10-PY06NRA041FS-M413FY Maximum Ratings

10-PY06NRA041FS-M413FY
preliminary datasheet
flowNPC1
600V/41mΩ
Features
flow1 12mm housing
● neutral point clamped inverter (NPC)
● split output eliminates cross conduction
● Ultra fast switching with MOSFET and SiC diodes
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-PY06NRA041FS-M413FY
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
29
37
A
272
A
89
135
W
BOOST MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
1200
V
17
22
A
36
A
32
48
W
150
°C
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation
BOOST FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
26
33
A
114
A
70
106
W
Tjmax
175
°C
VDS
600
V
BUCK FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
BUCK MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
Th=80°C
Tc=80°C
29
37
A
272
A
89
135
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Tj=Tjmax
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
2,4
0,04
0,09
3
3,6
BOOST MOSFET
Static drain to source ON resistance
RDS(on)
Gate threshold voltage
V(GS)th
44
VGS=VDS
0,00296
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=4 Ω
Rgon=4 Ω
Rgon=4 Ω
10
400
10
480
15
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Ω
100
5000
19
18
8
9
225
244
6
5
0,18
0,26
0,07
0,10
V
nA
nA
ns
mWs
290
nC
36
150
6530
f=1MHz
0
100
Tj=25°C
pF
360
tbd.
Thermal grease
thickness≤50um
λ = 1 W/mK
K/W
0,79
BOOST FWD
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
18
10
Rgon=4 Ω
400
10
400
15
15
Erec
di(rec)max
/dt
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
1,5
2,27
1,97
3,5
100
1000
50
60
20
32
1,31
3,02
0,41
1,04
8338
5554
V
μA
A
ns
μC
mWs
A/μs
2,21
K/W
BUCK FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
IRRM
trr
Qrr
Rgon=4 Ω
10
400
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Copyright by Vincotech
16
Thermal grease
thickness≤50um
λ = 1 W/mK
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,15
1,18
14
13
12
12
0,11
0,08
3315
2992
0,02
0,01
1,35
3
1,8
V
A
ns
μC
A/μs
mWs
K/W
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
2,4
0,04
0,09
3
3,6
BUCK MOSFET
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
44
VDS=VGS
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0,00296
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Rgoff=4 Ω
Rgon=4 Ω
400
10
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
100
5000
26
25
5
6
177
196
9
12
0,09
0,10
0,03
0,04
480
10
44
nA
ns
mWs
Qgd
150
Ciss
6530
Output capacitance
Coss
Reverse transfer capacitance
Crss
f=1MHz
0
100
nC
36
Tj=25°C
Input capacitance
RthJH
V
nA
290
Gate to drain charge
Thermal resistance chip to heatsink per chip
Ω
Tj=25°C
360
pF
tbd.
Thermal grease
thickness≤50um
λ = 1 W/mK
0,79
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-5
+5
T=25°C
200
mW
Tj=25°C
2
mW/K
1/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
Copyright by Vincotech
%
1/K
B
4
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BUCK
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
100
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
4 V to 14 V in steps of 1 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
μs
125
°C
4 V to 14 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
30
5
Tj = 25°C
IF (A)
IC (A)
50
Tj = Tjmax-25°C
25
40
Tj = Tjmax-25°C
20
Tj = 25°C
30
15
20
10
10
5
0
0
0
At
tp =
VCE =
1
250
10
2
3
4
5 V (V)
GE
6
0
At
tp =
μs
V
Copyright by Vincotech
5
1
250
2
3
V F (V)
4
μs
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BUCK
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,5
E (mWs)
0,20
E (mWs)
Eon High T
Eon Low T
0,15
Eon High T
Eon Low T
0,4
0,3
Eoff High T
0,10
Eoff Low T
Eoff High T
0,2
Eoff Low T
0,05
0,1
0,0
0,00
0
8
15
23
0
30
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
15
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,03
E (mWs)
E (mWs)
0,030
Erec Low T
0,025
0,025
Erec Low T
0,020
0,02
0,015
0,015
0,010
0,01
Erec High T
Erec High T
0,005
0,005
0,000
0
0
8
15
23
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Copyright by Vincotech
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
6
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BUCK
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdoff
0,10
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
8
15
23
I C (A)
30
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,020
t rr(ms)
0,020
trr High T
0,016
trr High T
0,016
trr Low T
trr Low T
0,012
0,012
0,008
0,008
0,004
0,004
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
4
15
23
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/125
400
15
10
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BUCK
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
0,18
Qrr (mC)
0,18
0,15
0,15
Qrr Low T
0,12
0,12
0,09
Qrr Low T
0,09
Qrr High T
Qrr High T
0,06
0,06
0,03
0,03
0,00
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
4
15
23
30
I C (A)
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125
400
15
10
16
24
32
R g on ( Ω)
40
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
25
IrrM (A)
IrrM (A)
18
IRRM Low T
IRRM Low T
15
20
IRRM High T
12
15
9
10
IRRM High T
6
5
3
0
0
0
8
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
4
15
23
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
8
25/125
400
15
10
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BUCK
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
5000
dIrec/dt
direc / dt (A/ms)
direc / dt (A/ms)
6000
dIrec/dt
dI0/dt
4000
dI0/dt
5000
4000
3000
3000
2000
2000
1000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25 I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
400
15
10
16
24
R gon (W)
32
40
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
10
8
0
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,79
K/W
10-4
10-3
1,35
R (C/W)
0,02
0,11
0,24
0,29
0,09
0,03
R (C/W)
0,03
0,08
0,35
0,36
0,28
0,21
9
100
t p (s)
1011
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
MOSFET thermal model values
Tau (s)
9,8E+00
1,9E+00
3,6E-01
1,3E-01
2,1E-02
2,1E-03
10-2
Tau (s)
6,3E+00
1,2E+00
2,4E-01
7,7E-02
1,4E-02
3,2E-03
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BUCK
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
200
175
40
150
125
30
100
20
75
50
10
25
0
0
0
50
At
Tj =
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
150
15
100
150
T h ( o C)
40
120
Ptot (W)
140
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
IF (A)
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
30
100
80
20
60
40
10
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BUCK
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
IC (A)
VGE (V)
8
7
100uS
10
120V
2
480V
6
1mS
100mS
5
10mS
101
4
DC
100
3
2
10
-1
1
0
0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Copyright by Vincotech
11
50
44
100
150
200
Q g (nC)
250
A
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
IC (A)
100
IC(A)
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGS from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGS from
250
μs
25
°C
4 V to 14 V in steps of 1 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
V CE (V)
5
250
μs
125
°C
4 V to 14 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
Tj = Tjmax-25°C
IF (A)
ID (A)
30
Tj = Tjmax-25°C
Tj = 25°C
25
40
Tj = 25°C
20
30
15
20
10
10
5
0
0
0
At
tp =
VDS =
1
250
10
2
3
4
5
V GS (V)
0
6
At
tp =
μs
V
Copyright by Vincotech
12
1
250
2
3
4
V F (V)
5
μs
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,0
E (mWs)
E (mWs)
0,5
0,8
0,4
Eon High T
Eon High T
Eoff High T
0,6
0,3
Eon Low T
Eoff Low T
Eon Low T
Eoff High T
0,4
0,2
Eoff Low T
0,2
0,1
0,0
0
0
8
15
23
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,2
E (mWs)
E (mWs)
1,8
Erec High T
1,0
1,5
1,2
0,8
0,9
0,6
Erec High T
Erec Low T
0,4
0,6
Erec Low T
0,2
0,3
0,0
0
0
8
15
23
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
Copyright by Vincotech
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
13
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t ( μs)
t ( μs)
10
1
tdoff
1
tdoff
0,1
0,1
tf
tdon
0,01
tr
tdon
0,01
tf
trf
0,001
0,001
0
8
15
23
I D (A)
30
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
R G( Ω )
32
40
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
15
A
BOOST FWD
BOOST FWD
0,05
0,6
t rr( μs)
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
t rr( μs)
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
trr High T
0,5
0,04
trr High T
0,4
0,03
trr Low T
0,3
trr Low T
0,02
0,2
0,01
0,1
0
0
0
8
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
4
15
23
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
14
8
25/125
400
15
10
16
24
32
R Gon ( Ω ) 40
°C
V
A
V
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
5
Qrr ( μC)
Qrr ( μC)
3,5
Qrr High T
3,0
4
Qrr High T
2,5
3
2,0
Qrr Low T
1,5
2
Qrr Low T
1,0
1
0,5
0
0,0
At 0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
4
15
30
0
8
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
400
15
10
24
32
80
70
R Gon ( Ω)
40
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
IRRM (A)
IRRM (A)
I C (A)
23
100
80
60
50
60
IRRM High T
40
40
30
IRRM Low T
20
20
IRRM High T
IRRM Low T
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
15
8
25/125
400
15
10
16
24
32
R Gon ( Ω )
40
°C
V
A
V
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
12000
16000
dI0/dt
direc / dt (A/ μs)
dI0/dt
dIrec/dt
direc / dt (A/ μs)
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
14000
10000
12000
8000
10000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
4
15
23
I C (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
400
15
10
16
24
32
40
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
100
R Gon ( Ω)
100
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10-5
101 1
At
D=
RthJH =
tp / T
0,79
K/W
10-4
10-3
R (C/W)
2,44E-02
1,06E-01
2,44E-01
2,92E-01
9,32E-02
2,59E-02
R (C/W)
4,33E-02
1,52E-01
6,82E-01
6,31E-01
3,64E-01
2,13E-01
16
100
t p (s)
101 1
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
2,21
MOSFET thermal model values
Tau (s)
9,81E+00
1,90E+00
3,62E-01
1,34E-01
2,12E-02
2,13E-03
10-2
Tau (s)
7,21E+00
1,08E+00
2,18E-01
6,79E-02
1,40E-02
2,82E-03
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
200
175
40
150
125
30
100
20
75
50
10
25
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
70
Th ( o C)
IF (A)
Ptot (W)
30
60
25
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
17
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
BOOST
BOOST MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
8
3
UGS (V)
10
BOOST MOSFET
Figure 26
Gate voltage vs Gate charge
ID (A)
1
7
120V
100uS
102
1mS
5
100mS
10mS
4
1
10
3
DC
10
480V
6
2
0
1
0
10-1
100
At
D=
Th =
VGS =
Tj =
101
2
10
V DS (V)
103
0
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
Copyright by Vincotech
18
50
44
100
150
200
Qg (nC)
250
A
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
19
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Switching Definitions BOOST MOSFET
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
BOOST MOSFET
Figure 1
BOOST MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
500
150
450
125
400
tdoff
350
100
300
IC
VGE 90%
250
75
IC 1%
VGE
%
200
%
50
tEoff
VCE 90%
150
100
25
VCE
VGE 10%
VCE
50
IC
0
0
tdon
IC 10%
VCE 3%
tEon
VGE
-50
-100
-25
-150
-50
-0,1
-0,05
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,05
0
10
800
15
0,24
0,25
0,1
0,15
0,2
-200
2,95
0,25
time (us)
2,975
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
BOOST MOSFET
Figure 3
3
3,025
0
10
800
15
0,02
0,04
3,05
3,1
time(us)
V
V
V
A
μs
μs
BOOST MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
3,075
Turn-on Switching Waveforms & definition of tr
500
150
450
125
fitted
IC
400
100
350
Ic 90%
300
75
%
250
%
200
Ic 60%
50
Ic 40%
25
150
Ic 10%
VCE
0
100
tf
50
-25
0
0,1
VC (100%) =
IC (100%) =
tf =
0,15
0,2
800
15
0,01
Copyright by Vincotech
0,25
time (us)
Ic
-50
2,95
-50
0,3
VC (100%) =
IC (100%) =
tr =
V
A
μs
20
tr
VCE
IC 90%
IC 10%
2,975
3
800
15
0,01
3,025
3,05
3,075
3,1
time(us)
V
A
μs
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Switching Definitions BOOST MOSFET
BOOST MOSFET
Figure 5
BOOST MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
200
Pon
Ic 1%
Eoff
100
175
150
80
125
60
Eon
100
%
40
75
%
50
20
U ge90%
25
Poff
0
Uge 10%
Uce 3%
0
tEoff
-20
tEon
-25
-40
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
12,02
0,10
0,25
0,2
-50
2,95
time (us) 0,3
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BOOST MOSFET
Figure 7
3,05
12,024
0,26
0,03575
3,1
3,15
kW
mJ
μs
BOOST FWD
Figure 8
Gate voltage vs Gate charge (measured)
time(us)
Turn-off Switching Waveforms & definition of trr
200
Uge (V)
12
10
Id
100
trr
8
Ud
0
fitted
IRRM 10%
6
-100
%
4
-200
2
-300
0
IRRM 90%
-400
-2
-4
-400
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
IRRM 100%
-500
-300
-200
-100
0
10
800
15
125,90
V
V
V
A
nC
Copyright by Vincotech
0
100
Qg (nC)
2,9
200
2,95
3
3,05
3,1
3,15
3,2
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
21
800
15
-60
0,03
V
A
A
μs
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Switching Definitions BOOST MOSFET
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
BOOST FWD
BOOST FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
140
120
Id
100
Qrr
0
Erec
100
tQint
80
%
tErec
%60
-100
40
20
-200
Prec
0
-300
-20
-40
-400
2,8
Id (100%) =
Qrr (100%) =
tQint =
3,0
3,2
15
3,02
1,00
Copyright by Vincotech
3,4
3,6
3,8
4,0
time(us)
2,9
4,2
3,1
3,3
3,5
3,7
3,9
4,1
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
22
12,02
1,04
1,00
kW
mJ
μs
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
BUCK MOSFET
Figure 1
BUCK MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
200
120
175
IC
tdoff
150
100
VGE 90%
IC
125
%
100
80
VGE
60
%
VCE 90%
tEoff
40
75
IC 1%
tdon
VCE
20
VGE
50
VCE
0
25
-20
0
VGE 10%
-40
-0,1
IC 10%
VCE 5%
tEon
-25
0
0,1
0,2
0,3
0,4
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
10
800
15
0,20
0,21
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
BUCK MOSFET
Figure 3
3
0
10
800
15
0,03
0,05
3,05
3,1
3,2
time(us)
V
V
V
A
μs
μs
BUCK MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
3,15
Turn-on Switching Waveforms & definition of tr
200
120
fitted
IC
100
160
IC 90%
80
120
60
IC 60%
%
%
40
IC 90%
80
IC 40%
tr
VCE
20
40
IC10%
VCE
0
tf
Ic
IC 10%
0
-20
-40
0,15
VC (100%) =
IC (100%) =
tf =
0,175
0,2
800
15
0,01
Copyright by Vincotech
0,225
0,25
time (us)
-40
2,95
0,275
VC (100%) =
IC (100%) =
tr =
V
A
μs
23
2,975
3
800
15
0,01
3,025
3,05
3,075
3,1
time(us)
V
A
μs
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Switching Definitions BUCK MOSFET
BUCK MOSFET
Figure 5
BUCK MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
Eon
Eoff
100
100
80
80
60
60
%
Pon
%
40
40
20
VGE 90%
Poff
20
0
VCE 3%
VGE 10%
tEoff
IC 1%
0
-20
tEon
-40
-0,1
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
12,03
0,04
0,21
0,2
0,3
time (us)
-20
2,95
0,4
2,975
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BUCK FWD
Figure 7
Gate voltage vs Gate charge (measured)
12,03
0,10
0,05
3,025
3,05
3,075
time(us)
3,1
kW
mJ
μs
BUCK MOSFET
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
12
Id
10
80
trr
8
40
%
6
fitted
Vd
0
IRRM 10%
4
-40
2
IRRM 90%
-80
0
IRRM 100%
-2
-50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
50
0
10
800
15
171,57
Copyright by Vincotech
100
150
Qg (nC)
-120
2,95
200
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
3
3,05
800
15
-13
0,01
3,1
time(us)
3,15
V
A
A
μs
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Switching Definitions BUCK MOSFET
BUCK FWD
Figure 9
BUCK FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Erec
100
Id
100
80
tErec
tQrr
50
60
%
%
Qrr
0
40
20
Prec
-50
0
-100
2,95
Id (100%) =
Qrr (100%) =
tQrr =
3
3,05
15
0,08
0,11
3,1
3,15
time(us)
-20
2,95
3,2
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
3
3,05
12,03
0,01
0,11
3,1
3,15
time(us)
3,2
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
25
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-PY06NRA041FS-M413FY
in DataMatrix as
M413FY
in packaging barcode as
M413FY
Outline
Pinout
Copyright by Vincotech
26
Revision: 1
10-PY06NRA041FS-M413FY
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
27
Revision: 1