10-PZ12NMA027ME-M340F63Y flow MNPC 0-SIC 1200V/ 80mΩ Features flow 0 12mm housing ● Cree™ Silicon Carbide Power MOSFET ● Cree™ Silicon Carbide Power Schottky Diode ● MNPC Topology with Splitted Output ● Ultra Low Inductance with Integrated DC-capacitors ● Extremely Fast Switching with No "Tail" Current ● Unsensitivity for Cross Through Conduction Schematic ● Solderless Press-fit Mounting Technology ● Temperature sensor Target Applications ● High efficient solar inverters ● UPS Types ● 10-PZ12NMA027ME-M340F63Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 50 A 180 A 98 W Half Bridge MOSFET ( T1 , T4 ) Drain-source break down voltage DC drain current Repetitive peak drain current VDSS ID IDpulse Tj=Tjmax Th=80°C tp limited by Tjmax Power dissipation per IGBT Ptot Gate-source peak voltage VGS -10/+25 V Tjmax 150 °C 650 V 27 A 171 A 58 W 175 °C Maximum Junction Temperature Tj=Tjmax Th=80°C Neutral Point FWD ( D7 , D8 ) Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 1.1 10-PZ12NMA027ME-M340F63Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 60 A 240 A 99 W Neutral Point IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Th=80°C Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE ±20 V Tjmax 175 °C 650 V 13 A 12 A 27 W 175 °C 1200 V 16 A 47 A 40 W 175 °C 500 V Maximum Junction Temperature Th=80°C Neutral Point Inv. Diode ( D2 , D3 ) Peak Repetitive Reverse Voltage DC forward current VRRM Tc=25°C IF Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tjmax Half Bridge FWD ( D5 , D6 ) Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tjmax DC link Capacitor ( C1 , C2 ) Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 9,17 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Half Bridge MOSFET ( T1 , T4 ) Drain-source on-state resistance Rds(on) Gate threshold voltage V(GS)th 20 20 VDS=VGS 0,003 Total Gate Reverse Leakage IGSS 20 0 Zero Gate Voltage Drain Current IDSS 0 1200 Turn-on delay time td(on) Rise time Turn-off delay time Fall time tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge * Qg Gate to source charge Qgs Rgoff=4 Ω Rgon=4 Ω +16/-5 0/20 350 800 44 60 Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=25°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C 1,7 80 150 3,62 4,97 300 750 24 22 8 7 63 68 17 13 0,13 0,11 0,09 0,08 ns mWs 32 pF pF Qgd 54 2850 Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Tj=25°C µA pF Cies 1000 µA 148 Input capacitance * 0 V 0,75 Gate to drain charge f=1MHz mΩ 240 pF 19,5 Phase-Change Material 0,71 K/W Neutral Point FWD ( D7 , D8 ) Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Rgon=4 Ω +16/-5 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright by Vincotech 24 Phase-Change Material 350 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,52 1,82 40 44 12 12 0,20 0,18 10399 10851 0,03 0,02 1,63 3 1,8 V A ns µC A/µs mWs K/W Revision: 1.1 10-PZ12NMA027ME-M340F63Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,3 4,0 4,7 1 1,66 1,79 2,3 Neutral Point IGBT ( T2 , T3 ) Gate emitter threshold voltage VGE(th) VCE=VGE 0,0008 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 80 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 200 Rgoff=2 Ω Rgon=2 Ω ±15 350 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr td(off) 0,5 V 43 45 4 5 70 90 11 11 0,18 0,27 0,17 0,30 ns mWs 5000 f=1MHz 0 25 15 520 Tj=25°C 80 Tj=25°C 190 nC 0,96 K/W pF 18 80 Phase-Change Material Neutral Point Inv. Diode ( D2 , D3 ) Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 6 Tj=25°C Tj=125°C 1,2 Phase-Change Material 1,58 1,50 2,1 3,52 V K/W Half Bridge FWD ( D5 , D6 ) Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir 1200 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 10 Rgon=2 Ω ±15 350 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,49 1,78 1,8 250 34 44 21 27 0,41 0,59 910 9169 0,07 0,09 Phase-Change Material V µA A ns µC A/µs mWs 2,39 K/W 270 nF 22000 Ω DC link Capacitor ( C1 , C2 ) C value C Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant -5 +5 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference copyright by Vincotech B 4 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Half Bridge half bridge MOSFET and neutral point FWD MOSFET Figure 1 Typical output characteristics ID = f(VDS) 100 IC (A) 100 IC (A) MOSFET Figure 2 Typical output characteristics ID = f(VDS) 75 75 50 50 25 25 0 0 -25 -25 -50 -50 -75 -75 -100 -100 -5 At tp = Tj = VGS from -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 V DS (V) -5 At tp = Tj = VGS from 250 µs 25 °C -6 V to 20 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics ID = f(VGE) -4 -3 -2 -1 0 1 2 3 4 5 250 µs 125 °C -6 V to 20 V in steps of 2 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 80 V DS (V) IF (A) ID (A) 80 60 60 Tj = 25°C 40 40 20 20 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VDS = 3 250 10 copyright by Vincotech 6 9 V GS (V) 12 0 At tp = µs V 5 1 250 2 3 4 5 V F (V) 6 µs Revision: 1.1 10-PZ12NMA027ME-M340F63Y Half Bridge half bridge MOSFET and neutral point FWD MOSFET Figure 5 Typical switching energy losses as a function of drain current E = f(ID) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,5 E (mWs) E (mWs) 0,30 Eoff Low T 0,25 Eoff High T Eon Low T 0,4 Eon High T 0,20 0,3 Eoff Low T Eoff High T Eon Low T 0,15 Eon High T 0,2 0,10 0,1 0,05 0,00 0,0 0 20 40 60 80 I D (A) 100 0 With an inductive load at Tj = °C 25/125 VDS = 350 V VGS = +16/-5 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = °C 25/125 VDS = 350 V VGS = +16/-5 V ID = A 44 FWD Figure 7 Typical reverse recovery energy loss as a function of drain current Erec = f(ID) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,05 E (mWs) E (mWs) 0,06 0,05 Erec Low T 0,04 Erec High T 0,04 Erec Low T 0,03 Erec High T 0,03 0,02 0,02 0,01 0,01 0 0 0 20 40 60 80 I D (A) 100 0 With an inductive load at Tj = 25/125 °C VDS = 350 V VGS = +16/-5 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VDS = 350 V VGS = +16/-5 V ID = 44 A 6 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Half Bridge MOSFET Figure 9 Typical switching times as a function of drain current t = f(ID) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 0,10 tdoff 0,10 tdoff tdon tdon tf tf tr 0,01 tr 0,01 0,00 0,00 0 20 40 60 80 I D (A) 100 0 With an inductive load at Tj = 125 °C VDS = 350 V VGS = +16/-5 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 With an inductive load at Tj = 125 °C VDS = 350 V VGS = +16/-5 V ID = A 44 FWD Figure 11 Typical reverse recovery time as a function of drain current trr = f(ID) FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,025 0,025 t rr(ms) t rr(ms) trr Low T 0,020 0,020 trr High T trr Low T trr High T 0,015 0,015 0,010 0,010 0,005 0,005 0,000 0,000 0 At Tj = VDS = VGS = Rgon = R G ( Ω) 20 25/125 350 +16/-5 4 copyright by Vincotech 40 60 80 I D (A) 0 100 At Tj = VR = IF = VGS = °C V V Ω 7 4 25/125 350 44 +16/-5 8 12 16 R gon ( Ω) 20 °C V A V Revision: 1.1 10-PZ12NMA027ME-M340F63Y Half Bridge half bridge MOSFET and neutral point FWD FWD Figure 13 Typical reverse recovery charge as a function of drain current Qrr = f(ID) FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,3 Qrr (mC) Qrr (mC) 0,3 Qrr Low T 0,25 0,25 Qrr High T Qrr Low T 0,2 0,2 Qrr High T 0,15 0,15 0,1 0,1 0,05 0,05 0 At At Tj = VDS = VGS = Rgon = 0 0 20 25/125 350 +16/-5 4 40 60 80 I D (A) 100 0 At Tj = VR = IF = VGS = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of drain current IRRM = f(ID) 50 25/125 350 44 +16/-5 8 12 16 R gon ( Ω) 20 °C V A V FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 70 IrrM (A) IRRM High T IrrM (A) 4 IRRM Low T 60 40 50 30 40 30 20 IRRM High T 20 IRRM Low T 10 10 0 0 0 20 At Tj = VDS = VGS = Rgon = 25/125 350 +16/-5 4 copyright by Vincotech 40 60 80 I D (A) 100 0 At Tj = VR = IF = VGS = °C V V Ω 8 4 25/125 350 44 +16/-5 8 12 16 R gon ( Ω) 20 °C V A V Revision: 1.1 10-PZ12NMA027ME-M340F63Y Half Bridge half bridge MOSFET and neutral point FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of drain current dI0/dt,dIrec/dt = f(ID) 18000 dIrec/dt T di0/dtT 18000 direc / dt (A/ms) direc / dt (A/ms) 20000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 16000 dIrec/dt T di0/dtT 16000 14000 14000 12000 12000 10000 10000 8000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 +16/-5 4 40 60 80 I D (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω MOSFET 25/125 350 44 +16/-5 8 12 16 R gon ( Ω) 100 101 ZthJH (K/W) 20 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 100 10 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10 10 1 At D= RthJH = tp / T 0,71 -5 K/W 10 -4 10 R (K/W) 0,12 0,36 0,09 0,06 0,08 R (K/W) 0,08 0,18 0,85 0,29 0,17 0,06 9 -2 10 -1 10 0 t p (s) 10 1 K/W FWD thermal model values copyright by Vincotech 10 tp / T 1,63 MOSFET thermal model values Tau (s) 9,2E-01 1,3E-01 4,4E-02 6,1E-03 7,1E-04 -3 Tau (s) 3,0E+00 5,1E-01 8,5E-02 2,6E-02 3,9E-03 8,3E-04 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Half Bridge half bridge MOSFET and neutral point FWD MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Drain current as a function of heatsink temperature IC = f(Th) 250 ID (A) Ptot (W) 80 200 60 150 40 100 20 50 0 0 0 At Tj = 30 60 150 90 120 T h ( o C) 0 150 At Tj = VGS = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 30 60 150 15 90 120 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 150 IF (A) Ptot (W) 50 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 1.1 10-PZ12NMA027ME-M340F63Y Half Bridge half bridge MOSFET and neutral point FWD MOSFET ID (A) Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) 103 10uS 100uS 102 100mS 10mS 1mS 101 DC 100 10 -1 101 100 10 2 103 V DS (V) At single pulse 80 ºC 15 V Tjmax ºC D= Th = VGE = Tj = MOSFET Figure 27 Reverse bias safe operating area ID = f(VDS) ID (A) 240 ID MAX ID CHIP 200 ID MODULE 160 120 80 VDS MAX 40 0 0 200 400 600 At Tjmax-25 Tj = VDDminus=VDDplus ºC Switching mode : 3 level switching copyright by Vincotech 800 1000 1200 1400 V DS (V) 11 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 250 IC (A) 250 200 200 150 150 100 100 50 50 0 0 0,0 At tp = Tj = VGE from 0,5 1,0 1,5 2,0 2,5 3,0 V CE (V) 3,5 0,0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 0,5 1,0 1,5 2,0 2,5 3,0 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 50 IF (A) IC (A) 100 3,5 80 40 60 30 40 20 Tj = Tjmax-25°C Tj = 25°C 10 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 0 copyright by Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 12 1 250 2 3 4 V F (V) 5 µs Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,4 Eon High T E (mWs) E (mWs) 0,6 0,5 Eoff High T 0,3 Eon Low T 0,4 Eoff High T Eon Low T Eon High T Eoff Low T 0,3 0,2 Eoff Low T 0,2 0,1 0,1 0 0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 R G( Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = A 44 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,1 E (mWs) E (mWs) 0,25 Erec High T 0,08 0,2 Erec High T 0,06 0,15 Erec Low T 0,04 0,1 Erec Low T 0,02 0,05 0 0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 2 Ω copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 44 A 13 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff 0,1 0,1 tdoff tdon tdon tr tf 0,01 0,01 tr tf 0,001 0,001 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 R G( Ω ) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 44 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,04 t rr(ms) 0,04 trr High T 0,03 0,03 trr High T trr Low T trr Low T 0,02 0,02 0,01 0,01 0,00 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 2 copyright by Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 14 2 25/125 350 44 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point neutral point IGBT and half bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr (mC) Qrr (mC) 1,0 0,7 0,6 Qrr High T 0,8 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr High T 0,5 0,6 0,4 Qrr Low T Qrr Low T 0,3 0,4 0,2 0,2 0,1 0,0 0 0 20 At At Tj = VCE = VGE = Rgon = 25/125 350 ±15 2 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 350 44 ±15 4 6 8 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 50 IrrM (A) 60 10 IRRM High T IRRM High T 50 40 40 IRRM Low T 30 IRRM Low T 30 20 20 10 10 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 2 copyright by Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 15 2 25/125 350 44 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point neutral point IGBT and half bridge FWD FWD 10000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 14000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) di0/dt T 8000 dIrec/dt T dI0/dtT 12000 10000 6000 8000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 2 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω IGBT 101 101 ZthJH (K/W) 100 100 10 -1 6 8 R gon ( Ω) 10 °C V A V FWD 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 25/125 350 44 ±15 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -3 10-3 10 -5 At D= RthJH = 10 -4 tp / T 0,96 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 10-5 At D= RthJH = K/W 10-4 tp / T 2,39 10-3 FWD thermal model values R (K/W) 0,10 0,14 0,40 0,16 0,11 R (K/W) 0,07 0,20 1,24 0,49 0,32 copyright by Vincotech 16 10-1 100 t p (s) 101 10 K/W IGBT thermal model values Tau (s) 2,15 0,45 0,11 0,03 0,01 10-2 Tau (s) 2,91 0,36 0,06 0,02 0,00 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 Ptot (W) IC (A) 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 80 200 70 20 60 50 15 40 10 30 20 5 10 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point neutral point IGBT IGBT Figure 25 Reverse bias safe operating area IC (A) IC = f(VCE) 200 180 IC MAX 160 Ic 120 Ic CHIP MODULE 140 100 VCE MAX 80 60 40 20 0 0 200 400 At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright by Vincotech 600 V CE (V) 800 18 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Neutral Point Inverse Diode Neutral Point Inverse Diode Figure 25 Typical FWD forward current as a function of forward voltage IF = f(VF) Neutral Point Inverse Diode Figure 26 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 25 ZthJC (K/W) IF (A) 101 20 100 15 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 5 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 1 2 3 V F (V) 10-2 4 10 Neutral Point Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) -4 10 tp / T 3,52 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 K/W Neutral Point Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 50 40 20 30 15 20 10 10 5 0 0 0 At Tj = 10 At D= RthJH = µs 250 -5 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 175 100 150 Th ( o C) 200 ºC Revision: 1.1 10-PZ12NMA027ME-M340F63Y Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 20 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Switching Definitions Half Bridge MOSFET General conditions Tj = 125 °C Rgon = 4Ω Rgoff = 4Ω Half bridge MOSFET Figure 1 Half bridge MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 % ID % 125 tdoff 150 ID 100 VGS 90% VDS 90% VDS 75 100 VGS 50 tEoff VGS tdon 50 25 ID 1% VDS 0 tEon -25 -50 VDS 5% ID10% VGS 10% 0 -50 0 0,02 0,04 0,06 0,08 0,1 16 VGS (0%) = VGS (100%) = VDS (100%) = ID (100%) = tdoff = tEoff = -5 16 350 44 0,07 0,07 0,12 0,14 time (us) 3 3,01 3,02 VGS (0%) = VGS (100%) = VDS (100%) = ID (100%) = tdon = tEon = V V V A µs µs Half bridge MOSFET Figure 3 -5 16 350 44 0,02 0,05 3,03 3,04 time(us) 3,06 V V V A µs µs Half bridge MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 3,05 Turn-on Switching Waveforms & definition of tr 200 150 VDS % ID % 125 150 fitted ID 100 ID 90% VDS 100 75 ID ID 60% 90% tr 50 50 ID 40% 25 ID 10% 0 -25 0,06 ID 10% 0 tf 0,07 VDS (100%) = ID (100%) = tf = copyright by Vincotech 0,08 350 44 0,013 0,09 0,1 0,11 -50 3,02 0,12 time (us) 3,03 3,04 3,05 3,06 time(us) VDS (100%) = ID (100%) = tr = V A µs 21 350 44 0,007 V A µs Revision: 1.1 10-PZ12NMA027ME-M340F63Y Switching Definitions Half Bridge MOSFET Half bridge MOSFET Figure 5 Half bridge MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Eoff 100 Eon 100 ID 1% 75 75 50 50 Pon Poff 25 25 VGS 90% 0 tEoff -25 0,02 VDS 3% VGS 10% 0 tEon -25 0,04 0,06 0,08 0,1 0,12 3 3,01 3,02 3,03 15,43 0,11 0,05 kW mJ µs time (us) Poff (100%) = Eoff (100%) = tEoff = 15,43 0,08 0,07 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3,04 3,05 3,06 time(us) neutral point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 -100 3,02 IRRM 90% IRRM 100% 3,04 3,06 3,08 3,1 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 350 44 -44 0,012 V A A µs 22 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Switching Definitions Half Bridge MOSFET neutral point FWD Figure 9 neutral point FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 300 % % Qrr Erec 250 150 200 Id 100 150 tQrr 50 100 tErec 0 50 Prec -50 -100 3,02 0 3,03 Id (100%) = Qrr (100%) = tQrr = copyright by Vincotech 3,04 3,05 44 0,18 0,024 A µC µs 3,06 3,07 time(us) -50 3,03 3,08 3,04 3,05 3,06 3,07 time(us) Prec (100%) = Erec (100%) = tErec = 23 15,43 0,023 0,024 kW mJ µs Revision: 1.1 10-PZ12NMA027ME-M340F63Y Switching Definitions Neutral Point IGBT General conditions Tj = 125 °C Rgon = 2Ω Rgoff = 2Ω Neutral Point IGBT Figure 1 Neutral Point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 200 tdoff % % IC 100 VGE 75 150 VCE 90% 90% VGE IC VCE 100 50 VGE tEoff tdon 25 50 IC 1% VCE 0 VGE 10% IC 10% 0 tEon -25 -50 -0,1 -0,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 0,05 0 23 700 44 0,10 0,17 0,1 0,15 time (us) -50 2,98 0,2 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Neutral Point IGBT Figure 3 3,02 3,04 0 23 700 44 0,05 0,12 3,06 3,08 time(us) 3,1 V V V A µs µs Neutral Point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf VCE 3% Turn-on Switching Waveforms & definition of tr 125 200 % VCE fitted IC % 100 Ic 150 IC 90% 75 100 VCE IC 60% IC 90% 50 tr IC 40% 50 25 IC 10% IC 10% 0 0 -25 -0,03 tf 0,00 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,03 700 44 0,011 0,06 0,09 time (us) -50 3,03 0,12 VC (100%) = IC (100%) = tr = V A µs 24 3,04 3,05 700 44 0,005 3,06 3,07 time(us) 3,08 V A µs Revision: 1.1 10-PZ12NMA027ME-M340F63Y Switching Definitions Neutral Point IGBT Neutral Point IGBT Figure 5 Neutral Point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Eoff 100 Eon 100 75 75 50 50 Ic 1% Pon 25 25 Uge 90% Uce 3% Uge 10% Poff 0 0 tEon tEoff -25 -25 -0,04 0 0,04 0,08 3 0,12 3,02 3,04 time (us) Poff (100%) = Eoff (100%) = tEoff = 30,83 0,30 0,17 3,06 3,08 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 30,8259 0,38 0,12 kW mJ µs Half Bridge FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 0 fitted Ud IRRM 10% -50 -100 3,02 IRRM 90% IRRM 100% 3,04 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,06 700 44 -44 0,04 3,08 3,1 time(us) 3,12 V A A µs 25 Revision: 1.1 10-PZ12NMA027ME-M340F63Y Switching Definitions Neutral Point IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Half Bridge FWD 150 150 % 100 Half Bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) % Qrr Id Erec 100 tErec tQint 50 50 0 Prec 0 -50 -50 -100 -150 3,05 3,06 3,07 Id (100%) = Qrr (100%) = tQint = copyright by Vincotech 3,08 44 0,59 0,085 3,09 3,1 3,11 3,12 time(us) -100 3,04 3,13 Prec (100%) = Erec (100%) = tErec = A µC µs 26 3,06 3,08 30,83 0,09 0,09 3,1 time(us) 3,12 kW mJ µs Revision: 1.1 10-PZ12NMA027ME-M340F63Y Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-PZ12NMA027ME-M340F63Y in DataMatrix as M340F63Y in packaging barcode as M340F63Y Outline Pinout copyright by Vincotech 27 Revision: 1.1 10-PZ12NMA027ME-M340F63Y DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 28 Revision: 1.1