10-FZ06NBA045FH-P915L Maximum Ratings

10-FZ06NBA045FH-P915L
preliminary datasheet
flowBOOST0
600V/45mΩ
Features
flow0 12mm housing
● High efficiency symmetric boost
● Ultra fast switching frequency
● Low Inductance Layout
● Tandem to FZ06NIA045FH and FZ06NIA045FH01
Target Applications
Schematic
● Neutral point solar inverters
Types
● 10-FZ06NBA045FH-P915L
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Th=80°C
Tc=80°C
43
58
A
Tj=25°C
370
A
Tj=150°C
370
A2s
Th=80°C
49
75
W
Tjmax
150
°C
VDS
600
V
36
44
A
230
A
125
189
W
Bypass Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
DC current
tp=10ms
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
Input Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
Power dissipation
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
1
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
23
Tc=80°C
29
A
70
A
51
77
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,10
1,05
0,90
0,78
0,007
0,009
1,3
Bypass Diode
Forward voltage
VF
15
Threshold voltage (for power loss calc. only)
Vto
15
Slope resistance (for power loss calc. only)
rt
15
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
1200
V
Ω
0,1
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,42
mA
K/W
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
VCE=VGE
10
44
VGS=VGD
V(GS)th
0,003
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgon=4 Ω
Rgoff=4 Ω
10/0
400
400
10/0
15
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,1
0,042
0,083
3
Ω
3,9
200
25
20
19
5
6
132
144
240
86
0,077
0,081
0,027
0,026
150
V
nA
μA
ns
mWs
190
34
nC
51
6800
f=1MHz
0
320
Tj=25°C
100
pF
4,5
Thermal grease
thickness≤50um
λ = 1 W/mK
0,56
K/W
Input Boost FWD
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
10/0
400
IRRM
Reverse recovery time
Peak rate of fall of recovery current
16
Rgon=4 Ω
10/0
400
di(rec)max
/dt
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,9
1,52
1,66
400
17
16
9
10
0,120
0,089
0,027
0,014
5076
4101
1,87
3
1,75
V
μA
A
ns
μC
mWs
A/μs
K/W
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R100
DR/R
Power dissipation
P
22000
Tj=25°C
R100=1486 Ω
Tc=100°C
Tj=25°C
Power dissipation constant
-5
Ω
+5
%
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
B
Vincotech NTC Reference
Copyright by Vincotech
4
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
IC(A)
IC (A)
90
90
80
80
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VDS from
1
2
3
4
5
6
7
V CE (V)
0
8
1
At
tp =
Tj =
VDS from
250
μs
25
°C
4 V to 14 V in steps of 1 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VDS)
2
3
4
5
6
V CE (V)
8
250
μs
125
°C
4 V to 14 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
25
7
IF (A)
ID (A)
60
50
20
40
15
30
10
20
5
Tj = Tjmax-25°C
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VDS =
1
2
250
μs
10
V
Copyright by Vincotech
3
4
V GS (V)
5
0
At
tp =
5
1
250
2
3
V F (V)
4
μs
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of collector current
E = f(ID)
as a function of gate resistor
E = f(RG)
0,15
Eon High T
E (mWs)
E (mWs)
0,30
Eon High T
Eon Low T
0,25
Eoff High T
Eoff Low T
0,12
Eon Low T
0,20
0,09
0,15
0,06
0,10
Eoff High T
0,03
0,05
Eoff Low T
0,00
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+10/0
V
Rgon =
4
Ω
Rgoff =
4
Ω
5
10
15
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+10/0
V
ID =
27
A
BOOST MOSFET
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,05
BOOST MOSFET
E (mWs)
E (mWs)
0,06
Erec Low T
0,05
0,04
0,04
0,03
Erec Low T
0,03
0,02
Erec High T
0,02
Erec High T
0,01
0,01
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
5
10
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VDS =
400
V
VGS =
Rgon =
Rgoff =
+10/0
4
V
Ω
VGS =
ID =
+10/0
27
V
A
4
Ω
Copyright by Vincotech
15
6
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
BOOST MOSFET
Figure 10
Typical switching times as a
function of collector current
t = f(ID)
function of gate resistor
t = f(RG)
1
t ( μs)
t ( μs)
1
tdoff
tdoff
0,1
0,1
tdon
tdon
tr
tf
0,01
0,01
tr
0,001
0,001
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+10/0
V
Rgon =
4
Ω
Rgoff =
4
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+10/0
V
IC =
27
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,015
t rr( μs)
t rr( μs)
0,018
trr High T
0,015
0,012
trr Low T
trr High T
0,012
trr Low T
0,009
0,009
0,006
0,006
0,003
0,003
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
10
25/125
°C
400
+10/0
V
V
4
Ω
Copyright by Vincotech
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
7
5
10
25/125
°C
400
27
V
A
+10/0
V
15
R Gon ( Ω )
20
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,24
Qrr ( μC)
Qrr ( μC)
0,2
Qrr Low T
0,15
0,18
Qrr Low T
Qrr High T
0,1
0,12
Qrr High T
0,05
0,06
0
0,00
0
At
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
400
+10/0
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
5
25/125
400
27
+10/0
10
15
20
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
25
R Gon ( Ω)
IrrM (A)
IrrM (A)
40
IRRM Low T
20
30
IRRM High T
15
20
10
IRRM Low T
10
5
IRRM High T
0
0
0
5
At
Tj =
10
VDS =
25/125
400
°C
V
VGS =
Rgon =
+10/0
4
V
Ω
Copyright by Vincotech
15
20
25
I C (A)
0
30
At
Tj =
8
5
10
VR =
25/125
400
°C
V
IF =
VGS =
27
+10/0
A
V
15
R Gon ( Ω )
20
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
direc / dt (A/ μs)
direc / dt (A/ μs)
15000
12000
6000
9000
4000
6000
2000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
10
15
20
25
I C (A)
30
0
At
Tj =
dI0/dt
25/125
400
+10/0
4
°C
V
V
Ω
dIrec/dt
VR =
IF =
VGS =
BOOST MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
5
10
15
R Gon ( Ω)
20
dI0/dt
25/125
400
27
+10/0
°C
V
A
V
dIrec/dt
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
1
100
ZthJH (K/W)
ZthJH (K/W)
10
0
10
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10-2
10
10
-5
10
At
D=
RthJH =
-4
-3
10
-2
10
-1
10
0
10
t p (s)
10-5
1
101
At
D=
RthJH =
tp / T
0,56
K/W
Copyright by Vincotech
MOSFET thermal model values
10-4
10-3
10-2
10-1
100
t p (s)
tp / T
1,87
K/W
FWD thermal model values
R (C/W)
0,036
0,130
Tau (s)
8,58E+00
1,38E+00
R (C/W)
0,12
0,48
Tau (s)
1,72E+00
1,77E-01
0,229
0,088
2,24E-01
3,59E-02
0,59
0,49
3,82E-02
6,29E-03
0,026
0,052
4,98E-03
2,64E-04
0,18
1,17E-03
9
1011
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
BOOST MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
Ptot = f(Th)
function of heatsink temperature
IC = f(Th)
300
IC (A)
Ptot (W)
60
250
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
0
200
At
Tj =
VGS =
ºC
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
o
Th ( C)
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
35
IF (A)
Ptot (W)
100
30
80
25
60
20
15
40
10
20
5
0
0
0
At
Tj =
50
175
100
150
o
T h ( C)
0
200
At
Tj =
ºC
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
ºC
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 25
BOOST MOSFET
Figure 26
Safe operating area as a function
Gate voltage vs Gate charge
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
3
10
ID (A)
VGS (V)
10
9
8
120V
102
7
480V
6
10uS
1mS
10mS
100uS
101
5
4
DC
3
10
100mS
0
2
1
0
101
100
At
D=
Th =
VGS =
single pulse
80
ºC
V
+10/0
Tj =
Tjmax
2
10
0
V DS (V)
25
50
75
100
125
150
Qg (nC)
103
At
ID =
44
A
ºC
Copyright by Vincotech
11
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
Bypass diode
Figure 2
Diode transient thermal impedance
a function of forward voltage
IF= f(VF)
as a function of pulse width
ZthJH = f(tp)
100
ZthJC (K/W)
IF (A)
101
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,5
1
1,5
V F (V)
10-2
2
t p (s)
10-5
At
tp =
At
D=
RthJH =
μs
250
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
100
tp / T
1,42
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
120
1
Ptot (W)
IF (A)
80
100
60
80
40
60
40
20
20
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
12
50
150
100
150
T h ( o C)
200
ºC
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
Thermistor
Figure 2
Typical NTC resistance values
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
13
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Switching Definitions Boost MOSFET
General conditions
Tj
Rgon
Rgoff
=
=
=
BOOST MOSFET
Figure 1
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
125 °C
4Ω
4Ω
BOOST MOSFET
Figure 2
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
200
VGE
%
IC
%
150
150
tdoff
100
100
VGE 90%
IC 1%
IC
50
tdon
50
tEoff
VCE 90%
VGE10%
VCE
0
VCE
VCE3%
Ic10%
0
tEon
VGE
-50
-50
-100
-0,1
-0,05
0
0,05
0,1
0,15
-100
2,95
0,2
2,98
3,00
3,03
3,05
3,08
time (us)
VGE (0%) =
0
10
400
15
-0,48
0,17
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Figure 3
Turn-off Switching Waveforms & definition of tf
3,10
time(us)
BOOST MOSFET
0
10
400
15
0,02
0,05
V
V
V
A
μs
μs
Figure 4
Turn-on Switching Waveforms & definition of tr
125
BOOST MOSFET
220
fitted
%
100
Ic
%
IC
190
IC 90%
160
75
IC 60%
50
130
IC 40%
100
25
IC 90%
IC 10%
VCE
0
70
tf
-25
40
-50
10
-20
2,94
-75
0
VC (100%) =
IC (100%) =
tf =
VCE
0,05
0,1
400
15
0,02
Copyright by Vincotech
0,15
time (us)
0,2
VC (100%) =
V
A
μs
IC (100%) =
tr =
14
tr
IC 10%
2,98
400
15
0,01
3,02
3,06
time(us)
3,1
V
A
μs
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Switching Definitions Boost MOSFET
BOOST MOSFET
Figure 5
Turn-off Switching Waveforms & definition of tEoff
BOOST MOSFET
Figure 6
Turn-on Switching Waveforms & definition of tEon
200
250
Eoff
%
%
200
Pon
150
150
IC 1%
100
100
50
Eon
VGE 90%
50
Poff
0
tEoff
VGE 10%
-50
0
VCE 3%
tEon
-100
-150
-0,05
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,05
6,05
0,83
0,17
0,1
2,975
3,000
3,025
3,050
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BOOST MOSFET
Figure 7
Gate voltage vs Gate charge (measured)
VGE (V)
time (us)
-50
2,950
0,15
6,05
0,00
0,05
kW
mJ
μs
BOOST FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
20
%
15
Id
100
10
trr
50
5
Vd
0
IRRM 10%
0
-50
fitted
-5
IRRM 90%
-100
-10
-15
-100
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
IRRM 100%
-150
-50
0
50
0
10
V
V
400
15
143,53
V
A
nC
Copyright by Vincotech
100
Qg (nC)
2,9
150
2,95
3
3,05
3,1
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
15
400
15
V
A
-8
0,01
A
μs
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Switching Definitions Boost MOSFET
Figure 9
Turn-on Switching Waveforms & definition of tQrr
BOOST FWD
BOOST FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
(tQrr = integrating time for Qrr)
200
150
%
Erec
%
Id
100
150
tQrr
50
100
tErec
0
Qrr
50
-50
0
-100
-50
-150
3,0
Id (100%) =
Qrr (100%) =
tQrr =
3,0
15
0,06
0,06
Copyright by Vincotech
3,1
time(us)
Prec
-100
2,95
3,1
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
16
3
6,05
0,01
0,06
3,05
time(us)
3,1
kW
mJ
μs
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard in flow0 12mm housing
Ordering Code
10-FZ06NBA045FH-P915L
in DataMatrix as
in packaging barcode as
P915L
P915L
Outline
Pinout
Copyright by Vincotech
17
Revision: 6
10-FZ06NBA045FH-P915L
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
18
Revision: 6