30-F206NBA200SG-M235L25 preliminary datasheet flow BOOST 2 600V/200A Features flow BOOST 2 12mm housing ● High efficiency symmetric boost ● Ultra fast switching frequency ● Low Inductance Layout Target Applications Schematic ● solar inverter Types ● 30-F206NBA200SG-M235L25 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Bypass Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM Th=80°C Tc=80°C tp=10ms Tj=25°C 130 130 A 2000 A 13600 A2s 209 317 W Tjmax 150 °C VCE 600 V 140 170 A 800 A 297 450 W ±20 V 5 400 µs V 175 °C I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Tj=Tjmax Th=80°C Tc=80°C Input Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 70 119 A 200 A 154 234 W 175 °C 600 V 166 200 A 240 A Input Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Input Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Th=80°C Tc=80°C 226 343 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,17 1,11 0,95 0,75 0,002 0,003 1,21 Bypass Diode Forward voltage VF 200 Threshold voltage (for power loss calc. only) Vto 200 Slope resistance (for power loss calc. only) rt 200 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 1600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V Ω 0,1 Thermal grease thickness≤50um λ = 1 W/mK V mA 0,33 K/W 0,22 Input Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) 0,0032 VCE(sat) ±15 200 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coes Reverse transfer capacitance Cres Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 4,2 5,1 5,6 1,38 2,10 2,41 2,22 0,011 600 Rgoff=4 Ω Rgon=4 Ω ±15 350 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 53 50 46 47 616 666 33 26 5,38 7,28 4,56 5,16 ns mWs 12400 f=1MHz 0 25 Tj=25°C 464 pF 360 ±15 480 200 Tj=25°C 1260 Thermal grease thickness≤50um λ = 1 W/mK nC 0,32 K/W 0,21 Input Boost Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 200 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK 1,2 1,90 1,84 1,9 V 0,62 K/W 0,41 Input Boost Diode Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current ±15 Rgon=4 Ω 350 350 ±15 di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 240 Thermal grease thickness≤50um λ = 1 W/mK 200 200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,27 1,96 2,8 80 79 144 34 122 2,03 8,32 0,22 1,25 5246 3886 V µA A ns µC mWs A/µs 0,42 K/W 0,28 3 Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R25 ǑR/R Power dissipation P T=25°C R100=1486 Ω T=25°C Power dissipation constant Ω 22000 -5 +5 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference Copyright by Vincotech B 4 Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Input BOOST Inverse Diode Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 350 ZthJC (K/W) IF (A) 100 300 250 200 10-1 150 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100 Tj = Tjmax-25°C 50 Tj = 25°C 0 0 At tp = 0,5 1 1,5 2 2,5 3 V F (V) 10-2 3,5 10-5 At D= RthJH = µs 250 10-4 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 tp / T 0,62 10-2 100 t p (s) 102 101 K/W Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 80 IF (A) Ptot (W) 300 10-1 250 60 200 40 150 100 20 50 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 5 50 175 100 150 Th ( o C) 200 ºC Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet INPUT BOOST BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) 600 IC (A) IC(A) 600 500 500 400 400 300 300 200 200 100 100 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGS from µs 250 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 5 µs 250 125 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 250 V CE (V) ID (A) IF (A) 600 500 200 400 150 300 100 200 Tj = Tjmax-25°C 50 100 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VDS = 2 250 10 4 6 8 V GS (V) 0 10 At tp = µs V Copyright by Vincotech 6 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(ID) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 15 E (mWs) E (mWs) 15 Eon High T Eon Low T Eon High T 12 12 Eoff High T Eon Low T Eoff Low T 9 9 Eoff High T Eoff Low T 6 6 3 3 0 0 0 100 200 300 I C (A) 0 400 With an inductive load at Tj = °C 25/125 VDS = 350 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 350 V VGS = 15 V ID = 200 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2 2 E (mWs) E (mWs) Erec High T 1,6 1,6 1,2 1,2 0,8 0,8 Erec High T 0,4 0,4 Erec Low T Erec Low T 0 0 0 100 200 300 I C (A) 0 400 With an inductive load at Tj = °C 25/125 VDS = 350 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω Copyright by Vincotech 2 4 6 8 R G( Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 350 V VGS = 15 V ID = 200 A 7 Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t ( µs) t ( µs) 10 tdoff 1 1 tdoff tr 0,1 0,1 tdon tdon tr tf tf 0,01 0,01 0,001 0,001 0 100 200 300 I D (A) 0 400 With an inductive load at Tj = 125 °C VDS = 350 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 2 4 6 8 R G( Ω ) 10 With an inductive load at Tj = 125 °C VDS = 350 V VGS = 15 V IC = 200 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,25 t rr( µs) 0,15 t rr( µs) trr High T trr High T 0,12 0,2 0,09 0,15 0,06 0,1 trr Low T 0,03 0,05 trr Low T 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 8 2 25/125 350 200 15 4 6 8 R Gon ( Ω ) 10 °C V A V Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 12 10 Qrr High T Qrr ( µC) Qrr ( µC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr High T 8 8 6 6 4 4 Qrr Low T 2 Qrr Low T 2 0 0 At At Tj = VCE = VGE = Rgon = 0 100 200 300 I C (A) °C V V Ω 25/125 350 15 4 BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 2 At Tj = VR = IF = VGS = 25/125 350 200 15 400 4 6 8 10 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 300 IrrM (A) 200 R Gon ( Ω) IRRM High T 250 160 200 120 150 IRRM Low T 80 IRRM High T 100 IRRM Low T 40 50 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 15 4 200 300 I C (A) 0 400 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 9 2 25/125 350 200 15 4 6 8 R Gon ( Ω ) 10 °C V A V Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 8000 12000 direc / dt (A/ µs) direc / dt (A/ µs) dI0/dt dIrec/dt 7000 BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 10000 6000 8000 5000 4000 6000 3000 4000 2000 2000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGS = °C V V Ω BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/125 350 200 15 4 6 R Gon ( Ω) 8 10 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10-5 102 101 At D= RthJH = tp / T 0,32 K/W 10-4 10-3 R (C/W) 3,80E-02 7,45E-02 5,88E-02 6,30E-02 7,23E-02 1,31E-02 R (C/W) 2,51E-02 8,11E-02 7,23E-02 8,79E-02 1,05E-01 2,58E-02 10 100 t p (s) 102 101 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 0,42 IGBT thermal model values Tau (s) 6,34E+00 1,65E+00 3,72E-01 8,42E-02 2,60E-02 3,72E-03 10-2 Tau (s) 9,71E+00 2,16E+00 5,30E-01 1,27E-01 3,93E-02 5,33E-03 Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 600 IC (A) Ptot (W) 175 150 500 125 400 100 300 75 200 50 100 25 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = VGS = ºC 175 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 Th ( o C) 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 250 Ptot (W) IF (A) 500 400 200 300 150 200 100 100 50 0 0 0 At Tj = 50 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 11 50 175 100 150 T h ( o C) 200 ºC Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) VGS = f(Qg) 16 UGS (V) 3 ID (A) 10 BOOST IGBT Figure 26 Gate voltage vs Gate charge 1mS 10uS 14 120V 100uS 10 2 12 480V 10mS 10 100mS 10 1 8 6 DC 4 100 2 0 10-1 10 0 At D= Th = VGS = Tj = 101 10 2 10 3 0 V DS (V) 100 150 200 250 300 350 Qg (nC) At ID = single pulse ºC 80 V 15 Tjmax ºC Copyright by Vincotech 50 12 200 A Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 500 ZthJC (K/W) IF (A) 100 400 300 10-1 200 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = 25°C 100 Tj = Tjmax-25°C 0 0 0,4 At tp = 0,8 1,2 1,6 V F (V) 2 10-2 10-5 At D= RthJH = µs 250 10-4 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 101 102 tp / T 0,33 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 140 Ptot (W) IF (A) 500 t p (s) 120 400 100 300 80 60 200 40 100 20 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 13 50 150 100 150 T h ( o C) 200 ºC Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 14 Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Switching Definitions BOOST IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Input Boost IGBT Figure 1 Input Boost IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 150 % % IC 125 tdoff 100 150 VGE 90% VCE 90% VCE 100 75 IC VGE VGE tdon 50 IC 1% tEoff 50 25 VGE 10% VCE V CE3% IC 10% 0 tEon 0 -25 -0,3 -50 -0,1 0,1 0,3 0,5 0,7 0,9 3,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 350 199 0,67 0,74 4 4,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Input Boost IGBT Figure 3 4,2 0 15 350 199 0,05 0,30 4,3 4,4 V V V A µs µs Input Boost IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 150 200 % % VCE IC 125 150 fitted IC 100 VCE IC 90% 100 75 IC 90% IC 60% tr 50 50 IC 40% 25 IC 10% IC10% 0 tf 0 -25 0,45 VC (100%) = IC (100%) = tf = -50 0,5 0,55 0,6 350 199 0,03 V A µs Copyright by Vincotech 0,65 0,7 time (us) 0,75 3,9 VC (100%) = IC (100%) = tr = 15 4 4,1 350 199 0,05 4,2 time(us) 4,3 V A µs Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Switching Definitions BOOST IGBT Input Boost IGBT Figure 5 Input Boost IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % Eoff 100 Pon % IC 1% Eon 100 75 75 50 50 25 25 VGE 90% VCE 3% VGE 10% Poff 0 0 tEoff tEon -25 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 69,74 5,16 0,74 0,4 0,6 time (us) 0,8 3,9 4 Pon (100%) = Eon (100%) = tEon = kW mJ µs Input Boost IGBT Figure 7 Gate voltage vs Gate charge (measured) 4,1 4,2 69,74 7,28 0,30 kW mJ µs 4,3 4,4 time(us) 4,5 Input Boost FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 Id % 80 15 trr 40 10 fitted Vd 0 IRRM 10% 5 -40 IRRM 90% IRRM 100% 0 -80 -5 -200 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -120 0 200 0 15 350 199 973,23 Copyright by Vincotech 400 600 800 1000 1200 Qg (nC) 4 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 16 4,05 4,1 350 199 -144 0,12 4,15 4,2 4,25 time(us) 4,3 V A A µs Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Switching Definitions BOOST IGBT Input Boost FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id 100 Input Boost FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Erec 100 tErec 75 tQrr 50 50 Qrr 0 25 Prec -50 0 -100 -25 3,8 Id (100%) = Qrr (100%) = tQrr = 4 4,2 199 8,32 0,24 Copyright by Vincotech 4,4 time(us) 4,6 4 Prec (100%) = Erec (100%) = tErec = A µC µs 17 4,1 4,2 69,74 1,25 0,24 4,3 4,4 time(us) 4,5 kW mJ µs Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 17mm housing Ordering Code 30-F206NBA200SG-M235L25 in DataMatrix as M235L25 in packaging barcode as M235L25 Outline Pinout Copyright by Vincotech 18 Revision: 2 30-F206NBA200SG-M235L25 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 19 Revision: 2