10-PY06NRA041FS-M413FY preliminary datasheet flowNPC1 600V/41mΩ Features flow1 12mm housing ● neutral point clamped inverter (NPC) ● split output eliminates cross conduction ● Ultra fast switching with MOSFET and SiC diodes ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-PY06NRA041FS-M413FY Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 29 37 A 272 A 89 135 W BOOST MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C 1200 V 17 22 A 36 A 32 48 W 150 °C Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C Power dissipation BOOST FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 26 33 A 114 A 70 106 W Tjmax 175 °C VDS 600 V BUCK FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C BUCK MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax Th=80°C Tc=80°C 29 37 A 272 A 89 135 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Tj=Tjmax Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 2,4 0,04 0,09 3 3,6 BOOST MOSFET Static drain to source ON resistance RDS(on) Gate threshold voltage V(GS)th 44 VGS=VDS 0,00296 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgoff=4 Ω Rgon=4 Ω Rgon=4 Ω 10 400 10 480 15 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Ω 100 5000 19 18 8 9 225 244 6 5 0,18 0,26 0,07 0,10 V nA nA ns mWs 290 nC 36 150 6530 f=1MHz 0 100 Tj=25°C pF 360 tbd. Thermal grease thickness≤50um λ = 1 W/mK K/W 0,79 BOOST FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 18 10 Rgon=4 Ω 400 10 400 15 15 Erec di(rec)max /dt RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK 1,5 2,27 1,97 3,5 100 1000 50 60 20 32 1,31 3,02 0,41 1,04 8338 5554 V μA A ns μC mWs A/μs 2,21 K/W BUCK FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF IRRM trr Qrr Rgon=4 Ω 10 400 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Copyright by Vincotech 16 Thermal grease thickness≤50um λ = 1 W/mK 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,15 1,18 14 13 12 12 0,11 0,08 3315 2992 0,02 0,01 1,35 3 1,8 V A ns μC A/μs mWs K/W Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 2,4 0,04 0,09 3 3,6 BUCK MOSFET Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th 44 VDS=VGS Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time 0,00296 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Rgoff=4 Ω Rgon=4 Ω 400 10 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 100 5000 26 25 5 6 177 196 9 12 0,09 0,10 0,03 0,04 480 10 44 nA ns mWs Qgd 150 Ciss 6530 Output capacitance Coss Reverse transfer capacitance Crss f=1MHz 0 100 nC 36 Tj=25°C Input capacitance RthJH V nA 290 Gate to drain charge Thermal resistance chip to heatsink per chip Ω Tj=25°C 360 pF tbd. Thermal grease thickness≤50um λ = 1 W/mK 0,79 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -5 +5 T=25°C 200 mW Tj=25°C 2 mW/K 1/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference Copyright by Vincotech % 1/K B 4 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BUCK MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) IC (A) 100 IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 4 V to 14 V in steps of 1 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 μs 125 °C 4 V to 14 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 5 Tj = 25°C IF (A) IC (A) 50 Tj = Tjmax-25°C 25 40 Tj = Tjmax-25°C 20 Tj = 25°C 30 15 20 10 10 5 0 0 0 At tp = VCE = 1 250 10 2 3 4 5 V (V) GE 6 0 At tp = μs V Copyright by Vincotech 5 1 250 2 3 V F (V) 4 μs Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BUCK MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,5 E (mWs) 0,20 E (mWs) Eon High T Eon Low T 0,15 Eon High T Eon Low T 0,4 0,3 Eoff High T 0,10 Eoff Low T Eoff High T 0,2 Eoff Low T 0,05 0,1 0,0 0,00 0 8 15 23 0 30 I C (A) With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = 15 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,03 E (mWs) E (mWs) 0,030 Erec Low T 0,025 0,025 Erec Low T 0,020 0,02 0,015 0,015 0,010 0,01 Erec High T Erec High T 0,005 0,005 0,000 0 0 8 15 23 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V Rgon = 4 Ω Copyright by Vincotech 8 16 24 32 R G (W) 40 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V IC = 15 A 6 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BUCK MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdoff 0,10 0,10 tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 8 15 23 I C (A) 30 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = 15 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) t rr(ms) 0,020 t rr(ms) 0,020 trr High T 0,016 trr High T 0,016 trr Low T trr Low T 0,012 0,012 0,008 0,008 0,004 0,004 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 4 15 23 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/125 400 15 10 16 24 32 R gon (W) 40 °C V A V Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BUCK FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) Qrr (mC) 0,18 Qrr (mC) 0,18 0,15 0,15 Qrr Low T 0,12 0,12 0,09 Qrr Low T 0,09 Qrr High T Qrr High T 0,06 0,06 0,03 0,03 0,00 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 4 15 23 30 I C (A) 0 8 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125 400 15 10 16 24 32 R g on ( Ω) 40 °C V A V FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 25 IrrM (A) IrrM (A) 18 IRRM Low T IRRM Low T 15 20 IRRM High T 12 15 9 10 IRRM High T 6 5 3 0 0 0 8 At Tj = VCE = VGE = Rgon = 25/125 400 10 4 15 23 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 8 25/125 400 15 10 16 24 32 R gon (W) 40 °C V A V Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BUCK FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 5000 dIrec/dt direc / dt (A/ms) direc / dt (A/ms) 6000 dIrec/dt dI0/dt 4000 dI0/dt 5000 4000 3000 3000 2000 2000 1000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 400 15 10 16 24 R gon (W) 32 40 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 10 8 0 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,79 K/W 10-4 10-3 1,35 R (C/W) 0,02 0,11 0,24 0,29 0,09 0,03 R (C/W) 0,03 0,08 0,35 0,36 0,28 0,21 9 100 t p (s) 1011 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T MOSFET thermal model values Tau (s) 9,8E+00 1,9E+00 3,6E-01 1,3E-01 2,1E-02 2,1E-03 10-2 Tau (s) 6,3E+00 1,2E+00 2,4E-01 7,7E-02 1,4E-02 3,2E-03 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BUCK MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 200 175 40 150 125 30 100 20 75 50 10 25 0 0 0 50 At Tj = 150 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD 150 15 100 150 T h ( o C) 40 120 Ptot (W) 140 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) IF (A) Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 30 100 80 20 60 40 10 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BUCK MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 IC (A) VGE (V) 8 7 100uS 10 120V 2 480V 6 1mS 100mS 5 10mS 101 4 DC 100 3 2 10 -1 1 0 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 At IC = single pulse 80 ºC 15 V Tjmax ºC Copyright by Vincotech 11 50 44 100 150 200 Q g (nC) 250 A Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST MOSFET Figure 2 Typical output characteristics ID = f(VDS) IC (A) 100 IC(A) 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGS from 2 3 V CE (V) 4 5 0 At tp = Tj = VGS from 250 μs 25 °C 4 V to 14 V in steps of 1 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 V CE (V) 5 250 μs 125 °C 4 V to 14 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 Tj = Tjmax-25°C IF (A) ID (A) 30 Tj = Tjmax-25°C Tj = 25°C 25 40 Tj = 25°C 20 30 15 20 10 10 5 0 0 0 At tp = VDS = 1 250 10 2 3 4 5 V GS (V) 0 6 At tp = μs V Copyright by Vincotech 12 1 250 2 3 4 V F (V) 5 μs Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BOOST BOOST MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) BOOST MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,0 E (mWs) E (mWs) 0,5 0,8 0,4 Eon High T Eon High T Eoff High T 0,6 0,3 Eon Low T Eoff Low T Eon Low T Eoff High T 0,4 0,2 Eoff Low T 0,2 0,1 0,0 0 0 8 15 23 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,2 E (mWs) E (mWs) 1,8 Erec High T 1,0 1,5 1,2 0,8 0,9 0,6 Erec High T Erec Low T 0,4 0,6 Erec Low T 0,2 0,3 0,0 0 0 8 15 23 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω Copyright by Vincotech 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A 13 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BOOST BOOST MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t ( μs) t ( μs) 10 1 tdoff 1 tdoff 0,1 0,1 tf tdon 0,01 tr tdon 0,01 tf trf 0,001 0,001 0 8 15 23 I D (A) 30 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 R G( Ω ) 32 40 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = 15 A BOOST FWD BOOST FWD 0,05 0,6 t rr( μs) Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) t rr( μs) Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) trr High T 0,5 0,04 trr High T 0,4 0,03 trr Low T 0,3 trr Low T 0,02 0,2 0,01 0,1 0 0 0 8 At Tj = VCE = VGE = Rgon = 25/125 400 10 4 15 23 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 14 8 25/125 400 15 10 16 24 32 R Gon ( Ω ) 40 °C V A V Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 5 Qrr ( μC) Qrr ( μC) 3,5 Qrr High T 3,0 4 Qrr High T 2,5 3 2,0 Qrr Low T 1,5 2 Qrr Low T 1,0 1 0,5 0 0,0 At 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 4 15 30 0 8 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 400 15 10 24 32 80 70 R Gon ( Ω) 40 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) IRRM (A) IRRM (A) I C (A) 23 100 80 60 50 60 IRRM High T 40 40 30 IRRM Low T 20 20 IRRM High T IRRM Low T 10 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 15 8 25/125 400 15 10 16 24 32 R Gon ( Ω ) 40 °C V A V Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 12000 16000 dI0/dt direc / dt (A/ μs) dI0/dt dIrec/dt direc / dt (A/ μs) BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 14000 10000 12000 8000 10000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 4 15 23 I C (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω BOOST MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 400 15 10 16 24 32 40 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 100 R Gon ( Ω) 100 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10-5 101 1 At D= RthJH = tp / T 0,79 K/W 10-4 10-3 R (C/W) 2,44E-02 1,06E-01 2,44E-01 2,92E-01 9,32E-02 2,59E-02 R (C/W) 4,33E-02 1,52E-01 6,82E-01 6,31E-01 3,64E-01 2,13E-01 16 100 t p (s) 101 1 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 2,21 MOSFET thermal model values Tau (s) 9,81E+00 1,90E+00 3,62E-01 1,34E-01 2,12E-02 2,13E-03 10-2 Tau (s) 7,21E+00 1,08E+00 2,18E-01 6,79E-02 1,40E-02 2,82E-03 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BOOST BOOST MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 200 175 40 150 125 30 100 20 75 50 10 25 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = VGS = ºC BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 70 Th ( o C) IF (A) Ptot (W) 30 60 25 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 17 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet BOOST BOOST MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) VGS = f(Qg) 8 3 UGS (V) 10 BOOST MOSFET Figure 26 Gate voltage vs Gate charge ID (A) 1 7 120V 100uS 102 1mS 5 100mS 10mS 4 1 10 3 DC 10 480V 6 2 0 1 0 10-1 100 At D= Th = VGS = Tj = 101 2 10 V DS (V) 103 0 At ID = single pulse 80 ºC V 10 Tjmax ºC Copyright by Vincotech 18 50 44 100 150 200 Qg (nC) 250 A Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 19 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Switching Definitions BOOST MOSFET General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω BOOST MOSFET Figure 1 BOOST MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 500 150 450 125 400 tdoff 350 100 300 IC VGE 90% 250 75 IC 1% VGE % 200 % 50 tEoff VCE 90% 150 100 25 VCE VGE 10% VCE 50 IC 0 0 tdon IC 10% VCE 3% tEon VGE -50 -100 -25 -150 -50 -0,1 -0,05 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,05 0 10 800 15 0,24 0,25 0,1 0,15 0,2 -200 2,95 0,25 time (us) 2,975 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs BOOST MOSFET Figure 3 3 3,025 0 10 800 15 0,02 0,04 3,05 3,1 time(us) V V V A μs μs BOOST MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 3,075 Turn-on Switching Waveforms & definition of tr 500 150 450 125 fitted IC 400 100 350 Ic 90% 300 75 % 250 % 200 Ic 60% 50 Ic 40% 25 150 Ic 10% VCE 0 100 tf 50 -25 0 0,1 VC (100%) = IC (100%) = tf = 0,15 0,2 800 15 0,01 Copyright by Vincotech 0,25 time (us) Ic -50 2,95 -50 0,3 VC (100%) = IC (100%) = tr = V A μs 20 tr VCE IC 90% IC 10% 2,975 3 800 15 0,01 3,025 3,05 3,075 3,1 time(us) V A μs Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Switching Definitions BOOST MOSFET BOOST MOSFET Figure 5 BOOST MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 200 Pon Ic 1% Eoff 100 175 150 80 125 60 Eon 100 % 40 75 % 50 20 U ge90% 25 Poff 0 Uge 10% Uce 3% 0 tEoff -20 tEon -25 -40 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 12,02 0,10 0,25 0,2 -50 2,95 time (us) 0,3 3 Pon (100%) = Eon (100%) = tEon = kW mJ μs BOOST MOSFET Figure 7 3,05 12,024 0,26 0,03575 3,1 3,15 kW mJ μs BOOST FWD Figure 8 Gate voltage vs Gate charge (measured) time(us) Turn-off Switching Waveforms & definition of trr 200 Uge (V) 12 10 Id 100 trr 8 Ud 0 fitted IRRM 10% 6 -100 % 4 -200 2 -300 0 IRRM 90% -400 -2 -4 -400 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = IRRM 100% -500 -300 -200 -100 0 10 800 15 125,90 V V V A nC Copyright by Vincotech 0 100 Qg (nC) 2,9 200 2,95 3 3,05 3,1 3,15 3,2 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 21 800 15 -60 0,03 V A A μs Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Switching Definitions BOOST MOSFET Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) BOOST FWD BOOST FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 140 120 Id 100 Qrr 0 Erec 100 tQint 80 % tErec %60 -100 40 20 -200 Prec 0 -300 -20 -40 -400 2,8 Id (100%) = Qrr (100%) = tQint = 3,0 3,2 15 3,02 1,00 Copyright by Vincotech 3,4 3,6 3,8 4,0 time(us) 2,9 4,2 3,1 3,3 3,5 3,7 3,9 4,1 time(us) Prec (100%) = Erec (100%) = tErec = A μC μs 22 12,02 1,04 1,00 kW mJ μs Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω BUCK MOSFET Figure 1 BUCK MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 200 120 175 IC tdoff 150 100 VGE 90% IC 125 % 100 80 VGE 60 % VCE 90% tEoff 40 75 IC 1% tdon VCE 20 VGE 50 VCE 0 25 -20 0 VGE 10% -40 -0,1 IC 10% VCE 5% tEon -25 0 0,1 0,2 0,3 0,4 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 10 800 15 0,20 0,21 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs BUCK MOSFET Figure 3 3 0 10 800 15 0,03 0,05 3,05 3,1 3,2 time(us) V V V A μs μs BUCK MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 3,15 Turn-on Switching Waveforms & definition of tr 200 120 fitted IC 100 160 IC 90% 80 120 60 IC 60% % % 40 IC 90% 80 IC 40% tr VCE 20 40 IC10% VCE 0 tf Ic IC 10% 0 -20 -40 0,15 VC (100%) = IC (100%) = tf = 0,175 0,2 800 15 0,01 Copyright by Vincotech 0,225 0,25 time (us) -40 2,95 0,275 VC (100%) = IC (100%) = tr = V A μs 23 2,975 3 800 15 0,01 3,025 3,05 3,075 3,1 time(us) V A μs Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Switching Definitions BUCK MOSFET BUCK MOSFET Figure 5 BUCK MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 Eon Eoff 100 100 80 80 60 60 % Pon % 40 40 20 VGE 90% Poff 20 0 VCE 3% VGE 10% tEoff IC 1% 0 -20 tEon -40 -0,1 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 12,03 0,04 0,21 0,2 0,3 time (us) -20 2,95 0,4 2,975 3 Pon (100%) = Eon (100%) = tEon = kW mJ μs BUCK FWD Figure 7 Gate voltage vs Gate charge (measured) 12,03 0,10 0,05 3,025 3,05 3,075 time(us) 3,1 kW mJ μs BUCK MOSFET Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 12 Id 10 80 trr 8 40 % 6 fitted Vd 0 IRRM 10% 4 -40 2 IRRM 90% -80 0 IRRM 100% -2 -50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 50 0 10 800 15 171,57 Copyright by Vincotech 100 150 Qg (nC) -120 2,95 200 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 3 3,05 800 15 -13 0,01 3,1 time(us) 3,15 V A A μs Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Switching Definitions BUCK MOSFET BUCK FWD Figure 9 BUCK FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Erec 100 Id 100 80 tErec tQrr 50 60 % % Qrr 0 40 20 Prec -50 0 -100 2,95 Id (100%) = Qrr (100%) = tQrr = 3 3,05 15 0,08 0,11 3,1 3,15 time(us) -20 2,95 3,2 Prec (100%) = Erec (100%) = tErec = A μC μs 3 3,05 12,03 0,01 0,11 3,1 3,15 time(us) 3,2 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 25 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-PY06NRA041FS-M413FY in DataMatrix as M413FY in packaging barcode as M413FY Outline Pinout Copyright by Vincotech 26 Revision: 1 10-PY06NRA041FS-M413FY preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 27 Revision: 1