10-FZ06NBA045FH-P915L preliminary datasheet flowBOOST0 600V/45mΩ Features flow0 12mm housing ● High efficiency symmetric boost ● Ultra fast switching frequency ● Low Inductance Layout ● Tandem to FZ06NIA045FH and FZ06NIA045FH01 Target Applications Schematic ● Neutral point solar inverters Types ● 10-FZ06NBA045FH-P915L Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Th=80°C Tc=80°C 43 58 A Tj=25°C 370 A Tj=150°C 370 A2s Th=80°C 49 75 W Tjmax 150 °C VDS 600 V 36 44 A 230 A 125 189 W Bypass Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM DC current tp=10ms I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Tc=80°C Input Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C Power dissipation Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax 1 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Th=80°C 23 Tc=80°C 29 A 70 A 51 77 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,10 1,05 0,90 0,78 0,007 0,009 1,3 Bypass Diode Forward voltage VF 15 Threshold voltage (for power loss calc. only) Vto 15 Slope resistance (for power loss calc. only) rt 15 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 1200 V Ω 0,1 Thermal grease thickness≤50um λ = 1 W/mK V 1,42 mA K/W Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage RDS(on) VCE=VGE 10 44 VGS=VGD V(GS)th 0,003 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgon=4 Ω Rgoff=4 Ω 10/0 400 400 10/0 15 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,1 0,042 0,083 3 Ω 3,9 200 25 20 19 5 6 132 144 240 86 0,077 0,081 0,027 0,026 150 V nA μA ns mWs 190 34 nC 51 6800 f=1MHz 0 320 Tj=25°C 100 pF 4,5 Thermal grease thickness≤50um λ = 1 W/mK 0,56 K/W Input Boost FWD Forward voltage VF Reverse leakage current Irm Peak recovery current trr Reverse recovery charge Qrr Reverse recovered energy Erec Thermal resistance chip to heatsink per chip Copyright by Vincotech 10/0 400 IRRM Reverse recovery time Peak rate of fall of recovery current 16 Rgon=4 Ω 10/0 400 di(rec)max /dt RthJH Thermal grease thickness≤50um λ = 1 W/mK 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,9 1,52 1,66 400 17 16 9 10 0,120 0,089 0,027 0,014 5076 4101 1,87 3 1,75 V μA A ns μC mWs A/μs K/W Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R100 DR/R Power dissipation P 22000 Tj=25°C R100=1486 Ω Tc=100°C Tj=25°C Power dissipation constant -5 Ω +5 % 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K B Vincotech NTC Reference Copyright by Vincotech 4 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet INPUT BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST MOSFET Figure 2 Typical output characteristics ID = f(VDS) IC(A) IC (A) 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VDS from 1 2 3 4 5 6 7 V CE (V) 0 8 1 At tp = Tj = VDS from 250 μs 25 °C 4 V to 14 V in steps of 1 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VDS) 2 3 4 5 6 V CE (V) 8 250 μs 125 °C 4 V to 14 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 25 7 IF (A) ID (A) 60 50 20 40 15 30 10 20 5 Tj = Tjmax-25°C 10 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VDS = 1 2 250 μs 10 V Copyright by Vincotech 3 4 V GS (V) 5 0 At tp = 5 1 250 2 3 V F (V) 4 μs Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet INPUT BOOST BOOST MOSFET Figure 5 Typical switching energy losses BOOST MOSFET Figure 6 Typical switching energy losses as a function of collector current E = f(ID) as a function of gate resistor E = f(RG) 0,15 Eon High T E (mWs) E (mWs) 0,30 Eon High T Eon Low T 0,25 Eoff High T Eoff Low T 0,12 Eon Low T 0,20 0,09 0,15 0,06 0,10 Eoff High T 0,03 0,05 Eoff Low T 0,00 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +10/0 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +10/0 V ID = 27 A BOOST MOSFET Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,05 BOOST MOSFET E (mWs) E (mWs) 0,06 Erec Low T 0,05 0,04 0,04 0,03 Erec Low T 0,03 0,02 Erec High T 0,02 Erec High T 0,01 0,01 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C 5 10 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VDS = 400 V VGS = Rgon = Rgoff = +10/0 4 V Ω VGS = ID = +10/0 27 V A 4 Ω Copyright by Vincotech 15 6 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet INPUT BOOST BOOST MOSFET Figure 9 Typical switching times as a BOOST MOSFET Figure 10 Typical switching times as a function of collector current t = f(ID) function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdoff 0,1 0,1 tdon tdon tr tf 0,01 0,01 tr 0,001 0,001 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = +10/0 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 125 °C VDS = 400 V VGS = +10/0 V IC = 27 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,015 t rr( μs) t rr( μs) 0,018 trr High T 0,015 0,012 trr Low T trr High T 0,012 trr Low T 0,009 0,009 0,006 0,006 0,003 0,003 0 0 0 At Tj = VDS = VGS = Rgon = 5 10 25/125 °C 400 +10/0 V V 4 Ω Copyright by Vincotech 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = 7 5 10 25/125 °C 400 27 V A +10/0 V 15 R Gon ( Ω ) 20 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a BOOST FWD Figure 14 Typical reverse recovery charge as a function of collector current Qrr = f(IC) function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,24 Qrr ( μC) Qrr ( μC) 0,2 Qrr Low T 0,15 0,18 Qrr Low T Qrr High T 0,1 0,12 Qrr High T 0,05 0,06 0 0,00 0 At At Tj = VDS = VGS = Rgon = 5 25/125 400 +10/0 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 5 25/125 400 27 +10/0 10 15 20 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 25 R Gon ( Ω) IrrM (A) IrrM (A) 40 IRRM Low T 20 30 IRRM High T 15 20 10 IRRM Low T 10 5 IRRM High T 0 0 0 5 At Tj = 10 VDS = 25/125 400 °C V VGS = Rgon = +10/0 4 V Ω Copyright by Vincotech 15 20 25 I C (A) 0 30 At Tj = 8 5 10 VR = 25/125 400 °C V IF = VGS = 27 +10/0 A V 15 R Gon ( Ω ) 20 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 direc / dt (A/ μs) direc / dt (A/ μs) 15000 12000 6000 9000 4000 6000 2000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 5 10 15 20 25 I C (A) 30 0 At Tj = dI0/dt 25/125 400 +10/0 4 °C V V Ω dIrec/dt VR = IF = VGS = BOOST MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 5 10 15 R Gon ( Ω) 20 dI0/dt 25/125 400 27 +10/0 °C V A V dIrec/dt BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 1 100 ZthJH (K/W) ZthJH (K/W) 10 0 10 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10-2 10 10 -5 10 At D= RthJH = -4 -3 10 -2 10 -1 10 0 10 t p (s) 10-5 1 101 At D= RthJH = tp / T 0,56 K/W Copyright by Vincotech MOSFET thermal model values 10-4 10-3 10-2 10-1 100 t p (s) tp / T 1,87 K/W FWD thermal model values R (C/W) 0,036 0,130 Tau (s) 8,58E+00 1,38E+00 R (C/W) 0,12 0,48 Tau (s) 1,72E+00 1,77E-01 0,229 0,088 2,24E-01 3,59E-02 0,59 0,49 3,82E-02 6,29E-03 0,026 0,052 4,98E-03 2,64E-04 0,18 1,17E-03 9 1011 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet INPUT BOOST BOOST MOSFET Figure 21 Power dissipation as a BOOST MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature Ptot = f(Th) function of heatsink temperature IC = f(Th) 300 IC (A) Ptot (W) 60 250 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 At Tj = VGS = ºC BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 o Th ( C) 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 35 IF (A) Ptot (W) 100 30 80 25 60 20 15 40 10 20 5 0 0 0 At Tj = 50 175 100 150 o T h ( C) 0 200 At Tj = ºC Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 ºC Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet INPUT BOOST BOOST MOSFET Figure 25 BOOST MOSFET Figure 26 Safe operating area as a function Gate voltage vs Gate charge of drain-source voltage ID = f(VDS) VGS = f(Qg) 3 10 ID (A) VGS (V) 10 9 8 120V 102 7 480V 6 10uS 1mS 10mS 100uS 101 5 4 DC 3 10 100mS 0 2 1 0 101 100 At D= Th = VGS = single pulse 80 ºC V +10/0 Tj = Tjmax 2 10 0 V DS (V) 25 50 75 100 125 150 Qg (nC) 103 At ID = 44 A ºC Copyright by Vincotech 11 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as Bypass diode Figure 2 Diode transient thermal impedance a function of forward voltage IF= f(VF) as a function of pulse width ZthJH = f(tp) 100 ZthJC (K/W) IF (A) 101 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0,5 1 1,5 V F (V) 10-2 2 t p (s) 10-5 At tp = At D= RthJH = μs 250 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 100 tp / T 1,42 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 120 1 Ptot (W) IF (A) 80 100 60 80 40 60 40 20 20 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 12 50 150 100 150 T h ( o C) 200 ºC Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic Thermistor Figure 2 Typical NTC resistance values as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 R/Ω R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 13 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Switching Definitions Boost MOSFET General conditions Tj Rgon Rgoff = = = BOOST MOSFET Figure 1 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 125 °C 4Ω 4Ω BOOST MOSFET Figure 2 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 200 VGE % IC % 150 150 tdoff 100 100 VGE 90% IC 1% IC 50 tdon 50 tEoff VCE 90% VGE10% VCE 0 VCE VCE3% Ic10% 0 tEon VGE -50 -50 -100 -0,1 -0,05 0 0,05 0,1 0,15 -100 2,95 0,2 2,98 3,00 3,03 3,05 3,08 time (us) VGE (0%) = 0 10 400 15 -0,48 0,17 VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Figure 3 Turn-off Switching Waveforms & definition of tf 3,10 time(us) BOOST MOSFET 0 10 400 15 0,02 0,05 V V V A μs μs Figure 4 Turn-on Switching Waveforms & definition of tr 125 BOOST MOSFET 220 fitted % 100 Ic % IC 190 IC 90% 160 75 IC 60% 50 130 IC 40% 100 25 IC 90% IC 10% VCE 0 70 tf -25 40 -50 10 -20 2,94 -75 0 VC (100%) = IC (100%) = tf = VCE 0,05 0,1 400 15 0,02 Copyright by Vincotech 0,15 time (us) 0,2 VC (100%) = V A μs IC (100%) = tr = 14 tr IC 10% 2,98 400 15 0,01 3,02 3,06 time(us) 3,1 V A μs Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Switching Definitions Boost MOSFET BOOST MOSFET Figure 5 Turn-off Switching Waveforms & definition of tEoff BOOST MOSFET Figure 6 Turn-on Switching Waveforms & definition of tEon 200 250 Eoff % % 200 Pon 150 150 IC 1% 100 100 50 Eon VGE 90% 50 Poff 0 tEoff VGE 10% -50 0 VCE 3% tEon -100 -150 -0,05 0 Poff (100%) = Eoff (100%) = tEoff = 0,05 6,05 0,83 0,17 0,1 2,975 3,000 3,025 3,050 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs BOOST MOSFET Figure 7 Gate voltage vs Gate charge (measured) VGE (V) time (us) -50 2,950 0,15 6,05 0,00 0,05 kW mJ μs BOOST FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 20 % 15 Id 100 10 trr 50 5 Vd 0 IRRM 10% 0 -50 fitted -5 IRRM 90% -100 -10 -15 -100 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = IRRM 100% -150 -50 0 50 0 10 V V 400 15 143,53 V A nC Copyright by Vincotech 100 Qg (nC) 2,9 150 2,95 3 3,05 3,1 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 15 400 15 V A -8 0,01 A μs Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Switching Definitions Boost MOSFET Figure 9 Turn-on Switching Waveforms & definition of tQrr BOOST FWD BOOST FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) (tQrr = integrating time for Qrr) 200 150 % Erec % Id 100 150 tQrr 50 100 tErec 0 Qrr 50 -50 0 -100 -50 -150 3,0 Id (100%) = Qrr (100%) = tQrr = 3,0 15 0,06 0,06 Copyright by Vincotech 3,1 time(us) Prec -100 2,95 3,1 Prec (100%) = Erec (100%) = tErec = A μC μs 16 3 6,05 0,01 0,06 3,05 time(us) 3,1 kW mJ μs Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard in flow0 12mm housing Ordering Code 10-FZ06NBA045FH-P915L in DataMatrix as in packaging barcode as P915L P915L Outline Pinout Copyright by Vincotech 17 Revision: 6 10-FZ06NBA045FH-P915L preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 18 Revision: 6