10-PZ12NMA027ME-M340F63Y Maximum Ratings

10-PZ12NMA027ME-M340F63Y
flow MNPC 0-SIC
1200V/ 80mΩ
Features
flow 0 12mm housing
● Cree™ Silicon Carbide Power MOSFET
● Cree™ Silicon Carbide Power Schottky Diode
● MNPC Topology with Splitted Output
● Ultra Low Inductance with Integrated DC-capacitors
● Extremely Fast Switching with No "Tail" Current
● Unsensitivity for Cross Through Conduction
Schematic
● Solderless Press-fit Mounting Technology
● Temperature sensor
Target Applications
● High efficient solar inverters
● UPS
Types
● 10-PZ12NMA027ME-M340F63Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
50
A
180
A
98
W
Half Bridge MOSFET ( T1 , T4 )
Drain-source break down voltage
DC drain current
Repetitive peak drain current
VDSS
ID
IDpulse
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Gate-source peak voltage
VGS
-10/+25
V
Tjmax
150
°C
650
V
27
A
171
A
58
W
175
°C
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Neutral Point FWD ( D7 , D8 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
60
A
240
A
99
W
Neutral Point IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Th=80°C
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
±20
V
Tjmax
175
°C
650
V
13
A
12
A
27
W
175
°C
1200
V
16
A
47
A
40
W
175
°C
500
V
Maximum Junction Temperature
Th=80°C
Neutral Point Inv. Diode ( D2 , D3 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tc=25°C
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tjmax
Half Bridge FWD ( D5 , D6 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tjmax
DC link Capacitor ( C1 , C2 )
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 9,17
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Half Bridge MOSFET ( T1 , T4 )
Drain-source on-state resistance
Rds(on)
Gate threshold voltage
V(GS)th
20
20
VDS=VGS
0,003
Total Gate Reverse Leakage
IGSS
20
0
Zero Gate Voltage Drain Current
IDSS
0
1200
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge *
Qg
Gate to source charge
Qgs
Rgoff=4 Ω
Rgon=4 Ω
+16/-5
0/20
350
800
44
60
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=25°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
1,7
80
150
3,62
4,97
300
750
24
22
8
7
63
68
17
13
0,13
0,11
0,09
0,08
ns
mWs
32
pF
pF
Qgd
54
2850
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
µA
pF
Cies
1000
µA
148
Input capacitance *
0
V
0,75
Gate to drain charge
f=1MHz
mΩ
240
pF
19,5
Phase-Change
Material
0,71
K/W
Neutral Point FWD ( D7 , D8 )
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Rgon=4 Ω
+16/-5
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright by Vincotech
24
Phase-Change
Material
350
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,52
1,82
40
44
12
12
0,20
0,18
10399
10851
0,03
0,02
1,63
3
1,8
V
A
ns
µC
A/µs
mWs
K/W
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3,3
4,0
4,7
1
1,66
1,79
2,3
Neutral Point IGBT ( T2 , T3 )
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0008
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
80
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
200
Rgoff=2 Ω
Rgon=2 Ω
±15
350
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
td(off)
0,5
V
43
45
4
5
70
90
11
11
0,18
0,27
0,17
0,30
ns
mWs
5000
f=1MHz
0
25
15
520
Tj=25°C
80
Tj=25°C
190
nC
0,96
K/W
pF
18
80
Phase-Change
Material
Neutral Point Inv. Diode ( D2 , D3 )
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
6
Tj=25°C
Tj=125°C
1,2
Phase-Change
Material
1,58
1,50
2,1
3,52
V
K/W
Half Bridge FWD ( D5 , D6 )
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
1200
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
10
Rgon=2 Ω
±15
350
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,49
1,78
1,8
250
34
44
21
27
0,41
0,59
910
9169
0,07
0,09
Phase-Change
Material
V
µA
A
ns
µC
A/µs
mWs
2,39
K/W
270
nF
22000
Ω
DC link Capacitor ( C1 , C2 )
C value
C
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
-5
+5
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
copyright by Vincotech
B
4
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
100
IC (A)
100
IC (A)
MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
75
75
50
50
25
25
0
0
-25
-25
-50
-50
-75
-75
-100
-100
-5
At
tp =
Tj =
VGS from
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
V DS (V)
-5
At
tp =
Tj =
VGS from
250
µs
25
°C
-6 V to 20 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGE)
-4
-3
-2
-1
0
1
2
3
4
5
250
µs
125
°C
-6 V to 20 V in steps of 2 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
80
V DS (V)
IF (A)
ID (A)
80
60
60
Tj = 25°C
40
40
20
20
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VDS =
3
250
10
copyright by Vincotech
6
9
V GS (V)
12
0
At
tp =
µs
V
5
1
250
2
3
4
5
V F (V)
6
µs
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
Figure 5
Typical switching energy losses
as a function of drain current
E = f(ID)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,5
E (mWs)
E (mWs)
0,30
Eoff Low T
0,25
Eoff High T
Eon Low T
0,4
Eon High T
0,20
0,3
Eoff Low T
Eoff High T
Eon Low T
0,15
Eon High T
0,2
0,10
0,1
0,05
0,00
0,0
0
20
40
60
80
I D (A)
100
0
With an inductive load at
Tj =
°C
25/125
VDS =
350
V
VGS =
+16/-5
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
°C
25/125
VDS =
350
V
VGS =
+16/-5
V
ID =
A
44
FWD
Figure 7
Typical reverse recovery energy loss
as a function of drain current
Erec = f(ID)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,05
E (mWs)
E (mWs)
0,06
0,05
Erec Low T
0,04
Erec High T
0,04
Erec Low T
0,03
Erec High T
0,03
0,02
0,02
0,01
0,01
0
0
0
20
40
60
80
I D (A)
100
0
With an inductive load at
Tj =
25/125
°C
VDS =
350
V
VGS =
+16/-5
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VDS =
350
V
VGS =
+16/-5
V
ID =
44
A
6
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Half Bridge
MOSFET
Figure 9
Typical switching times as a
function of drain current
t = f(ID)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
0,10
tdoff
0,10
tdoff
tdon
tdon
tf
tf
tr
0,01
tr
0,01
0,00
0,00
0
20
40
60
80
I D (A)
100
0
With an inductive load at
Tj =
125
°C
VDS =
350
V
VGS =
+16/-5
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
With an inductive load at
Tj =
125
°C
VDS =
350
V
VGS =
+16/-5
V
ID =
A
44
FWD
Figure 11
Typical reverse recovery time as a
function of drain current
trr = f(ID)
FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,025
0,025
t rr(ms)
t rr(ms)
trr Low T
0,020
0,020
trr High T
trr Low T
trr High T
0,015
0,015
0,010
0,010
0,005
0,005
0,000
0,000
0
At
Tj =
VDS =
VGS =
Rgon =
R G ( Ω)
20
25/125
350
+16/-5
4
copyright by Vincotech
40
60
80
I D (A)
0
100
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
7
4
25/125
350
44
+16/-5
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Half Bridge
half bridge MOSFET and neutral point FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of drain current
Qrr = f(ID)
FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,3
Qrr (mC)
Qrr (mC)
0,3
Qrr Low T
0,25
0,25
Qrr High T
Qrr Low T
0,2
0,2
Qrr High T
0,15
0,15
0,1
0,1
0,05
0,05
0
At
At
Tj =
VDS =
VGS =
Rgon =
0
0
20
25/125
350
+16/-5
4
40
60
80
I D (A)
100
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of drain current
IRRM = f(ID)
50
25/125
350
44
+16/-5
8
12
16
R gon ( Ω)
20
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
70
IrrM (A)
IRRM High T
IrrM (A)
4
IRRM Low T
60
40
50
30
40
30
20
IRRM High T
20
IRRM Low T
10
10
0
0
0
20
At
Tj =
VDS =
VGS =
Rgon =
25/125
350
+16/-5
4
copyright by Vincotech
40
60
80
I D (A)
100
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
8
4
25/125
350
44
+16/-5
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Half Bridge
half bridge MOSFET and neutral point FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(ID)
18000
dIrec/dt T
di0/dtT
18000
direc / dt (A/ms)
direc / dt (A/ms)
20000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
16000
dIrec/dt T
di0/dtT
16000
14000
14000
12000
12000
10000
10000
8000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
+16/-5
4
40
60
80
I D (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
25/125
350
44
+16/-5
8
12
16
R gon ( Ω)
100
101
ZthJH (K/W)
20
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
100
10
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10
10
1
At
D=
RthJH =
tp / T
0,71
-5
K/W
10
-4
10
R (K/W)
0,12
0,36
0,09
0,06
0,08
R (K/W)
0,08
0,18
0,85
0,29
0,17
0,06
9
-2
10
-1
10
0
t p (s)
10
1
K/W
FWD thermal model values
copyright by Vincotech
10
tp / T
1,63
MOSFET thermal model values
Tau (s)
9,2E-01
1,3E-01
4,4E-02
6,1E-03
7,1E-04
-3
Tau (s)
3,0E+00
5,1E-01
8,5E-02
2,6E-02
3,9E-03
8,3E-04
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Drain current as a
function of heatsink temperature
IC = f(Th)
250
ID (A)
Ptot (W)
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
30
60
150
90
120
T h ( o C)
0
150
At
Tj =
VGS =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
30
60
150
15
90
120
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
120
150
IF (A)
Ptot (W)
50
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
ID (A)
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
103
10uS
100uS
102
100mS
10mS
1mS
101
DC
100
10
-1
101
100
10
2
103
V DS (V)
At
single pulse
80
ºC
15
V
Tjmax
ºC
D=
Th =
VGE =
Tj =
MOSFET
Figure 27
Reverse bias safe operating area
ID = f(VDS)
ID (A)
240
ID MAX
ID CHIP
200
ID
MODULE
160
120
80
VDS MAX
40
0
0
200
400
600
At
Tjmax-25
Tj =
VDDminus=VDDplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
800
1000
1200
1400
V DS (V)
11
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
250
IC (A)
250
200
200
150
150
100
100
50
50
0
0
0,0
At
tp =
Tj =
VGE from
0,5
1,0
1,5
2,0
2,5
3,0
V CE (V)
3,5
0,0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
0,5
1,0
1,5
2,0
2,5
3,0
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
IC (A)
100
3,5
80
40
60
30
40
20
Tj = Tjmax-25°C
Tj = 25°C
10
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
0
copyright by Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
12
1
250
2
3
4
V F (V)
5
µs
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,4
Eon High T
E (mWs)
E (mWs)
0,6
0,5
Eoff High T
0,3
Eon Low T
0,4
Eoff High T
Eon Low T
Eon High T
Eoff Low T
0,3
0,2
Eoff Low T
0,2
0,1
0,1
0
0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
R G( Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
44
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,1
E (mWs)
E (mWs)
0,25
Erec High T
0,08
0,2
Erec High T
0,06
0,15
Erec Low T
0,04
0,1
Erec Low T
0,02
0,05
0
0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
44
A
13
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
0,1
0,1
tdoff
tdon
tdon
tr
tf
0,01
0,01
tr
tf
0,001
0,001
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
R G( Ω )
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
44
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,04
t rr(ms)
0,04
trr High T
0,03
0,03
trr High T
trr Low T
trr Low T
0,02
0,02
0,01
0,01
0,00
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
2
copyright by Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
2
25/125
350
44
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point
neutral point IGBT and half bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr (mC)
Qrr (mC)
1,0
0,7
0,6
Qrr High T
0,8
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr High T
0,5
0,6
0,4
Qrr Low T
Qrr Low T
0,3
0,4
0,2
0,2
0,1
0,0
0
0
20
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
2
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
350
44
±15
4
6
8
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
50
IrrM (A)
60
10
IRRM High T
IRRM High T
50
40
40
IRRM Low T
30
IRRM Low T
30
20
20
10
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
2
copyright by Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
2
25/125
350
44
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point
neutral point IGBT and half bridge FWD
FWD
10000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
14000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
di0/dt T
8000
dIrec/dt T
dI0/dtT
12000
10000
6000
8000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
2
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
101
101
ZthJH (K/W)
100
100
10
-1
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
25/125
350
44
±15
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-3
10-3
10
-5
At
D=
RthJH =
10
-4
tp / T
0,96
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
10-5
At
D=
RthJH =
K/W
10-4
tp / T
2,39
10-3
FWD thermal model values
R (K/W)
0,10
0,14
0,40
0,16
0,11
R (K/W)
0,07
0,20
1,24
0,49
0,32
copyright by Vincotech
16
10-1
100
t p (s)
101 10
K/W
IGBT thermal model values
Tau (s)
2,15
0,45
0,11
0,03
0,01
10-2
Tau (s)
2,91
0,36
0,06
0,02
0,00
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
80
200
70
20
60
50
15
40
10
30
20
5
10
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point
neutral point IGBT
IGBT
Figure 25
Reverse bias safe operating area
IC (A)
IC = f(VCE)
200
180
IC MAX
160
Ic
120
Ic CHIP
MODULE
140
100
VCE MAX
80
60
40
20
0
0
200
400
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
600
V CE (V)
800
18
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Neutral Point Inverse Diode
Neutral Point Inverse Diode
Figure 25
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
Neutral Point Inverse Diode
Figure 26
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25
ZthJC (K/W)
IF (A)
101
20
100
15
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
5
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
1
2
3
V F (V)
10-2
4
10
Neutral Point Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
-4
10
tp / T
3,52
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
K/W
Neutral Point Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
50
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
10
At
D=
RthJH =
µs
250
-5
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
175
100
150
Th ( o C)
200
ºC
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
20
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Switching Definitions Half Bridge MOSFET
General conditions
Tj
= 125 °C
Rgon
= 4Ω
Rgoff
= 4Ω
Half bridge MOSFET
Figure 1
Half bridge MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
%
ID
%
125
tdoff
150
ID
100
VGS 90%
VDS 90%
VDS
75
100
VGS
50
tEoff
VGS
tdon
50
25
ID 1%
VDS
0
tEon
-25
-50
VDS 5%
ID10%
VGS 10%
0
-50
0
0,02
0,04
0,06
0,08
0,1
16
VGS (0%) =
VGS (100%) =
VDS (100%) =
ID (100%) =
tdoff =
tEoff =
-5
16
350
44
0,07
0,07
0,12
0,14
time (us)
3
3,01
3,02
VGS (0%) =
VGS (100%) =
VDS (100%) =
ID (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Half bridge MOSFET
Figure 3
-5
16
350
44
0,02
0,05
3,03
3,04
time(us)
3,06
V
V
V
A
µs
µs
Half bridge MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
3,05
Turn-on Switching Waveforms & definition of tr
200
150
VDS
%
ID
%
125
150
fitted
ID
100
ID 90%
VDS
100
75
ID
ID 60%
90%
tr
50
50
ID 40%
25
ID 10%
0
-25
0,06
ID 10%
0
tf
0,07
VDS (100%) =
ID (100%) =
tf =
copyright by Vincotech
0,08
350
44
0,013
0,09
0,1
0,11
-50
3,02
0,12
time (us)
3,03
3,04
3,05
3,06
time(us)
VDS (100%) =
ID (100%) =
tr =
V
A
µs
21
350
44
0,007
V
A
µs
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Switching Definitions Half Bridge MOSFET
Half bridge MOSFET
Figure 5
Half bridge MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Eoff
100
Eon
100
ID 1%
75
75
50
50
Pon
Poff
25
25
VGS
90%
0
tEoff
-25
0,02
VDS 3%
VGS 10%
0
tEon
-25
0,04
0,06
0,08
0,1
0,12
3
3,01
3,02
3,03
15,43
0,11
0,05
kW
mJ
µs
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
15,43
0,08
0,07
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3,04
3,05
3,06
time(us)
neutral point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
-100
3,02
IRRM 90%
IRRM 100%
3,04
3,06
3,08
3,1
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
350
44
-44
0,012
V
A
A
µs
22
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Switching Definitions Half Bridge MOSFET
neutral point FWD
Figure 9
neutral point FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
300
%
%
Qrr
Erec
250
150
200
Id
100
150
tQrr
50
100
tErec
0
50
Prec
-50
-100
3,02
0
3,03
Id (100%) =
Qrr (100%) =
tQrr =
copyright by Vincotech
3,04
3,05
44
0,18
0,024
A
µC
µs
3,06
3,07
time(us)
-50
3,03
3,08
3,04
3,05
3,06
3,07
time(us)
Prec (100%) =
Erec (100%) =
tErec =
23
15,43
0,023
0,024
kW
mJ
µs
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Switching Definitions Neutral Point IGBT
General conditions
Tj
= 125 °C
Rgon
= 2Ω
Rgoff
= 2Ω
Neutral Point IGBT
Figure 1
Neutral Point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
200
tdoff
%
%
IC
100
VGE
75
150
VCE 90%
90%
VGE
IC
VCE
100
50
VGE
tEoff
tdon
25
50
IC 1%
VCE
0
VGE 10%
IC 10%
0
tEon
-25
-50
-0,1
-0,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
0,05
0
23
700
44
0,10
0,17
0,1
0,15
time (us)
-50
2,98
0,2
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 3
3,02
3,04
0
23
700
44
0,05
0,12
3,06
3,08
time(us)
3,1
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
VCE 3%
Turn-on Switching Waveforms & definition of tr
125
200
%
VCE
fitted
IC
%
100
Ic
150
IC 90%
75
100
VCE
IC 60%
IC 90%
50
tr
IC 40%
50
25
IC 10%
IC 10%
0
0
-25
-0,03
tf
0,00
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,03
700
44
0,011
0,06
0,09
time (us)
-50
3,03
0,12
VC (100%) =
IC (100%) =
tr =
V
A
µs
24
3,04
3,05
700
44
0,005
3,06
3,07
time(us) 3,08
V
A
µs
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Switching Definitions Neutral Point IGBT
Neutral Point IGBT
Figure 5
Neutral Point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Eoff
100
Eon
100
75
75
50
50
Ic 1%
Pon
25
25
Uge 90%
Uce 3%
Uge 10%
Poff
0
0
tEon
tEoff
-25
-25
-0,04
0
0,04
0,08
3
0,12
3,02
3,04
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
30,83
0,30
0,17
3,06
3,08
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
30,8259
0,38
0,12
kW
mJ
µs
Half Bridge FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
0
fitted
Ud
IRRM 10%
-50
-100
3,02
IRRM 90%
IRRM 100%
3,04
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,06
700
44
-44
0,04
3,08
3,1
time(us)
3,12
V
A
A
µs
25
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Switching Definitions Neutral Point IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Half Bridge FWD
150
150
%
100
Half Bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
%
Qrr
Id
Erec
100
tErec
tQint
50
50
0
Prec
0
-50
-50
-100
-150
3,05
3,06
3,07
Id (100%) =
Qrr (100%) =
tQint =
copyright by Vincotech
3,08
44
0,59
0,085
3,09
3,1
3,11
3,12
time(us)
-100
3,04
3,13
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
26
3,06
3,08
30,83
0,09
0,09
3,1
time(us)
3,12
kW
mJ
µs
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-PZ12NMA027ME-M340F63Y
in DataMatrix as
M340F63Y
in packaging barcode as
M340F63Y
Outline
Pinout
copyright by Vincotech
27
Revision: 1.1
10-PZ12NMA027ME-M340F63Y
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
28
Revision: 1.1