10-PY06NRA021FS-M410FY datasheet flowNPC1 1200V/22mΩ Features flow1 12mm housing ● neutral point clamped inverter ● reactive power capability ● SiC buck diode ● clip-in pcb mounting ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-PY06NRA021FS-M410FY Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Tj=25°C 600 V Tj=Tjmax 47 59 A tp limited by Tjmax 544 A 108 164 W ±20/±30 V 150 °C 1200 V Out Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Power dissipation Ptot Tj=Tjmax Gate-source peak voltage VGS static/AC (f>1 Hz) Maximum Junction Temperature Tjmax Out Boost FWD Peak Repetitive Reverse Voltage VRRM Tj=25°C IF Tj=Tjmax Surge Peak Forward Current IFSM 10 ms sin 180° Power dissipation Ptot Tj=Tjmax DC forward current Maximum Junction Temperature copyright Vincotech Tj=25°C Tj=150°C Tjmax 24 28 170 170 58 87 175 1 A A W °C Revision: 3 10-PY06NRA021FS-M410FY datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Tc=80°C 24 32 A Tc=25°C 201 A 39 58 W Tjmax 175 °C VDS 600 V Buck FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Repetitive peak forward current IFRM tP=10 ms, Half Sine Wave, D=0.3 Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 47 59 A tp limited by Tjmax Tc=25°C 544 A Th=80°C 108 Tc=80°C 164 Power dissipation Ptot Tj=Tjmax Gate-source peak voltage Vgs static/AC (f>1 Hz) W ±20/±30 V Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 3 10-PY06NRA021FS-M410FY datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 2,4 20,8 41,2 3 3,6 Out Boost MOSFET Static drain to source ON resistance RDS(on) Gate threshold voltage V(GS)th 60 10 VGS=VDS 0,00296 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Rgoff=2 Ω Rgon=2 Ω 10 400 0 to 10 480 30 89 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C mΩ 200 10 49,2 49,6 11,4 14,6 267,6 327,8 13,8 16,8 0,2768 0,4834 0,2285 0,3298 580 V nA µA ns mWs 72 nC 300 13060 pF Gate resistor f=1MHz 0 100 Tj=25°C rG Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 720 Ω 0,35 Thermal grease thickness≤50um λ = 1 W/mK 0,65 K/W 0,43 Out Boost FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Peak rate of fall of recovery current 35 1200 Rgon=2 Ω 10 400 30 Erec di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK 2,51 2,68 V 60 5500 87,9 94,4 28,6 91,0 2,69 4,73 0,89 1,58 9484 6335 µA A ns µC mWs A/µs 1,65 K/W 1,09 Buck FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy VF IRRM trr Qrr Ron=2 Ω 10 400 di(rec)max /dt Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright Vincotech 30 Thermal grease thickness≤50um λ = 1 W/mK 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,43 1,59 24 21 12 13 0,172 0,221 6880 4288 0,023 0,044 V A ns µC A/µs mWs 2,46 K/W 1,62 3 Revision: 3 10-PY06NRA021FS-M410FY datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 2,4 21 41 3 3,6 Buck MOSFET Static drain to source ON resistance Gate threshold voltage Rds(on) 10 60 VDS=VGS V(GS)th Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time 0,0005 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Rgoff=2 Ω Rgon=2 Ω 10 400 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C mΩ 200 10000 31 30 8,2 9 224 246 12 46 0,191 0,209 0,126 0,162 V nA nA ns mWs 580 0 to 10 480 89 Tj=25°C 72 nC 300 13060 pF Gate resistor f=1MHz 0 100 720 Tj=25°C rG Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Ω 0,35 Thermal grease thickness≤50um λ = 1 W/mK 0,65 K/W 0,43 Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% Vincotech NTC Reference copyright Vincotech -5 5 % Tj=25°C 200 mW Tj=25°C 2 mW/K Tj=25°C 3950 K Tj=25°C 3996 Tj=25°C 4 Ω 22000 K B Revision: 3 10-PY06NRA021FS-M410FY datasheet BUCK MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) IC (A) 180 IC (A) 180 150 150 120 120 90 90 60 60 30 30 0 0 0 2 At tp = Tj = VGE from 4 6 8 VCE (V) 10 0 At tp = Tj = VGE from µs 250 25 °C 0 V to 20 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 2 4 6 8 250 µs 125 °C 0 V to 20 V in steps of 2 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) Tj = Tjmax-25°C IF (A) 90 IC (A) 60 10 VCE (V) Tj = 25°C 50 Tj = 25°C 75 Tj = Tjmax-25°C 40 60 30 45 20 30 10 15 0 0 0 At tp = VCE = 1 250 10 copyright Vincotech 2 3 4 5 VGE (V) 6 0 At tp = µs V 5 0,5 250 1 1,5 2 2,5 3 VF (V) 3,5 µs Revision: 3 10-PY06NRA021FS-M410FY datasheet BUCK MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,6 E (mWs) E (mWs) 0,5 Eon High T Eon Low T 0,5 0,4 Eoff High T Eon Low T 0,4 0,3 Eoff Low T Eon High T 0,3 0,2 0,2 Eoff Low T 0,1 0,1 Eoff High T 0 0 0 10 20 30 40 50 0 60 IC(A) With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 RG(W) 10 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = A 30 FWD Figure 7 Typical reverse recovery energy loss FWD Figure 8 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) as a function of gate resistor Erec = f(RG) 0,05 E (mWs) 0,05 E (mWs) Erec High T 0,04 0,04 Erec High T 0,03 0,03 Erec Low T Erec Low T 0,02 0,02 0,01 0,01 0,00 0 0 10 20 30 40 50 IC(A) 60 0 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 2 Ω copyright Vincotech 2 4 6 8 RG(W) 10 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V IC = 30 A 6 Revision: 3 10-PY06NRA021FS-M410FY datasheet BUCK MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) t (ms) 1,00 t (ms) 1,00 tdoff 0,10 tdoff 0,10 tdon tdon tr 0,01 0,01 tr 0,00 0,00 0 10 20 30 40 50 IC(A) 60 0 With an inductive load at Tj = °C 125 VCE = 400 V VGE = 10 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 10 RG(W) With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = A 30 FWD Figure 11 Typical reverse recovery time as a FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of MOSFET turn on gate resistor trr = f(Rgon) 0,020 t rr(ms) t rr(ms) 0,020 0,016 0,016 trr High T trr High T trr Low T 0,012 0,012 trr Low T 0,008 0,008 0,004 0,004 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 copyright Vincotech 20 30 40 50 IC(A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 7 2 25/125 400 30 10 4 6 8 Rgon(W) 10 °C V A V Revision: 3 10-PY06NRA021FS-M410FY datasheet BUCK FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,30 Qrr (mC) Qrr (mC) 0,3 0,25 0,25 Qrr High T 0,20 0,2 Qrr High T Qrr Low T 0,15 0,15 0,10 0,1 0,05 0,05 0,00 At At Tj = VCE = VGE = Rgon = Qrr Low T 0 0 10 25/125 400 10 2 20 30 40 50 60 IC(A) 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a 2 25/125 400 30 10 4 6 8 Rgon(Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 function of MOSFET turn on gate resistor IRRM = f(Rgon) IrrM (A) 40 IrrM (A) 30 IRRM Low T 25 32 IRRM High T 20 24 15 16 IRRM Low T IRRM High T 10 8 5 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 copyright Vincotech 20 30 40 50 IC(A) 0 60 At Tj = VR = IF = VGE = °C V V Ω 8 2 25/125 400 30 10 4 6 8 Rgon(W) 10 °C V A V Revision: 3 10-PY06NRA021FS-M410FY datasheet BUCK FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 12000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 7000 dIrec/dtLow T di0/dtHigh T dIrec/dtLow T 10000 6000 8000 dIo/dtLow T 5000 4000 dIrec/dtHigh T 6000 dIrec/dtHigh T 3000 4000 2000 dI0/dtHigh T 2000 dI0/dtLow T 1000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 IC(A) 60 0 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 MOSFET transient thermal impedance 8 10 Rgon(W) °C V A V FWD ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-4 10-3 10-2 10-1 100 tp (s) 10-5 1021 At D= RthJH = tp / T 0,65 K/W RthJH = 0,55 K/W MOSFET thermal model values Thermal grease Phase change interface R (C/W) 0,12 0,20 0,28 0,05 0,01 6 as a function of pulse width ZthJH = f(tp) 101 At D= RthJH = 25/125 400 30 10 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 10-5 2 Tau (s) 2,641 0,608 0,200 0,027 0,004 copyright Vincotech R (C/W) 0,10 0,17 0,23 0,04 0,01 10-4 R (C/W) 0,31 0,96 0,44 0,37 0,28 0,10 9 10-2 10-1 100 tp (s) 1021 tp / T 2,46 Thermal grease Tau (s) 2,245 0,517 0,170 0,023 0,004 10-3 K/W RthJH = 2,09 K/W FWD thermal model values Phase change interface Tau (s) 0,946 0,184 0,063 0,013 0,003 0,001 R (C/W) 0,27 0,82 0,38 0,32 0,24 0,08 Tau (s) 0,804 0,156 0,053 0,011 0,002 0,000 Revision: 3 10-PY06NRA021FS-M410FY datasheet BUCK MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 Ptot (W) IC (A) 250 70 200 60 50 150 40 100 30 20 50 10 0 0 0 At Tj = 50 100 150 Th (oC) 200 0 At Tj = VGE = °C 150 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 15 100 150 Th (oC) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 80 60 30 40 20 20 10 0 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 Th (oC) 200 0 At Tj = °C 10 50 175 100 150 Th (oC) 200 °C Revision: 3 10-PY06NRA021FS-M410FY datasheet BUCK MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 VGE (V) IC (A) 8 100uS 7 1mS 102 120V 480V 6 100mS 10mS 5 101 4 DC 100 3 2 10-1 1 0 100 At D= Th = VGE = Tj = 101 102 VCE(V) 0 103 At IC = single pulse 80 ºC 10 V Tjmax ºC copyright Vincotech 11 100 89 200 A 300 400 500 Qg (nC) 600 pulsed Revision: 3 10-PY06NRA021FS-M410FY datasheet OUTPUT BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST MOSFET Figure 2 Typical output characteristics ID = f(VDS) IC (A) 180 IC(A) 180 150 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGS from 2 4 6 8 VCE (V) 10 0 At tp = Tj = VGS from µs 250 25 °C 0 V to 20 V in steps of 2 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VGS) 2 4 6 8 10 250 µs 126 °C 0 V to 20 V in steps of 2 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IF (A) 90 ID (A) 60 VCE (V) Tj = Tjmax-25°C 50 Tj = 25°C 75 Tj = 25°C Tj = Tjmax-25°C 40 60 30 45 20 30 10 15 0 0 0 At tp = VDS = 1 250 12 copyright Vincotech 2 3 4 5 VGS (V) 6 0 At tp = µs V 12 1 250 2 3 4 VF (V) 5 µs Revision: 3 10-PY06NRA021FS-M410FY datasheet OUTPUT BOOST BOOST MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) E (mWs) 1 E (mWs) BOOST MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 0,8 1 Eon High T Eoff High T 0,8 Eon High T 0,6 0,6 Eoff Low T 0,4 0,4 Eon Low T Eon Low T 0,2 0,2 Eoff Low T 0 0 0 10 20 30 40 50 60 0 2 4 6 8 IC(A) With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = A 30 BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) E (mWs) 2,5 E (mWs) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Erec High T 2 2 1,6 1,5 1,2 Erec High T Erec Low T 0,8 1 Erec Low T 0,4 0,5 0 0 0 10 20 30 40 50 IC(A) 0 60 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω copyright Vincotech 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 30 A 13 Revision: 3 10-PY06NRA021FS-M410FY datasheet OUTPUT BOOST BOOST MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t (µs) t (µs) 1 tdoff 0,1 0,1 tdon tdon tf tf tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 ID (A) 60 0 With an inductive load at Tj = °C 125 VDS = 400 V VGS = 10 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = A 30 BOOST FWD Figure 11 Typical reverse recovery time as a BOOST FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of IGBT turn on gate resistor trr = f(Rgon) 0,2 t rr(µs) t rr(µs) 0,1 trr High T 0,08 0,15 0,06 trr High T 0,1 trr Low T 0,04 trr Low T 0,05 0,02 0 0 0 10 20 30 40 50 60 0 2 4 IC (A) At Tj = VCE = VGE = Rgon = 25/125 400 10 2 copyright Vincotech At Tj = VR = IF = VGS = °C V V Ω 14 25/125 400 30 10 6 8 RGon(Ω ) 10 °C V A V Revision: 3 10-PY06NRA021FS-M410FY datasheet OUTPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 7,5 Qrr (µC) Qrr (µC) 6 Qrr High T 5 6 Qrr High T 4 4,5 Qrr Low T 3 Qrr Low T 3 2 1,5 1 0 0 0 10 At At Tj = VCE = VGE = Rgon = 20 25/125 400 10 2 30 40 50 IC (A) 0 60 2 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 400 30 10 6 8 10 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 150 IrrM (A) IrrM (A) 150 RGon(Ω) 120 120 IRRM High T 90 90 IRRM High T IRRM Low T 60 60 IRRM Low T 30 30 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 copyright Vincotech 20 30 40 50 IC (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω 15 2 25/125 400 30 10 4 6 8 RGon(Ω ) 10 °C V A V Revision: 3 10-PY06NRA021FS-M410FY datasheet OUTPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 20000 dI0/dt direc / dt (A/µs) direc / dt (A/µs) 12000 BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T dIrec/dt 10000 dI0/dt dIrec/dtLow T dIrec/dt 16000 8000 dIrec/dtHigh T 12000 dIrec/dtHigh T di0/dtLow T 6000 8000 di0/dtHigh T 4000 4000 2000 dI0/dtLow T dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 400 10 2 20 30 40 50 IC (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω BOOST MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/125 400 30 10 4 6 8 10 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 RGon(Ω) 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 tp (s) 1021 10-5 At D= RthJH = tp / T 0,65 K/W RthJH = 0,55 K/W MOSFET thermal model values Thermal grease Phase change interface R (C/W) 0,12 0,20 0,28 0,05 0,01 0,21 Tau (s) 2,641 0,608 0,200 0,027 0,004 0,003 copyright Vincotech R (C/W) 0,10 0,17 0,23 0,04 0,01 0,18 10-4 R (C/W) 0,05 0,28 0,79 0,25 0,17 0,12 16 10-2 10-1 100 tp (s) 1021 tp / T 1,65 Thermal grease Tau (s) 2,245 0,517 0,170 0,023 0,004 0,003 10-3 K/W RthJH = 1,40 K/W FWD thermal model values Phase change interface Tau (s) 4,87 0,58 0,14 0,03 0,01 0,00 R (C/W) 0,04 0,24 0,67 0,21 0,15 0,10 Tau (s) 4,142 0,495 0,118 0,028 0,006 0,001 Revision: 3 10-PY06NRA021FS-M410FY datasheet OUTPUT BOOST BOOST MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 80 70 200 60 50 150 40 100 30 20 50 10 0 0 0 At Tj = 50 100 150 Th (oC) 200 0 At Tj = VGS = ºC 150 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) IF (A) Ptot (W) 150 10 100 150 200 BOOST FWD 40 105 35 90 30 75 25 60 20 45 15 30 10 15 5 0 Th (oC) ºC V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 Th (oC) 200 0 At Tj = ºC 17 50 175 100 150 Th (oC) 200 ºC Revision: 3 10-PY06NRA021FS-M410FY datasheet OUTPUT BOOST BOOST MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 103 UGE V (V) GS (V) 816 IC (A) ID (A) BOOST MOSFET Figure 26 Gate voltage vs Gate charge 100uS 714 1mS 102 120V 612 10uS10mS 100mS 1mS 480V 480V 510 101 100mS 120V 48 DC 100uS 10mS 100 36 DC 24 10-1 12 0 100 At D= Th = VGE = Tj = 100 101 101 102 102 103 V (V) DS (V) VCE 103 At IC = single pulse 80 ºC 10 V Tjmax ºC copyright Vincotech 0 0 18 0 100 89 50 200 A 100 300 150 400 500 600 200 g (nC)250 Qg Q (nC) pulsed Revision: 3 10-PY06NRA021FS-M410FY datasheet Thermistor Thermistor R/Ω Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 Revision: 3 10-PY06NRA021FS-M410FY datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω BUCK MOSFET Figure 1 BUCK MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 140 IC 120 tdoff 150 100 VGE 90% IC 80 100 % VGE 60 % VCE 90% 40 tEoff tdon VCE IC 1% VGE 50 20 IC10% VCE VGE10% 0 0 -20 VCE5% tEon -40 -0,1 -50 0 0,1 0,2 0,3 0,4 2,9 2,95 3 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 10 800 30 0,25 0,26 3,05 3,1 3,15 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs BUCK MOSFET Figure 3 0 10 800 30 0,03 0,06 V V V A µs µs BUCK MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 120 200 IC Ic 100 175 IC 90% 150 80 125 IC 60% 60 % % IC 40% 40 100 IC90% 75 tr VCE 50 20 25 IC10% VCE IC10% 0 -20 0,15 0 tf 0,19 VC (100%) = IC (100%) = tf = copyright Vincotech 0,23 0,27 800 30 0,046 V A µs fitted 0,31 0,35 -25 2,95 0,39 time (us) 2,975 3 3,025 3,05 3,075 3,1 time(us) VC (100%) = IC (100%) = tr = 20 800 30 0,009 V A µs Revision: 3 10-PY06NRA021FS-M410FY datasheet Switching Definitions BUCK MOSFET BUCK MOSFET Figure 5 BUCK MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 % Eon % Eoff 100 100 80 80 60 60 40 Pon 40 Poff 20 20 VGE90% VCE3% VGE10% IC 1% 0 0 tEon tEoff -20 -0,1 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,2 24,06 0,16 0,26 0,3 time (us) -20 2,95 0,4 2,975 3,025 3,05 3,075 3,1 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs BUCK MOSFET Figure 7 Gate voltage vs Gate charge (measured) 3 24,06 0,21 0,06 kW mJ µs BUCK FWD Figure 8 Turn-off Switching Waveforms & definition of trr 15 120 Id 80 trr 10 VGE (V) 40 Vd % 5 0 IRRM10% -40 IRRM90% IRRM100% 0 -80 fitted -5 -120 -50 0 50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 100 0 10 800 30 347,26 150 200 250 300 350 400 Qg (nC) 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 3,02 3,04 800 30 -21 0,013 3,06 3,08 time(us) 3,1 V A A µs Revision: 3 10-PY06NRA021FS-M410FY datasheet Switching Definitions BUCK MOSFET BUCK FWD Figure 9 BUCK FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 140 150 Qrr Id Erec 100 100 tQrr 50 tErec % % 60 0 20 -50 Prec -100 2,95 3 3,05 3,1 3,15 3,2 -20 2,95 3,25 3 3,05 3,1 3,15 3,2 time(us) Id (100%) = Qrr (100%) = tQrr = 30 0,22 0,03 Prec (100%) = Erec (100%) = tErec = A µC µs 24,06 0,04 0,03 kW mJ µs 25 oC copyright Vincotech 3,25 time(us) 22 125 oC Revision: 3 10-PY06NRA021FS-M410FY datasheet Switching Definitions BOOST MOSFET General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω BOOST MOSFET Figure 1 BOOST MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 450 140 120 IC 400 tdoff 100 350 IC 300 80 60 250 % VGE VCE 90% tEoff % 40 200 IC 1% VGE VCE 150 20 VCE 0 100 -20 50 -40 0 IC10% tdon VGE10% -60 -0,1 VCE5% tEon -50 0 0,1 0,2 0,3 0,4 2,9 2,95 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 10 800 30 0,33 0,35 3,05 3,1 3,15 time(us) time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs BOOST MOSFET Figure 3 0 10 800 30 0,05 0,08 V V V A µs µs BOOST MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 120 425 IC 100 Ic 375 IC 90% 325 80 275 IC 60% 60 % % IC 40% 40 225 175 125 20 75 IC10% VCE 0 tf tr VCE 25 IC90% IC10% fitted -20 0,19 VC (100%) = IC (100%) = tf = copyright Vincotech 0,23 0,27 800 30 0,02 0,31 time (us) -25 2,95 0,35 2,975 3 3,025 3,05 3,075 3,1 time(us) VC (100%) = IC (100%) = tr = V A µs 23 800 30 0,02 V A µs Revision: 3 10-PY06NRA021FS-M410FY datasheet Switching Definitions BOOST MOSFET BOOST MOSFET Figure 5 BOOST MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 % Eon % Eoff 100 100 80 80 60 60 40 Pon 40 Poff 20 20 VGE90% VCE3% VGE10% IC 1% 0 0 tEon tEoff -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 23,95 0,33 0,35 0,2 0,3 time (us) -20 2,95 0,4 2,975 3 3,05 3,075 3,1 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs BOOST MOSFET Figure 7 Gate voltage vs Gate charge (measured) 3,025 23,95 0,48 0,08 kW mJ µs BOOST FWD Figure 8 Turn-off Switching Waveforms & definition of trr 15 120 60 trr Id 10 0 IRRM10% -60 5 VGE (V) Vd %-120 0 -180 -240 -5 IRRM90% fitted -300 -10 -200 -100 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 0 0 10 800 30 373,03 100 200 -360 2,95 300 400 Qg (nC) IRRM100% 3 3,05 3,1 3,15 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 800 30 -94 0,09 V A A µs Revision: 3 10-PY06NRA021FS-M410FY datasheet Switching Definitions BOOST MOSFET BOOST FWD Figure 9 BOOST FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 180 150 Id Qrr 100 140 tQrr 50 Erec 0 100 % %-50 tErec 60 -100 -150 20 -200 Prec -20 -250 2,9 3 3,1 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,2 3,3 30 4,73 1,00 3,4 3,5 3,6 3,7 3,8 3,9 4 2,9 4,1 4,2 time(us) 3 Prec (100%) = Erec (100%) = tErec = A µC µs 25 3,1 3,2 3,3 3,4 23,95 1,58 1,00 3,5 3,6 3,7 3,8 3,9 4 4,1 4,2 time(us) kW mJ µs Revision: 3 10-PY06NRA021FS-M410FY datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-PY06NRA021FS-M410FY in DataMatrix as M410FY in packaging barcode as M410FY Outline Pinout copyright Vincotech 26 Revision: 3 10-PY06NRA021FS-M410FY datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 27 Revision: 3