%) = tQrr = V A A µs 24 3,25 3,5 30 4,72 1,00 3,75 4 time(us) 4,25 A µC µs Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Switching Definitions BOOST Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 300 % Erec 250 200 150 100 tErec 50 Prec 0 -50 3 3,25 Prec (100%) = Erec (100%) = tErec = 3,5 10,46 1,45 1,00 3,75 4 time(us) 4,25 kW mJ µs Measurement circuits Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit Cg is included in the module copyright by Vincotech 25 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version w/o thermal paste 12mm housing solder pin w/o thermal paste 12mm housing Press-fit pin Ordering Code 10-FZ06NRA041FS02-P965F68 10-FZ06NRA041FS02-P965F68 in DataMatrix as P965F68 P965F68Y in packaging barcode as P965F68 P965F68Y Outline Pinout copyright by Vincotech 26 Revision: 1 10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02-P965F68Y DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 27 Revision: 1