10-FZ07NMA100SM-M265F58 flowNPC 0 650V/100A flow0 12mm housing Features ● mixed voltage NPC topology ● reactive power capability ● low inductance layout ● Common collector neutral connection Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ07NMA100SM-M265F58 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 79 107 A tp limited by Tjmax 300 A Tj≤150°C VCE<=VCES 300 A 136 206 W Half Bridge IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpulse Turn off safe operating area Tj=Tjmax Th=80°C Tc=80°C Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE ±20 V Tjmax 175 °C 600 V Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C Buck FWD Peak Repetitive Reverse Voltage VRRM Tj=25°C Forward average current IFAV Tj=Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 50 66 69 104 175 1 A W °C Revision: 1 10-FZ07NMA100SM-M265F58 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 57 74 A 225 A 225 A 82 124 W ±20 V µs Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpuls tp limited by Tjmax VCE<=VCES Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Maximum Junction Temperature Tc=80°C Tj≤150°C Turn off safe operating area Short circuit ratings Th=80°C Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax tSC Tj≤150°C 6 VCC VGE=15V 360 V 175 °C 650 V Tjmax Boost FWD Peak Repetitive Reverse Voltage VRRM Tj=25°C Forward average current IFAV Tj=Tjmax Th=80°C Tc=80°C 47 106 A Surge forward current IFSM tp=10ms Tj=25°C 100 A Repetitive peak forward current IFRM tp limited by Tjmax 100 A Power dissipation per Diode Ptot Tj=Tjmax 70 106 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright by Vincotech t=2s DC voltage 2 Revision: 1 10-FZ07NMA100SM-M265F58 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,3 4 4,7 1 1,63 1,78 2,4 Half Bridge IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0005 100 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 400 Rgoff=4 Ω Rgon=4 Ω 150 ±15 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr td(off) 0,07 V 70 71 18 21 78 94 13 22 0,14 0,27 0,18 0,32 ns mWs 6000 f=1MHz 25 0 Tj=25°C 100 pF 22 520 ±15 100 Tj=25°C Phase-Change Material 240 nC 0,7 K/W Buck FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Rgon=4 Ω ±15 300 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright by Vincotech 600 IRRM Reverse recovery time Peak rate of fall of recovery current 60 Phase-Change Material 50 Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,80 1,58 41 59 33 113 1,00 3,10 4239 2404 0,084 0,306 1,38 3 3 10 V µA A ns µC A/µs mWs K/W Revision: 1 10-FZ07NMA100SM-M265F58 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,44 1,58 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,03 700 V V mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=4 Ω Rgon=4 Ω ±15 150 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 93 94 14 17 138 156 74 97 0,13 0,25 0,70 0,95 ns mWs 4620 f=1MHz 0 25 15 480 288 Tj=25°C pF 137 75 Tj=25°C 470 Phase-Change Material nC 1,16 K/W Boost FWD Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 50 Ir 650 IRRM trr Qrr Rgon=4 Ω ±15 150 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH 60 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,62 1,53 2 27 37 43 144 290 1,98 4,21 2751 1443 0,24 0,52 Phase-Change Material V µA A ns µC A/µs mWs 1,36 K/W 22000 Ω Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=25°C Power dissipation constant +5 -5 T=25°C 200 mW T=25°C 2 mW/K K B-value B(25/50) Tol. ±3% T=25°C 3950 B-value B(25/100) Tol. ±3% T=25°C 3996 K B Vincotech NTC Reference copyright by Vincotech % 4 Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 5 V to 15 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 µs 125 °C 5 V to 15 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 240 IF (A) IC (A) 100 200 80 160 60 120 40 80 20 40 0 0 0 At Tj = tp = VCE = 2 25/125 250 10 copyright by Vincotech 4 6 V GE (V) 0 8 At Tj = tp = °C µs V 5 1 25/125 250 2 3 V F (V) 4 °C µs Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 0,7 E (mWs) 0,7 E (mWs) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 0,6 0,6 Eon High T 0,5 0,5 Eoff Low T Eon High T 0,4 0,4 Eoff Low T Eoff High T 0,3 0,3 Eon Low T 0,2 0,2 0,1 0,1 Eon Low T 0 0,0 0 25 50 75 I C (A) 0 100 With an inductive load at Tj = °C 25/125 VCE = 150 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 R G ( Ω) With an inductive load at Tj = 25/125 °C VCE = 150 V VGE = ±15 V IC = 50 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,4 E (mWs) 0,4 Erec High T 0,3 0,3 Erec High T 0,2 0,2 Erec Low T 0,1 0,1 Erec Low T 0 0 0 25 50 75 I C (A) 0 100 With an inductive load at Tj = °C 25/125 VCE = 150 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 150 V VGE = ±15 V IC = 50 A 6 Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff tdoff tdon 0,10 0,10 tdon tr tf tf 0,01 0,01 tr 0,00 0,00 0 25 50 75 0 100 I C (A) With an inductive load at Tj = °C 125 VCE = 150 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 R G ( Ω) With an inductive load at Tj = 125 °C VCE = 150 V VGE = ±15 V IC = 50 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,15 t rr(ms) 0,15 trr High T trr High T 0,12 0,12 0,09 0,09 0,06 0,06 trr Low T trr Low T 0,03 0,03 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 150 ±15 4 copyright by Vincotech 50 75 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 7 4 25/125 150 50 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 5 Qrr (µC) Qrr (µC) 5 Qrr High T 4 4 3 3 Qrr High T 2 2 Qrr Low T 1 1 Qrr Low T 0 0 0 At Tj = VCE = VGE = Rgon = 25 50 75 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 150 ±15 4 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 150 50 ±15 8 12 16 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 70 IrrM (A) 70 20 IRRM High T 60 60 50 50 IRRM Low T IRRM High T 40 40 30 30 20 20 10 10 IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 150 ±15 4 copyright by Vincotech 50 75 I C (A) 100 °C V V Ω 8 0 4 At Tj = VR = IF = VGE = 25/125 150 50 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD FWD 6000 6000 dIrec/dt T dIo/dt T dIrec/dt T 5000 dI0/dt T 5000 4000 4000 3000 3000 2000 2000 1000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 150 ±15 4 50 75 100 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 12 16 R gon ( Ω) 20 °C V A V FWD ZthJH (K/W) ZthJH (K/W) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 At D= RthJH = 25/125 150 50 ±15 8 101 100 10-2 -5 10 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10 10-2 1 10 102 10 -5 At D= RthJH = tp / T 0,70 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 K/W 10 -4 10 -3 R (C/W) 0,07 0,12 0,29 0,13 0,06 R (C/W) 0,08 0,20 0,71 0,22 0,10 9 10 -1 10 0 t p (s) 1012 10 K/W FWD thermal model values copyright by Vincotech -2 tp / T 1,38 IGBT thermal model values Tau (s) 1,4E+00 2,4E-01 6,5E-02 1,7E-02 4,6E-03 10 Tau (s) 4,0E+00 6,3E-01 1,1E-01 3,7E-02 5,3E-03 Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 125 Ptot (W) IC (A) 250 200 100 150 75 100 50 50 25 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 IF (A) Ptot (W) 150 200 125 60 100 75 40 50 20 25 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 IC (A) VGE (V) 15 100uS 102 130V 10uS 12 10mS 520V 1mS 100mS 10 9 1 DC 6 100 3 10-1 0 10 At D= Th = VGE = Tj = 0 10 1 10 2 V CE (V) 10 0 3 At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright by Vincotech 11 40 100 80 120 160 200 Q g (nC) 240 A Revision: 1 10-FZ07NMA100SM-M265F58 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 250 IC MAX Ic CHIP 200 Ic VCE MAX MODULE 150 100 50 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Rgon = Rgoff = 125 °C 4 4 copyright by Vincotech Ω Ω 12 Revision: 1 10-FZ07NMA100SM-M265F58 Neutral point Neutral Point IGBT and Half Bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 5 V CE (V) IF (A) IC (A) 200 60 150 45 100 30 50 15 0 0 0 At Tj = tp = VCE = 2 25/125 250 10 copyright by Vincotech 4 6 8 10 V GE (V) 12 0 At Tj = tp = °C µs V 13 0,5 25/125 250 1 1,5 2 2,5 V F (V) 3 °C µs Revision: 1 10-FZ07NMA100SM-M265F58 Neutral point Neutral Point IGBT and Half Bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) 1,5 E (mWs) Eoff High T 1,2 1,2 Eoff Low T Eoff High T 0,9 0,9 Eoff Low T Eon High T 0,6 0,6 Eon Low T Eon High T 0,3 0,3 Eon Low T 0 0 0 25 50 75 I C (A) 0 100 With an inductive load at Tj = °C 25/125 VCE = 150 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 150 V VGE = ±15 V IC = 50 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) 0,75 Erec High T E (mWs) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,75 0,6 0,6 0,45 0,45 Erec High T Erec Low T 0,3 0,3 0,15 0,15 Erec Low T 0 0 0 25 50 75 I C (A) 100 0 With an inductive load at Tj = °C 25/125 VCE = 150 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 150 V VGE = ±15 V IC = 50 A 14 Revision: 1 10-FZ07NMA100SM-M265F58 Neutral point Neutral Point IGBT and Half Bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdon tdoff tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 25 50 75 100 I C (A) 0 With an inductive load at Tj = °C 125 VCE = 150 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VCE = 150 V VGE = ±15 V IC = 50 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 t rr(ms) t rr(ms) 0,4 trr High T trr High T 0,3 0,3 trr Low T 0,2 0,2 trr Low T 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 25 25/125 150 ±15 4 copyright by Vincotech 50 75 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 15 4 25/125 150 50 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 1 10-FZ07NMA100SM-M265F58 Neutral point Neutral Point IGBT and Half Bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 6 Qrr (µC) Qrr (µC) 6 Qrr High T 5 5 4 4 Qrr High T Qrr Low T 3 3 2 2 1 1 Qrr Low T 0 0 0 At At Tj = VCE = VGE = Rgon = 25 50 75 0 100 I C (A) At Tj = VR = IF = VGE = °C V V Ω 25/125 150 ±15 4 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 150 50 ±15 8 12 16 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 60 IrrM (A) 60 20 IRRM High T 50 50 IRRM Low T 40 40 30 30 20 20 10 10 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 150 ±15 4 copyright by Vincotech 50 75 I C (A) 100 °C V V Ω 16 0 4 At Tj = VR = IF = VGE = 25/125 150 50 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 1 10-FZ07NMA100SM-M265F58 Neutral point Neutral Point IGBT and Half Bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) direc / dt (A/ms) 7500 dIrec/dt T di0/dt T 6000 7500 dIrec/dt T dI0/dt T 6000 4500 4500 3000 3000 1500 1500 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 150 ±15 4 50 75 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 1 25/125 150 50 ±15 8 12 16 R gon ( Ω) 20 °C V A V FWD 1 ZthJH (K/W) 10 100 10 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 10 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 tp / T 1,16 10-3 10-2 10-1 100 t p (s) 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 101 2 10 K/W 10-5 10-4 10-3 At D= RthJH = tp / T 1,36 K/W IGBT thermal model values FWD thermal model values R (C/W) R (C/W) 5,64E-02 1,45E-01 4,55E-01 3,75E-01 7,15E-02 5,72E-02 Tau (s) 4,97E+00 9,35E-01 1,51E-01 4,97E-02 5,37E-03 3,97E-04 copyright by Vincotech 6,09E-02 1,41E-01 6,52E-01 2,75E-01 1,29E-01 1,02E-01 17 10-2 10-1 100 t p (s) 1012 10 Tau (s) 2,36E+00 3,82E-01 6,81E-02 2,04E-02 4,50E-03 6,56E-04 Revision: 1 10-FZ07NMA100SM-M265F58 Neutral point Neutral Point IGBT and Half Bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 175 150 80 125 60 100 75 40 50 20 25 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 Ptot (W) IF (A) 150 200 125 60 100 75 40 50 20 25 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC Revision: 1 10-FZ07NMA100SM-M265F58 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 19 Revision: 1 10-FZ07NMA100SM-M265F58 Switching Definitions Half Bridge General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Half Bridge IGBT Figure 1 Half Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 125 % % tdoff IC 200 100 IC VGE 90% 150 75 VCE VGE 50 100 VCE 90% tEoff VGE tdon 25 50 VCE IC 1% 0 -25 -0,05 0 0,05 0,1 0,15 -50 2,95 0,2 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 50 0,094 0,171 tEon 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Half Bridge IGBT Figure 3 VCE 3% IC 10% VGE 10% 0 3,05 3,1 -15 15 300 50 0,071 0,151 V V V A µs µs 3,15 3,2 3,25 Half Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 250 fitted % % IC 100 IC 200 IC 90% VCE 75 150 IC 60% 50 100 IC 90% tr IC 40% 25 50 VCE IC10% 0 0 tf -50 3,05 -25 0 0,03 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,06 300 50 0,022 0,09 0,12 time (us) 0,15 VC (100%) = IC (100%) = tr = V A µs 20 IC 10% 3,08 3,11 300 50 0,021 3,14 time(us) 3,17 V A µs Revision: 1 10-FZ07NMA100SM-M265F58 Switching Definitions BUCK IGBT Half Bridge IGBT Figure 5 Turn-on Switching Waveforms & definition of tEon 125 125 % % Eoff Eon 100 100 75 75 Poff 50 Half Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff 50 Pon IC 1% 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEoff -25 -0,1 -0,05 Poff (100%) = Eoff (100%) = tEoff = 0 0,05 14,97 0,32 0,171 kW mJ µs tEon 0,1 -25 2,95 0,15 time (us) 0,2 Pon (100%) = Eon (100%) = tEon = 3 3,05 14,97 0,27 0,151 3,1 3,15 time(us) 3,2 kW mJ µs Half Bridge IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 -100 -150 3,05 IRRM 90% IRRM 100% 3,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,15 300 50 -59 0,113 3,2 3,25 time(us) 3,3 V A A µs 21 Revision: 1 10-FZ07NMA100SM-M265F58 Switching Definitions BUCK IGBT Output inverter FRED Figure 8 Output inverter FRED Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Qrr Id Erec 100 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 3 3,1 Id (100%) = Qrr (100%) = tQrr = copyright by Vincotech 3,2 50 3,10 0,227 3,3 time(us) 3,4 3 Prec (100%) = Erec (100%) = tErec = A µC µs 22 3,1 3,2 14,97 0,31 0,227 3,3 time(us) 3,4 kW mJ µs Revision: 1 10-FZ07NMA100SM-M265F58 Measurement circuits Figure 10 BUCK stage switching measurement circuit copyright by Vincotech Figure 11 BOOST stage switching measurement circuit 23 Revision: 1 10-FZ07NMA100SM-M265F58 Switching Definitions Neutral Point General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Neutral Point IGBT Figure 1 Neutral Point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 125 % tdoff % IC VCE 100 150 VGE 90% VCE 90% 75 IC VCE 100 VGE 50 tdon tEoff 50 25 VGE 10% IC 1% VGE 0 -25 -0,2 tEon -50 0 0,2 0,4 0,6 0,8 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 150 50 0,156 0,676 3 3,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Neutral Point IGBT Figure 3 -15 15 150 50 0,094 0,217 3,2 time(us) 3,3 V V V A µs µs Neutral Point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 200 fitted % 100 VCE 3% IC 10% 0 IC % VCE IC 150 IC 90% 75 100 IC 60% VCE IC 90% 50 tr IC 40% 50 25 IC 10% IC10% 0 -25 0,05 0 tf 0,1 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,15 150 50 0,097 0,2 0,25 time (us) -50 3,05 0,3 VC (100%) = IC (100%) = tr = V A µs 24 3,1 3,15 150 50 0,017 3,2 3,25 time(us) 3,3 V A µs Revision: 1 10-FZ07NMA100SM-M265F58 Switching Definitions Neutral Point Neutral Point IGBT Figure 5 Neutral Point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Eoff 100 Eon 100 Poff 75 75 50 50 Pon IC 1% 25 25 VGE 90% VGE 10% VCE 3% 0 0 tEon tEoff -25 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 7,56 0,95 0,676 0,4 0,6 2,9 time (us) 0,8 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3 3,1 7,56 0,25 0,217 3,2 time(us) 3,3 kW mJ µs Neutral Point IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 -150 3 3,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,2 150 50 -43 0,290 3,3 3,4 time(us) 3,5 V A A µs 25 Revision: 1 10-FZ07NMA100SM-M265F58 Switching Definitions Neutral Point Half Bridge FWD Figure 8 Half Bridge FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Qrr Erec 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 -25 3 3,2 3,4 3,6 3,8 4 4,2 3 time(us) Id (100%) = Qrr (100%) = tQrr = copyright by Vincotech 50 4,21 1,00 Prec (100%) = Erec (100%) = tErec = A µC µs 26 3,2 3,4 3,6 7,56 0,52 1,00 kW mJ µs 3,8 4 time(us) 4,2 Revision: 1 10-FZ07NMA100SM-M265F58 Measurement circuits Figure 10 BUCK stage switching measurement circuit copyright by Vincotech Figure 11 BOOST stage switching measurement circuit 27 Revision: 1 10-FZ07NMA100SM-M265F58 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ07NMA100SM-M265F58 in DataMatrix as M265F58 in packaging barcode as M265F58 Outline Pin Pin table X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 33,6 30,8 22 19,2 10,1 2,8 0 0 0 0 0 0 2,8 10,1 19,2 22 30,8 33,6 33,6 33,6 Y 0 0 0 0 0 0 0 7,1 9,9 12,7 15,5 22,6 22,6 22,6 22,6 22,6 22,6 22,6 14,8 8,2 Pinout copyright by Vincotech 28 Revision: 1 10-FZ07NMA100SM-M265F58 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 29 Revision: 1