10-PZ12B2A040ME01-M330L63Y flow SOL0-SiC 1200 V / 40 mΩ Features TM ● Cree flow 0 12mm housing Silicon Carbide Power MOSFET TM ● Cree Silicon Carbide Power Schottky Diode ● Dual Boost Topology ● Ultra Low Inductance with Integrated DC-capacitors ● Extremely Fast Switching with No "Tail" Current ● Solderless Press-fit Mounting Technology ● Temperature sensor Target Applications Schematic ● High efficient solar inverters ● UPS Types ● 10-PZ12B2A040ME01-M330L63Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 33 A 190 A 81 W Boost - Silicon Carbide Power MOSFET ( T1 , T3 ) Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C tp limited by Tjmax Power dissipation Ptot Gate-source peak voltage VGS -5/25 V Tjmax 150 °C VRRM 1600 V Maximum Junction Temperature Tj=Tjmax Th=80°C Protection Diode ( D1 , D3 ) Peak Repetitive Reverse Voltage IF Tj=Tjmax Th=80°C 47 A Surge forward current IFSM 10ms sin 180° Tj=25°C 370 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C 65 W 150 °C DC forward current Maximum Junction Temperature copyright Vincotech Tjmax 1 Revision: 1 10-PZ12B2A040ME01-M330L63Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 35 A 104 A 94 W Tjmax 175 °C VMAX 1000 V Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 9,16 mm Boost - Silicon Carbide Power Schottky Diode ( D2 , D4 ) Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Th=80°C Surge repetitive forward current IFSM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C DC link Capacitor ( C1 , C2 ) Max.DC voltage Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 1 10-PZ12B2A040ME01-M330L63Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Boost - Silicon Carbide Power MOSFET ( T1 , T3 ) Static drain to source ON resistance RDS(on) Gate threshold voltage V(GS)th 18 0,002 Gate to Source Leakage Current Igss 20 Zero Gate Voltage Drain Current Idss 0 Turn On Delay Time Rise Time Turn off delay time Fall time 72 1200 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgoff=2 Ω Rgon=2 Ω 0/16 0/20 700 800 32 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 52 78 2,25 mΩ V 500 2 20 13 12 5 5 50 53 12 12 0,25 0,24 0,10 0,09 98,4 200 500 nA nA ns mWs 21,6 nC 36 1900 f=1MHz 0 1000 Tj=25°C pF 160 13 Phase-Change Material K/W 0,86 Protection Diode ( D1 , D3 ) Diode forward voltage Reverse leakage current Thermal resistance chip to heatsink per chip VF 35 Irm RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Phase-Change Material 1,24 1,23 V 0,05 mA K/W 1,07 Boost - Silicon Carbide Power Schottky Diode ( D2 , D4 ) Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip copyright Vincotech 20 1200 Rgon=2 Ω 0 700 di(rec)max /dt RthJH Phase-Change Material 32 Tj=25°C Tj=150°C Tj=25°C Tj=175°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,43 1,72 80 160 35 38 9 9 0,15 0,14 0,03 0,01 13071 14558 1,01 3 V 600 1200 µA A ns µC mWs A/µs K/W Revision: 1 10-PZ12B2A040ME01-M330L63Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max DC link Capacitor ( C1 , C2 ) C value C 100 nF 22000 Ω Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant -5 +5 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference copyright Vincotech Tj=25°C 4 B Revision: 1 10-PZ12B2A040ME01-M330L63Y INPUT BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST MOSFET Figure 2 Typical output characteristics ID = f(VDS) 80 ID (A) ID(A) 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGS from 2 3 4 V DS (V) 5 0 At tp = Tj = VGS from µs 250 25 °C 0 V to 20 V in steps of 2 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 5 250 µs 125 °C 0 V to 20 V in steps of 2 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 ID (A) IF (A) 50 V DS (V) 40 40 30 30 Tj = 25°C Tj = Tjmax-25°C 20 20 Tj = Tjmax-25°C Tj = 25°C 10 10 0 0 0 At tp = VDS = 3 250 10 copyright Vincotech 6 9 V GS (V) 0 12 At tp = µs V 5 0,5 250 1 1,5 2 2,5 V F (V) 3 µs Revision: 1 10-PZ12B2A040ME01-M330L63Y INPUT BOOST BOOST MOSFET Figure 5 Typical switching energy losses as a function of drain current E = f(ID) BOOST MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,8 E (mWs) E (mWs) 0,8 Eon Low T 0,6 0,6 Eon High T Eoff Low T 0,4 0,4 Eon Low T Eon High T Eoff Low T 0,2 0,2 Eoff High T Eoff High T 0,0 0 0 10 20 30 40 50 I D (A) 60 0 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 0/16 V Rgon = 2 Ω Rgoff = 2 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 0/16 V ID = A 32 BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of drain current Erec = f(ID) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,04 E (mWs) E (mWs) 0,05 0,04 0,03 Erec High T 0,03 0,02 Erec Low T 0,02 Erec Low T 0,01 0,01 Erec High T 0,00 0,00 0 10 20 30 40 50 I D (A) 60 0 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 0/16 V Rgon = 2 Ω Rgoff = 2 Ω copyright Vincotech 4 8 12 16 RG(Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 0/16 V ID = 32 A 6 Revision: 1 10-PZ12B2A040ME01-M330L63Y INPUT BOOST BOOST MOSFET Figure 9 Typical switching times as a function of drain current t = f(ID) BOOST MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff 0,1 0,1 tdoff tdon tdon 0,01 tr 0,01 tr tf tf 0,001 0,001 0 20 40 I D (A) 60 0 With an inductive load at Tj = °C 125 VDS = 700 V VGS = 0/16 V Rgon = 2 Ω Rgoff = 2 Ω 5 10 15 RG(Ω ) 20 With an inductive load at Tj = 125 °C VDS = 700 V VGS = 0/16 V ID = A 32 BOOST FWD Figure 11 Typical reverse recovery time as a function of drain current trr = f(ID) BOOST FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,010 trr High T trr Low T t rr( µs) t rr( µs) 0,010 trr High T 0,008 0,008 trr Low T 0,006 0,006 0,004 0,004 0,002 0,002 0,000 0,000 0 At Tj = VDS = VGS = Rgon = 10 25/125 700 0/16 2 copyright Vincotech 20 30 40 50 I D (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω 7 5 25/125 700 32 0/16 10 15 R Gon ( Ω ) 20 °C V A V Revision: 1 10-PZ12B2A040ME01-M330L63Y INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of drain current Qrr = f(ID) BOOST FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,2 Qrr ( µC) Qrr ( µC) 0,2 Qrr Low T 0,15 0,15 Qrr High T Qrr High T Qrr Low T 0,1 0,1 0,05 0,05 0 0 0 At At Tj = VDS = VGS = Rgon = 10 25/125 700 0/16 2 20 30 40 50 I D (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of drain current IRRM = f(ID) 4 25/125 700 32 0/16 8 12 16 20 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 50 R Gon ( Ω) 50 IrrM (A) IrrM (A) IRRM High T IRRM Low T 40 40 30 30 IRRM High T 20 20 IRRM Low T 10 10 0 0 At Tj = VDS = VGS = Rgon = 10 25/125 700 0/16 2 copyright Vincotech 20 30 40 50 I D (A) 0 60 0 At Tj = VR = IF = VGS = °C V V Ω 8 4 25/125 700 32 0/16 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 1 10-PZ12B2A040ME01-M330L63Y INPUT BOOST BOOST FWD 20000 dI0/dt dIrec/dt 16000 20000 dI0/dt dIrec/dt 16000 12000 12000 8000 8000 4000 4000 0 0 0 At Tj = VDS = VGS = Rgon = 10 25/125 700 0/16 2 20 30 40 50 I D (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω BOOST MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) -2 R Gon ( Ω) 15 20 °C V A V BOOST FWD ZthJH (K/W) ZthJH (K/W) 10 25/125 700 32 0/16 10 101 100 -1 5 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ µs) direc / dt (A/ µs) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(ID) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 101 10 At D= RthJH = tp / T 0,86 K/W IGBT thermal model values R (K/W) 1,34E-01 3,81E-01 2,07E-01 7,72E-02 6,49E-02 copyright Vincotech -5 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10 1 tp / T 1,01 K/W FWD thermal model values Tau (s) 8,84E-01 1,39E-01 5,28E-02 5,60E-03 8,44E-04 R (K/W) 5,83E-02 1,31E-01 4,46E-01 1,27E-01 1,77E-01 9 Tau (s) 3,01E+00 4,50E-01 8,80E-02 2,30E-02 5,54E-03 Revision: 1 10-PZ12B2A040ME01-M330L63Y INPUT BOOST BOOST MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST MOSFET Figure 22 Drain current as a function of heatsink temperature ID = f(Th) 50 Ptot (W) ID (A) 200 160 40 120 30 80 20 40 10 0 0 0 At Tj = 30 60 90 120 Th ( o C) 150 0 At Tj = VGS = ºC 150 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 30 60 150 18 90 120 150 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 200 Th ( o C) 150 30 100 20 50 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 10 50 175 100 150 T h ( o C) 200 ºC Revision: 1 10-PZ12B2A040ME01-M330L63Y INPUT BOOST BOOST MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) ID (A) 103 102 100uS 101 10 100uS 0 1mS 10mS 100mS 10 -1 DC 101 102 10 3 V DS (V) At D= Th = VGS = Tj = single pulse ºC 80 V 0/16 Tjmax ºC copyright Vincotech 11 Revision: 1 10-PZ12B2A040ME01-M330L63Y INP.BOOST INVERSE DIODE Bost inv. diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Boost inv. diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 80 100 60 40 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 Tj = Tjmax-25°C 20 Tj = 25°C 0 10-2 0 0,5 At tp = 1 V F (V) 1,5 2 10-5 At D= RthJH = µs 250 10-4 Boost inv. diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 t p (s) 101 tp / T 1,07 K/W Boost inv. diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 70 Ptot (W) IF (A) 150 100 60 120 50 90 40 30 60 20 30 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 0 150 At Tj = ºC 12 30 150 60 90 120 T h ( o C) 150 ºC Revision: 1 10-PZ12B2A040ME01-M330L63Y Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 13 Revision: 1 10-PZ12B2A040ME01-M330L63Y Switching Definition BOOST MOSFET General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω BOOST MOSFET Figure 1 125 % Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) tdoff 225 % 200 VDS 100 ID VGS 90% BOOST MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) ID 175 VDS 90% 75 VGS 150 50 125 tEoff VDS 25 100 ID 1% 0 75 tdon 50 -25 25 VGS10% -50 0 -0,04 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdoff = tEoff = -0,02 0 0,02 0,04 -25 2,98 0,06 time (us) 3 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdon = tEon = V V V A µs µs -15 16 350 32 0,06 0,07 BOOST MOSFET Figure 3 VDS3% tEon VGS -75 -0,06 ID10% 3,02 -15 16 350 32 0,01 0,03 3,04 3,06 V V V A µs µs BOOST MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 250 % fitted ID % ID 100 200 ID 90% 75 150 ID 60% 50 ID 40% VDS 100 25 ID 90% ID 10% VDS 0 tr tf 50 -25 ID 10% 0 -50 -50 -75 0 0,01 VD (100%) = ID (100%) = tf = copyright Vincotech 0,02 350 32 0,01 0,03 0,04 time (us) 3 0,05 3,005 3,01 3,015 3,02 3,025 3,03 time(us) VD (100%) = ID (100%) = tr = V A µs 14 350 32 0,005 V A µs Revision: 1 10-PZ12B2A040ME01-M330L63Y Switching Definition BOOST MOSFET BOOST MOSFET Figure 5 BOOST MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 150 125 % Eoff Pon % 125 Eon 100 100 75 75 50 ID 1% 50 25 VGS 90% 0 25 tEoff Poff VGS10% -25 VDS 3% 0 tEon -50 -75 -0,05 -0,03 -0,01 Poff (100%) = Eoff (100%) = tEoff = 11,26 0,14 0,067 0,01 -25 2,98 0,03 time (us) 0,05 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3 11,26 0,24 0,03 3,02 time(us) 3,04 kW mJ µs BOOST FWD Figure 7 Turn-off Switching Waveforms & definition of trr 125 Id % 100 75 trr 50 25 0 Vd IRRM 10% -25 fitted -50 -75 IRRM 90% -100 IRRM 100% -125 3 3,01 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3,02 350 32 10 0,009 3,03 3,04 time(us) 3,05 V A A µs 15 Revision: 1 10-PZ12B2A040ME01-M330L63Y Switching Definition BOOST MOSFET BOOST FWD Figure 8 BOOST FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 250 % % Id 100 Erec 200 tQrr 50 150 Qrr 0 100 tErec -50 50 -100 0 Prec -150 -50 3 3,01 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,02 32 0,15 0,02 3,03 3,04 time(us) 3,05 3 Prec (100%) = Erec (100%) = tErec = A µC µs 16 3,01 3,02 11,26 0,02 0,02 3,03 3,04 time(us) 3,05 kW mJ µs Revision: 1 10-PZ12B2A040ME01-M330L63Y Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-PZ12B2A040ME01-M330L63Y in DataMatrix as M330L63Y in packaging barcode as M330L63Y Outline Pinout copyright Vincotech 17 Revision: 1 10-PZ12B2A040ME01-M330L63Y DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 18 Revision: 1