10-FZ07NMA100SM-M265F58 Maximum Ratings

10-FZ07NMA100SM-M265F58
flowNPC 0
650V/100A
flow0 12mm housing
Features
● mixed voltage NPC topology
● reactive power capability
● low inductance layout
● Common collector neutral connection
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ07NMA100SM-M265F58
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
79
107
A
tp limited by Tjmax
300
A
Tj≤150°C
VCE<=VCES
300
A
136
206
W
Half Bridge IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpulse
Turn off safe operating area
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
±20
V
Tjmax
175
°C
600
V
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
Buck FWD
Peak Repetitive Reverse Voltage
VRRM
Tj=25°C
Forward average current
IFAV
Tj=Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
50
66
69
104
175
1
A
W
°C
Revision: 1
10-FZ07NMA100SM-M265F58
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
57
74
A
225
A
225
A
82
124
W
±20
V
µs
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpuls
tp limited by Tjmax
VCE<=VCES
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Maximum Junction Temperature
Tc=80°C
Tj≤150°C
Turn off safe operating area
Short circuit ratings
Th=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
tSC
Tj≤150°C
6
VCC
VGE=15V
360
V
175
°C
650
V
Tjmax
Boost FWD
Peak Repetitive Reverse Voltage
VRRM
Tj=25°C
Forward average current
IFAV
Tj=Tjmax
Th=80°C
Tc=80°C
47
106
A
Surge forward current
IFSM
tp=10ms
Tj=25°C
100
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
100
A
Power dissipation per Diode
Ptot
Tj=Tjmax
70
106
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright by Vincotech
t=2s
DC voltage
2
Revision: 1
10-FZ07NMA100SM-M265F58
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3,3
4
4,7
1
1,63
1,78
2,4
Half Bridge IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0005
100
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
400
Rgoff=4 Ω
Rgon=4 Ω
150
±15
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
td(off)
0,07
V
70
71
18
21
78
94
13
22
0,14
0,27
0,18
0,32
ns
mWs
6000
f=1MHz
25
0
Tj=25°C
100
pF
22
520
±15
100
Tj=25°C
Phase-Change
Material
240
nC
0,7
K/W
Buck FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Rgon=4 Ω
±15
300
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright by Vincotech
600
IRRM
Reverse recovery time
Peak rate of fall of recovery current
60
Phase-Change
Material
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,80
1,58
41
59
33
113
1,00
3,10
4239
2404
0,084
0,306
1,38
3
3
10
V
µA
A
ns
µC
A/µs
mWs
K/W
Revision: 1
10-FZ07NMA100SM-M265F58
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,44
1,58
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
75
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,03
700
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=4 Ω
Rgon=4 Ω
±15
150
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
93
94
14
17
138
156
74
97
0,13
0,25
0,70
0,95
ns
mWs
4620
f=1MHz
0
25
15
480
288
Tj=25°C
pF
137
75
Tj=25°C
470
Phase-Change
Material
nC
1,16
K/W
Boost FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
50
Ir
650
IRRM
trr
Qrr
Rgon=4 Ω
±15
150
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
60
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,62
1,53
2
27
37
43
144
290
1,98
4,21
2751
1443
0,24
0,52
Phase-Change
Material
V
µA
A
ns
µC
A/µs
mWs
1,36
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=25°C
Power dissipation constant
+5
-5
T=25°C
200
mW
T=25°C
2
mW/K
K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
B
Vincotech NTC Reference
copyright by Vincotech
%
4
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
5 V to 15 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
µs
125
°C
5 V to 15 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
240
IF (A)
IC (A)
100
200
80
160
60
120
40
80
20
40
0
0
0
At
Tj =
tp =
VCE =
2
25/125
250
10
copyright by Vincotech
4
6
V GE (V)
0
8
At
Tj =
tp =
°C
µs
V
5
1
25/125
250
2
3
V F (V)
4
°C
µs
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
0,7
E (mWs)
0,7
E (mWs)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
0,6
0,6
Eon High T
0,5
0,5
Eoff Low T
Eon High T
0,4
0,4
Eoff Low T
Eoff High T
0,3
0,3
Eon Low T
0,2
0,2
0,1
0,1
Eon Low T
0
0,0
0
25
50
75
I C (A)
0
100
With an inductive load at
Tj =
°C
25/125
VCE =
150
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
R G ( Ω)
With an inductive load at
Tj =
25/125
°C
VCE =
150
V
VGE =
±15
V
IC =
50
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,4
E (mWs)
0,4
Erec High T
0,3
0,3
Erec High T
0,2
0,2
Erec Low T
0,1
0,1
Erec Low T
0
0
0
25
50
75
I C (A)
0
100
With an inductive load at
Tj =
°C
25/125
VCE =
150
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
150
V
VGE =
±15
V
IC =
50
A
6
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
tdoff
tdon
0,10
0,10
tdon
tr
tf
tf
0,01
0,01
tr
0,00
0,00
0
25
50
75
0
100
I C (A)
With an inductive load at
Tj =
°C
125
VCE =
150
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
R G ( Ω)
With an inductive load at
Tj =
125
°C
VCE =
150
V
VGE =
±15
V
IC =
50
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,15
t rr(ms)
0,15
trr High T
trr High T
0,12
0,12
0,09
0,09
0,06
0,06
trr Low T
trr Low T
0,03
0,03
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
150
±15
4
copyright by Vincotech
50
75
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
4
25/125
150
50
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
5
Qrr (µC)
Qrr (µC)
5
Qrr High T
4
4
3
3
Qrr High T
2
2
Qrr Low T
1
1
Qrr Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
50
75
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
150
±15
4
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
150
50
±15
8
12
16
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
70
IrrM (A)
70
20
IRRM High T
60
60
50
50
IRRM Low T
IRRM High T
40
40
30
30
20
20
10
10
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
150
±15
4
copyright by Vincotech
50
75
I C (A)
100
°C
V
V
Ω
8
0
4
At
Tj =
VR =
IF =
VGE =
25/125
150
50
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
FWD
6000
6000
dIrec/dt T
dIo/dt T
dIrec/dt T
5000
dI0/dt T
5000
4000
4000
3000
3000
2000
2000
1000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
150
±15
4
50
75
100
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
12
16
R gon ( Ω)
20
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
At
D=
RthJH =
25/125
150
50
±15
8
101
100
10-2
-5
10
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10
10-2
1
10
102
10
-5
At
D=
RthJH =
tp / T
0,70
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
K/W
10
-4
10
-3
R (C/W)
0,07
0,12
0,29
0,13
0,06
R (C/W)
0,08
0,20
0,71
0,22
0,10
9
10
-1
10
0
t p (s)
1012
10
K/W
FWD thermal model values
copyright by Vincotech
-2
tp / T
1,38
IGBT thermal model values
Tau (s)
1,4E+00
2,4E-01
6,5E-02
1,7E-02
4,6E-03
10
Tau (s)
4,0E+00
6,3E-01
1,1E-01
3,7E-02
5,3E-03
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
125
Ptot (W)
IC (A)
250
200
100
150
75
100
50
50
25
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
IF (A)
Ptot (W)
150
200
125
60
100
75
40
50
20
25
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
IC (A)
VGE (V)
15
100uS
102
130V
10uS
12
10mS
520V
1mS
100mS
10
9
1
DC
6
100
3
10-1
0
10
At
D=
Th =
VGE =
Tj =
0
10
1
10
2
V CE (V)
10
0
3
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright by Vincotech
11
40
100
80
120
160
200 Q g (nC) 240
A
Revision: 1
10-FZ07NMA100SM-M265F58
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
250
IC MAX
Ic CHIP
200
Ic
VCE MAX
MODULE
150
100
50
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Rgon =
Rgoff =
125 °C
4
4
copyright by Vincotech
Ω
Ω
12
Revision: 1
10-FZ07NMA100SM-M265F58
Neutral point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
5
V CE (V)
IF (A)
IC (A)
200
60
150
45
100
30
50
15
0
0
0
At
Tj =
tp =
VCE =
2
25/125
250
10
copyright by Vincotech
4
6
8
10
V GE (V)
12
0
At
Tj =
tp =
°C
µs
V
13
0,5
25/125
250
1
1,5
2
2,5
V F (V)
3
°C
µs
Revision: 1
10-FZ07NMA100SM-M265F58
Neutral point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
1,5
E (mWs)
Eoff High T
1,2
1,2
Eoff Low T
Eoff High T
0,9
0,9
Eoff Low T
Eon High T
0,6
0,6
Eon Low T
Eon High T
0,3
0,3
Eon Low T
0
0
0
25
50
75
I C (A)
0
100
With an inductive load at
Tj =
°C
25/125
VCE =
150
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
150
V
VGE =
±15
V
IC =
50
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
0,75
Erec High T
E (mWs)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,75
0,6
0,6
0,45
0,45
Erec High T
Erec Low T
0,3
0,3
0,15
0,15
Erec Low T
0
0
0
25
50
75
I C (A)
100
0
With an inductive load at
Tj =
°C
25/125
VCE =
150
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
150
V
VGE =
±15
V
IC =
50
A
14
Revision: 1
10-FZ07NMA100SM-M265F58
Neutral point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdon
tdoff
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
25
50
75
100
I C (A)
0
With an inductive load at
Tj =
°C
125
VCE =
150
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VCE =
150
V
VGE =
±15
V
IC =
50
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr(ms)
t rr(ms)
0,4
trr High T
trr High T
0,3
0,3
trr Low T
0,2
0,2
trr Low T
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
150
±15
4
copyright by Vincotech
50
75
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
4
25/125
150
50
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 1
10-FZ07NMA100SM-M265F58
Neutral point
Neutral Point IGBT and Half Bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
6
Qrr (µC)
Qrr (µC)
6
Qrr High T
5
5
4
4
Qrr High T
Qrr Low T
3
3
2
2
1
1
Qrr Low T
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
25
50
75
0
100
I C (A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
150
±15
4
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
150
50
±15
8
12
16
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
60
IrrM (A)
60
20
IRRM High T
50
50
IRRM Low T
40
40
30
30
20
20
10
10
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
150
±15
4
copyright by Vincotech
50
75
I C (A)
100
°C
V
V
Ω
16
0
4
At
Tj =
VR =
IF =
VGE =
25/125
150
50
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 1
10-FZ07NMA100SM-M265F58
Neutral point
Neutral Point IGBT and Half Bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
direc / dt (A/ms)
7500
dIrec/dt T
di0/dt T
6000
7500
dIrec/dt T
dI0/dt T
6000
4500
4500
3000
3000
1500
1500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/125
150
±15
4
50
75
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
1
25/125
150
50
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
FWD
1
ZthJH (K/W)
10
100
10
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
10
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,16
10-3
10-2
10-1
100
t p (s)
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
101 2
10
K/W
10-5
10-4
10-3
At
D=
RthJH =
tp / T
1,36
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
R (C/W)
5,64E-02
1,45E-01
4,55E-01
3,75E-01
7,15E-02
5,72E-02
Tau (s)
4,97E+00
9,35E-01
1,51E-01
4,97E-02
5,37E-03
3,97E-04
copyright by Vincotech
6,09E-02
1,41E-01
6,52E-01
2,75E-01
1,29E-01
1,02E-01
17
10-2
10-1
100
t p (s)
1012
10
Tau (s)
2,36E+00
3,82E-01
6,81E-02
2,04E-02
4,50E-03
6,56E-04
Revision: 1
10-FZ07NMA100SM-M265F58
Neutral point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
175
150
80
125
60
100
75
40
50
20
25
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
Ptot (W)
IF (A)
150
200
125
60
100
75
40
50
20
25
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
Revision: 1
10-FZ07NMA100SM-M265F58
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
19
Revision: 1
10-FZ07NMA100SM-M265F58
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Half Bridge IGBT
Figure 1
Half Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
125
%
%
tdoff
IC
200
100
IC
VGE 90%
150
75
VCE
VGE
50
100
VCE 90%
tEoff
VGE
tdon
25
50
VCE
IC 1%
0
-25
-0,05
0
0,05
0,1
0,15
-50
2,95
0,2
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
50
0,094
0,171
tEon
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 3
VCE 3%
IC 10%
VGE 10%
0
3,05
3,1
-15
15
300
50
0,071
0,151
V
V
V
A
µs
µs
3,15
3,2
3,25
Half Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
%
IC
100
IC
200
IC 90%
VCE
75
150
IC 60%
50
100
IC 90%
tr
IC 40%
25
50
VCE
IC10%
0
0
tf
-50
3,05
-25
0
0,03
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,06
300
50
0,022
0,09
0,12
time (us)
0,15
VC (100%) =
IC (100%) =
tr =
V
A
µs
20
IC 10%
3,08
3,11
300
50
0,021
3,14
time(us)
3,17
V
A
µs
Revision: 1
10-FZ07NMA100SM-M265F58
Switching Definitions BUCK IGBT
Half Bridge IGBT
Figure 5
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Eoff
Eon
100
100
75
75
Poff
50
Half Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
50
Pon
IC 1%
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-25
-0,1
-0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0
0,05
14,97
0,32
0,171
kW
mJ
µs
tEon
0,1
-25
2,95
0,15 time (us) 0,2
Pon (100%) =
Eon (100%) =
tEon =
3
3,05
14,97
0,27
0,151
3,1
3,15
time(us)
3,2
kW
mJ
µs
Half Bridge IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
-100
-150
3,05
IRRM 90%
IRRM 100%
3,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,15
300
50
-59
0,113
3,2
3,25
time(us)
3,3
V
A
A
µs
21
Revision: 1
10-FZ07NMA100SM-M265F58
Switching Definitions BUCK IGBT
Output inverter FRED
Figure 8
Output inverter FRED
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Qrr
Id
Erec
100
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
3
3,1
Id (100%) =
Qrr (100%) =
tQrr =
copyright by Vincotech
3,2
50
3,10
0,227
3,3
time(us)
3,4
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
22
3,1
3,2
14,97
0,31
0,227
3,3
time(us)
3,4
kW
mJ
µs
Revision: 1
10-FZ07NMA100SM-M265F58
Measurement circuits
Figure 10
BUCK stage switching measurement circuit
copyright by Vincotech
Figure 11
BOOST stage switching measurement circuit
23
Revision: 1
10-FZ07NMA100SM-M265F58
Switching Definitions Neutral Point
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Neutral Point IGBT
Figure 1
Neutral Point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
125
%
tdoff
%
IC
VCE
100
150
VGE 90%
VCE 90%
75
IC
VCE
100
VGE
50
tdon
tEoff
50
25
VGE 10%
IC 1%
VGE
0
-25
-0,2
tEon
-50
0
0,2
0,4
0,6
0,8
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
150
50
0,156
0,676
3
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 3
-15
15
150
50
0,094
0,217
3,2
time(us)
3,3
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
100
VCE 3%
IC 10%
0
IC
%
VCE
IC
150
IC 90%
75
100
IC 60%
VCE
IC 90%
50
tr
IC 40%
50
25
IC 10%
IC10%
0
-25
0,05
0
tf
0,1
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,15
150
50
0,097
0,2
0,25
time (us)
-50
3,05
0,3
VC (100%) =
IC (100%) =
tr =
V
A
µs
24
3,1
3,15
150
50
0,017
3,2
3,25
time(us)
3,3
V
A
µs
Revision: 1
10-FZ07NMA100SM-M265F58
Switching Definitions Neutral Point
Neutral Point IGBT
Figure 5
Neutral Point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Eoff
100
Eon
100
Poff
75
75
50
50
Pon
IC 1%
25
25
VGE 90%
VGE 10%
VCE 3%
0
0
tEon
tEoff
-25
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
7,56
0,95
0,676
0,4
0,6
2,9
time (us) 0,8
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3
3,1
7,56
0,25
0,217
3,2
time(us)
3,3
kW
mJ
µs
Neutral Point IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
-150
3
3,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,2
150
50
-43
0,290
3,3
3,4
time(us)
3,5
V
A
A
µs
25
Revision: 1
10-FZ07NMA100SM-M265F58
Switching Definitions Neutral Point
Half Bridge FWD
Figure 8
Half Bridge FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Qrr
Erec
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
-25
3
3,2
3,4
3,6
3,8
4
4,2
3
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright by Vincotech
50
4,21
1,00
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
26
3,2
3,4
3,6
7,56
0,52
1,00
kW
mJ
µs
3,8
4
time(us)
4,2
Revision: 1
10-FZ07NMA100SM-M265F58
Measurement circuits
Figure 10
BUCK stage switching measurement circuit
copyright by Vincotech
Figure 11
BOOST stage switching measurement circuit
27
Revision: 1
10-FZ07NMA100SM-M265F58
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ07NMA100SM-M265F58
in DataMatrix as
M265F58
in packaging barcode as
M265F58
Outline
Pin
Pin table
X
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
33,6
30,8
22
19,2
10,1
2,8
0
0
0
0
0
0
2,8
10,1
19,2
22
30,8
33,6
33,6
33,6
Y
0
0
0
0
0
0
0
7,1
9,9
12,7
15,5
22,6
22,6
22,6
22,6
22,6
22,6
22,6
14,8
8,2
Pinout
copyright by Vincotech
28
Revision: 1
10-FZ07NMA100SM-M265F58
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
29
Revision: 1