10-PY06NRA021FS-M410FY Maximum Ratings

10-PY06NRA021FS-M410FY
datasheet
flowNPC1
1200V/22mΩ
Features
flow1 12mm housing
● neutral point clamped inverter
● reactive power capability
● SiC buck diode
● clip-in pcb mounting
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-PY06NRA021FS-M410FY
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Tj=25°C
600
V
Tj=Tjmax
47
59
A
tp limited by Tjmax
544
A
108
164
W
±20/±30
V
150
°C
1200
V
Out Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Power dissipation
Ptot
Tj=Tjmax
Gate-source peak voltage
VGS
static/AC (f>1 Hz)
Maximum Junction Temperature
Tjmax
Out Boost FWD
Peak Repetitive Reverse Voltage
VRRM
Tj=25°C
IF
Tj=Tjmax
Surge Peak Forward Current
IFSM
10 ms
sin 180°
Power dissipation
Ptot
Tj=Tjmax
DC forward current
Maximum Junction Temperature
copyright Vincotech
Tj=25°C
Tj=150°C
Tjmax
24
28
170
170
58
87
175
1
A
A
W
°C
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Tc=80°C
24
32
A
Tc=25°C
201
A
39
58
W
Tjmax
175
°C
VDS
600
V
Buck FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tP=10 ms, Half Sine Wave, D=0.3
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
47
59
A
tp limited by Tjmax
Tc=25°C
544
A
Th=80°C
108
Tc=80°C
164
Power dissipation
Ptot
Tj=Tjmax
Gate-source peak voltage
Vgs
static/AC (f>1 Hz)
W
±20/±30
V
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
2,4
20,8
41,2
3
3,6
Out Boost MOSFET
Static drain to source ON resistance
RDS(on)
Gate threshold voltage
V(GS)th
60
10
VGS=VDS
0,00296
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Rgoff=2 Ω
Rgon=2 Ω
10
400
0 to 10
480
30
89
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
mΩ
200
10
49,2
49,6
11,4
14,6
267,6
327,8
13,8
16,8
0,2768
0,4834
0,2285
0,3298
580
V
nA
µA
ns
mWs
72
nC
300
13060
pF
Gate resistor
f=1MHz
0
100
Tj=25°C
rG
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
720
Ω
0,35
Thermal grease
thickness≤50um
λ = 1 W/mK
0,65
K/W
0,43
Out Boost FWD
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Peak rate of fall of recovery current
35
1200
Rgon=2 Ω
10
400
30
Erec
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
2,51
2,68
V
60
5500
87,9
94,4
28,6
91,0
2,69
4,73
0,89
1,58
9484
6335
µA
A
ns
µC
mWs
A/µs
1,65
K/W
1,09
Buck FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
VF
IRRM
trr
Qrr
Ron=2 Ω
10
400
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright Vincotech
30
Thermal grease
thickness≤50um
λ = 1 W/mK
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,43
1,59
24
21
12
13
0,172
0,221
6880
4288
0,023
0,044
V
A
ns
µC
A/µs
mWs
2,46
K/W
1,62
3
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
2,4
21
41
3
3,6
Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Rds(on)
10
60
VDS=VGS
V(GS)th
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0,0005
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Rgoff=2 Ω
Rgon=2 Ω
10
400
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
mΩ
200
10000
31
30
8,2
9
224
246
12
46
0,191
0,209
0,126
0,162
V
nA
nA
ns
mWs
580
0 to 10
480
89
Tj=25°C
72
nC
300
13060
pF
Gate resistor
f=1MHz
0
100
720
Tj=25°C
rG
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Ω
0,35
Thermal grease
thickness≤50um
λ = 1 W/mK
0,65
K/W
0,43
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
copyright Vincotech
-5
5
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
Tj=25°C
3950
K
Tj=25°C
3996
Tj=25°C
4
Ω
22000
K
B
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
BUCK
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
180
IC (A)
180
150
150
120
120
90
90
60
60
30
30
0
0
0
2
At
tp =
Tj =
VGE from
4
6
8
VCE (V)
10
0
At
tp =
Tj =
VGE from
µs
250
25
°C
0 V to 20 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
4
6
8
250
µs
125
°C
0 V to 20 V in steps of 2 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Tj = Tjmax-25°C
IF (A)
90
IC (A)
60
10
VCE (V)
Tj = 25°C
50
Tj = 25°C
75
Tj = Tjmax-25°C
40
60
30
45
20
30
10
15
0
0
0
At
tp =
VCE =
1
250
10
copyright Vincotech
2
3
4
5
VGE (V)
6
0
At
tp =
µs
V
5
0,5
250
1
1,5
2
2,5
3
VF (V)
3,5
µs
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
BUCK
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,6
E (mWs)
E (mWs)
0,5
Eon High T
Eon Low T
0,5
0,4
Eoff High T
Eon Low T
0,4
0,3
Eoff Low T
Eon High T
0,3
0,2
0,2
Eoff Low T
0,1
0,1
Eoff High T
0
0
0
10
20
30
40
50
0
60
IC(A)
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
RG(W)
10
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
A
30
FWD
Figure 7
Typical reverse recovery energy loss
FWD
Figure 8
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
as a function of gate resistor
Erec = f(RG)
0,05
E (mWs)
0,05
E (mWs)
Erec High T
0,04
0,04
Erec High T
0,03
0,03
Erec Low T
Erec Low T
0,02
0,02
0,01
0,01
0,00
0
0
10
20
30
40
50
IC(A)
60
0
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
2
Ω
copyright Vincotech
2
4
6
8
RG(W)
10
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
IC =
30
A
6
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
BUCK
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t (ms)
1,00
t (ms)
1,00
tdoff
0,10
tdoff
0,10
tdon
tdon
tr
0,01
0,01
tr
0,00
0,00
0
10
20
30
40
50
IC(A)
60
0
With an inductive load at
Tj =
°C
125
VCE =
400
V
VGE =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
10
RG(W)
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
A
30
FWD
Figure 11
Typical reverse recovery time as a
FWD
Figure 12
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,020
t rr(ms)
t rr(ms)
0,020
0,016
0,016
trr High T
trr High T
trr Low T
0,012
0,012
trr Low T
0,008
0,008
0,004
0,004
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
copyright Vincotech
20
30
40
50
IC(A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
2
25/125
400
30
10
4
6
8
Rgon(W)
10
°C
V
A
V
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
BUCK
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,30
Qrr (mC)
Qrr (mC)
0,3
0,25
0,25
Qrr High T
0,20
0,2
Qrr High T
Qrr Low T
0,15
0,15
0,10
0,1
0,05
0,05
0,00
At
At
Tj =
VCE =
VGE =
Rgon =
Qrr Low T
0
0
10
25/125
400
10
2
20
30
40
50
60
IC(A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
2
25/125
400
30
10
4
6
8
Rgon(Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
40
IrrM (A)
30
IRRM Low T
25
32
IRRM High T
20
24
15
16
IRRM Low T
IRRM High T
10
8
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
copyright Vincotech
20
30
40
50
IC(A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
2
25/125
400
30
10
4
6
8
Rgon(W)
10
°C
V
A
V
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
BUCK
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
12000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
7000
dIrec/dtLow T
di0/dtHigh T
dIrec/dtLow T
10000
6000
8000
dIo/dtLow T
5000
4000
dIrec/dtHigh T
6000
dIrec/dtHigh T
3000
4000
2000
dI0/dtHigh T
2000
dI0/dtLow T
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
IC(A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
MOSFET transient thermal impedance
8
10
Rgon(W)
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-4
10-3
10-2
10-1
100
tp (s)
10-5
1021
At
D=
RthJH =
tp / T
0,65
K/W
RthJH =
0,55
K/W
MOSFET thermal model values
Thermal grease
Phase change interface
R (C/W)
0,12
0,20
0,28
0,05
0,01
6
as a function of pulse width
ZthJH = f(tp)
101
At
D=
RthJH =
25/125
400
30
10
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10-5
2
Tau (s)
2,641
0,608
0,200
0,027
0,004
copyright Vincotech
R (C/W)
0,10
0,17
0,23
0,04
0,01
10-4
R (C/W)
0,31
0,96
0,44
0,37
0,28
0,10
9
10-2
10-1
100
tp (s)
1021
tp / T
2,46
Thermal grease
Tau (s)
2,245
0,517
0,170
0,023
0,004
10-3
K/W
RthJH =
2,09
K/W
FWD thermal model values
Phase change interface
Tau (s)
0,946
0,184
0,063
0,013
0,003
0,001
R (C/W)
0,27
0,82
0,38
0,32
0,24
0,08
Tau (s)
0,804
0,156
0,053
0,011
0,002
0,000
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
BUCK
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
Ptot (W)
IC (A)
250
70
200
60
50
150
40
100
30
20
50
10
0
0
0
At
Tj =
50
100
150
Th (oC)
200
0
At
Tj =
VGE =
°C
150
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
15
100
150
Th (oC)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
80
60
30
40
20
20
10
0
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
Th (oC)
200
0
At
Tj =
°C
10
50
175
100
150
Th (oC)
200
°C
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
BUCK
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
VGE (V)
IC (A)
8
100uS
7
1mS
102
120V
480V
6
100mS
10mS
5
101
4
DC
100
3
2
10-1
1
0
100
At
D=
Th =
VGE =
Tj =
101
102
VCE(V)
0
103
At
IC =
single pulse
80
ºC
10
V
Tjmax
ºC
copyright Vincotech
11
100
89
200
A
300
400
500
Qg (nC)
600
pulsed
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
OUTPUT BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
IC (A)
180
IC(A)
180
150
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGS from
2
4
6
8
VCE (V)
10
0
At
tp =
Tj =
VGS from
µs
250
25
°C
0 V to 20 V in steps of 2 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGS)
2
4
6
8
10
250
µs
126
°C
0 V to 20 V in steps of 2 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IF (A)
90
ID (A)
60
VCE (V)
Tj = Tjmax-25°C
50
Tj = 25°C
75
Tj = 25°C
Tj = Tjmax-25°C
40
60
30
45
20
30
10
15
0
0
0
At
tp =
VDS =
1
250
12
copyright Vincotech
2
3
4
5
VGS (V)
6
0
At
tp =
µs
V
12
1
250
2
3
4
VF (V)
5
µs
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
OUTPUT BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
E (mWs)
1
E (mWs)
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
0,8
1
Eon High T
Eoff High T
0,8
Eon High T
0,6
0,6
Eoff Low T
0,4
0,4
Eon Low T
Eon Low T
0,2
0,2
Eoff Low T
0
0
0
10
20
30
40
50
60
0
2
4
6
8
IC(A)
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
A
30
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
E (mWs)
2,5
E (mWs)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
Erec High T
2
2
1,6
1,5
1,2
Erec High T
Erec Low T
0,8
1
Erec Low T
0,4
0,5
0
0
0
10
20
30
40
50
IC(A)
0
60
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
copyright Vincotech
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
30
A
13
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
OUTPUT BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t (µs)
t (µs)
1
tdoff
0,1
0,1
tdon
tdon
tf
tf
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
ID (A)
60
0
With an inductive load at
Tj =
°C
125
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
A
30
BOOST FWD
Figure 11
Typical reverse recovery time as a
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
function of IGBT turn on gate resistor
trr = f(Rgon)
0,2
t rr(µs)
t rr(µs)
0,1
trr High T
0,08
0,15
0,06
trr High T
0,1
trr Low T
0,04
trr Low T
0,05
0,02
0
0
0
10
20
30
40
50
60
0
2
4
IC (A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
2
copyright Vincotech
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
14
25/125
400
30
10
6
8
RGon(Ω )
10
°C
V
A
V
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
OUTPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
7,5
Qrr (µC)
Qrr (µC)
6
Qrr High T
5
6
Qrr High T
4
4,5
Qrr Low T
3
Qrr Low T
3
2
1,5
1
0
0
0
10
At
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
400
10
2
30
40
50
IC (A)
0
60
2
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
400
30
10
6
8
10
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
150
IrrM (A)
IrrM (A)
150
RGon(Ω)
120
120
IRRM High T
90
90
IRRM High T
IRRM Low T
60
60
IRRM Low T
30
30
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
copyright Vincotech
20
30
40
50
IC (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
15
2
25/125
400
30
10
4
6
8
RGon(Ω )
10
°C
V
A
V
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
OUTPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
20000
dI0/dt
direc / dt (A/µs)
direc / dt (A/µs)
12000
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
dIrec/dt
10000
dI0/dt
dIrec/dtLow T
dIrec/dt
16000
8000
dIrec/dtHigh T
12000
dIrec/dtHigh T
di0/dtLow T
6000
8000
di0/dtHigh T
4000
4000
2000
dI0/dtLow T
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
40
50
IC (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/125
400
30
10
4
6
8
10
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
RGon(Ω)
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
tp (s)
1021
10-5
At
D=
RthJH =
tp / T
0,65
K/W
RthJH =
0,55
K/W
MOSFET thermal model values
Thermal grease
Phase change interface
R (C/W)
0,12
0,20
0,28
0,05
0,01
0,21
Tau (s)
2,641
0,608
0,200
0,027
0,004
0,003
copyright Vincotech
R (C/W)
0,10
0,17
0,23
0,04
0,01
0,18
10-4
R (C/W)
0,05
0,28
0,79
0,25
0,17
0,12
16
10-2
10-1
100
tp (s)
1021
tp / T
1,65
Thermal grease
Tau (s)
2,245
0,517
0,170
0,023
0,004
0,003
10-3
K/W
RthJH =
1,40
K/W
FWD thermal model values
Phase change interface
Tau (s)
4,87
0,58
0,14
0,03
0,01
0,00
R (C/W)
0,04
0,24
0,67
0,21
0,15
0,10
Tau (s)
4,142
0,495
0,118
0,028
0,006
0,001
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
OUTPUT BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
250
IC (A)
Ptot (W)
80
70
200
60
50
150
40
100
30
20
50
10
0
0
0
At
Tj =
50
100
150
Th (oC)
200
0
At
Tj =
VGS =
ºC
150
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IF (A)
Ptot (W)
150
10
100
150
200
BOOST FWD
40
105
35
90
30
75
25
60
20
45
15
30
10
15
5
0
Th (oC)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
120
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
Th (oC)
200
0
At
Tj =
ºC
17
50
175
100
150
Th (oC)
200
ºC
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
OUTPUT BOOST
BOOST MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
103
UGE
V
(V)
GS (V)
816
IC (A)
ID (A)
BOOST MOSFET
Figure 26
Gate voltage vs Gate charge
100uS
714
1mS
102
120V
612
10uS10mS
100mS
1mS
480V
480V
510
101
100mS
120V
48
DC
100uS
10mS
100
36
DC
24
10-1
12
0
100
At
D=
Th =
VGE =
Tj =
100
101
101
102
102
103
V
(V)
DS (V)
VCE
103
At
IC =
single pulse
80
ºC
10
V
Tjmax
ºC
copyright Vincotech
0
0
18
0
100
89
50
200
A
100
300
150
400
500
600
200
g (nC)250
Qg Q
(nC)
pulsed
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Thermistor
Thermistor
R/Ω
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
BUCK MOSFET
Figure 1
BUCK MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
140
IC
120
tdoff
150
100
VGE 90%
IC
80
100
%
VGE
60
%
VCE 90%
40
tEoff
tdon
VCE
IC 1%
VGE
50
20
IC10%
VCE
VGE10%
0
0
-20
VCE5%
tEon
-40
-0,1
-50
0
0,1
0,2
0,3
0,4
2,9
2,95
3
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
10
800
30
0,25
0,26
3,05
3,1
3,15
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
BUCK MOSFET
Figure 3
0
10
800
30
0,03
0,06
V
V
V
A
µs
µs
BUCK MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
120
200
IC
Ic
100
175
IC 90%
150
80
125
IC 60%
60
%
%
IC 40%
40
100
IC90%
75
tr
VCE
50
20
25
IC10%
VCE
IC10%
0
-20
0,15
0
tf
0,19
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,23
0,27
800
30
0,046
V
A
µs
fitted
0,31
0,35
-25
2,95
0,39
time (us)
2,975
3
3,025
3,05
3,075
3,1
time(us)
VC (100%) =
IC (100%) =
tr =
20
800
30
0,009
V
A
µs
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Switching Definitions BUCK MOSFET
BUCK MOSFET
Figure 5
BUCK MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
%
Eon
%
Eoff
100
100
80
80
60
60
40
Pon
40
Poff
20
20
VGE90%
VCE3%
VGE10%
IC 1%
0
0
tEon
tEoff
-20
-0,1
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
24,06
0,16
0,26
0,3
time (us)
-20
2,95
0,4
2,975
3,025
3,05
3,075
3,1
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
BUCK MOSFET
Figure 7
Gate voltage vs Gate charge (measured)
3
24,06
0,21
0,06
kW
mJ
µs
BUCK FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
15
120
Id
80
trr
10
VGE (V)
40
Vd
%
5
0
IRRM10%
-40
IRRM90%
IRRM100%
0
-80
fitted
-5
-120
-50
0
50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
100
0
10
800
30
347,26
150
200
250
300
350
400
Qg (nC)
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
3,02
3,04
800
30
-21
0,013
3,06
3,08
time(us)
3,1
V
A
A
µs
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Switching Definitions BUCK MOSFET
BUCK FWD
Figure 9
BUCK FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
140
150
Qrr
Id
Erec
100
100
tQrr
50
tErec
%
%
60
0
20
-50
Prec
-100
2,95
3
3,05
3,1
3,15
3,2
-20
2,95
3,25
3
3,05
3,1
3,15
3,2
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
30
0,22
0,03
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
24,06
0,04
0,03
kW
mJ
µs
25 oC
copyright Vincotech
3,25
time(us)
22
125 oC
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Switching Definitions BOOST MOSFET
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
BOOST MOSFET
Figure 1
BOOST MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
450
140
120
IC
400
tdoff
100
350
IC
300
80
60
250
%
VGE
VCE 90%
tEoff
% 40
200
IC 1%
VGE
VCE
150
20
VCE
0
100
-20
50
-40
0
IC10%
tdon
VGE10%
-60
-0,1
VCE5%
tEon
-50
0
0,1
0,2
0,3
0,4
2,9
2,95
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
10
800
30
0,33
0,35
3,05
3,1
3,15
time(us)
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
BOOST MOSFET
Figure 3
0
10
800
30
0,05
0,08
V
V
V
A
µs
µs
BOOST MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
120
425
IC
100
Ic
375
IC 90%
325
80
275
IC 60%
60
%
%
IC 40%
40
225
175
125
20
75
IC10%
VCE
0
tf
tr
VCE
25
IC90%
IC10%
fitted
-20
0,19
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,23
0,27
800
30
0,02
0,31
time (us)
-25
2,95
0,35
2,975
3
3,025
3,05
3,075
3,1
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
23
800
30
0,02
V
A
µs
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Switching Definitions BOOST MOSFET
BOOST MOSFET
Figure 5
BOOST MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
%
Eon
%
Eoff
100
100
80
80
60
60
40
Pon
40
Poff
20
20
VGE90%
VCE3%
VGE10%
IC 1%
0
0
tEon
tEoff
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
23,95
0,33
0,35
0,2
0,3
time (us)
-20
2,95
0,4
2,975
3
3,05
3,075
3,1
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
BOOST MOSFET
Figure 7
Gate voltage vs Gate charge (measured)
3,025
23,95
0,48
0,08
kW
mJ
µs
BOOST FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
15
120
60
trr
Id
10
0
IRRM10%
-60
5
VGE (V)
Vd
%-120
0
-180
-240
-5
IRRM90%
fitted
-300
-10
-200
-100
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
0
0
10
800
30
373,03
100
200
-360
2,95
300
400
Qg (nC)
IRRM100%
3
3,05
3,1
3,15
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
800
30
-94
0,09
V
A
A
µs
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Switching Definitions BOOST MOSFET
BOOST FWD
Figure 9
BOOST FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
180
150
Id
Qrr
100
140
tQrr
50
Erec
0
100
%
%-50
tErec
60
-100
-150
20
-200
Prec
-20
-250
2,9
3
3,1
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,2
3,3
30
4,73
1,00
3,4
3,5
3,6
3,7
3,8
3,9
4
2,9
4,1 4,2
time(us)
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
25
3,1
3,2
3,3
3,4
23,95
1,58
1,00
3,5
3,6
3,7
3,8
3,9
4
4,1 4,2
time(us)
kW
mJ
µs
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-PY06NRA021FS-M410FY
in DataMatrix as
M410FY
in packaging barcode as
M410FY
Outline
Pinout
copyright Vincotech
26
Revision: 3
10-PY06NRA021FS-M410FY
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
27
Revision: 3