30-F206NBA200SG-M235L25 Maximum Ratings

30-F206NBA200SG-M235L25
preliminary datasheet
flow BOOST 2
600V/200A
Features
flow BOOST 2 12mm housing
● High efficiency symmetric boost
● Ultra fast switching frequency
● Low Inductance Layout
Target Applications
Schematic
● solar inverter
Types
● 30-F206NBA200SG-M235L25
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Bypass Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
130
130
A
2000
A
13600
A2s
209
317
W
Tjmax
150
°C
VCE
600
V
140
170
A
800
A
297
450
W
±20
V
5
400
µs
V
175
°C
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Tj=Tjmax
Th=80°C
Tc=80°C
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
70
119
A
200
A
154
234
W
175
°C
600
V
166
200
A
240
A
Input Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Input Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
226
343
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,17
1,11
0,95
0,75
0,002
0,003
1,21
Bypass Diode
Forward voltage
VF
200
Threshold voltage (for power loss calc. only)
Vto
200
Slope resistance (for power loss calc. only)
rt
200
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
1600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
Ω
0,1
Thermal grease
thickness≤50um
λ = 1 W/mK
V
mA
0,33
K/W
0,22
Input Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
0,0032
VCE(sat)
±15
200
Collector-emitter cut-off
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coes
Reverse transfer capacitance
Cres
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
4,2
5,1
5,6
1,38
2,10
2,41
2,22
0,011
600
Rgoff=4 Ω
Rgon=4 Ω
±15
350
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
53
50
46
47
616
666
33
26
5,38
7,28
4,56
5,16
ns
mWs
12400
f=1MHz
0
25
Tj=25°C
464
pF
360
±15
480
200
Tj=25°C
1260
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,32
K/W
0,21
Input Boost Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
200
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
1,2
1,90
1,84
1,9
V
0,62
K/W
0,41
Input Boost Diode
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
±15
Rgon=4 Ω
350
350
±15
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
240
Thermal grease
thickness≤50um
λ = 1 W/mK
200
200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,27
1,96
2,8
80
79
144
34
122
2,03
8,32
0,22
1,25
5246
3886
V
µA
A
ns
µC
mWs
A/µs
0,42
K/W
0,28
3
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R25
ǑR/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=25°C
Power dissipation constant
Ω
22000
-5
+5
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
Copyright by Vincotech
B
4
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Input BOOST Inverse Diode
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
350
ZthJC (K/W)
IF (A)
100
300
250
200
10-1
150
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
Tj = Tjmax-25°C
50
Tj = 25°C
0
0
At
tp =
0,5
1
1,5
2
2,5
3
V F (V)
10-2
3,5
10-5
At
D=
RthJH =
µs
250
10-4
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
tp / T
0,62
10-2
100
t p (s)
102
101
K/W
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
80
IF (A)
Ptot (W)
300
10-1
250
60
200
40
150
100
20
50
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
5
50
175
100
150
Th ( o C)
200
ºC
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST IGBT
Figure 2
Typical output characteristics
ID = f(VDS)
600
IC (A)
IC(A)
600
500
500
400
400
300
300
200
200
100
100
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGS from
µs
250
25
°C
7 V to 17 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
5
µs
250
125
°C
7 V to 17 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
250
V CE (V)
ID (A)
IF (A)
600
500
200
400
150
300
100
200
Tj = Tjmax-25°C
50
100
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VDS =
2
250
10
4
6
8
V GS (V)
0
10
At
tp =
µs
V
Copyright by Vincotech
6
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
µs
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
15
E (mWs)
E (mWs)
15
Eon High T
Eon Low T
Eon High T
12
12
Eoff High T
Eon Low T
Eoff Low T
9
9
Eoff High T
Eoff Low T
6
6
3
3
0
0
0
100
200
300
I C (A)
0
400
With an inductive load at
Tj =
°C
25/125
VDS =
350
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VDS =
350
V
VGS =
15
V
ID =
200
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2
2
E (mWs)
E (mWs)
Erec High T
1,6
1,6
1,2
1,2
0,8
0,8
Erec High T
0,4
0,4
Erec Low T
Erec Low T
0
0
0
100
200
300
I C (A)
0
400
With an inductive load at
Tj =
°C
25/125
VDS =
350
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
Copyright by Vincotech
2
4
6
8
R G( Ω )
10
With an inductive load at
Tj =
25/125
°C
VDS =
350
V
VGS =
15
V
ID =
200
A
7
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t ( µs)
t ( µs)
10
tdoff
1
1
tdoff
tr
0,1
0,1
tdon
tdon
tr
tf
tf
0,01
0,01
0,001
0,001
0
100
200
300
I D (A)
0
400
With an inductive load at
Tj =
125
°C
VDS =
350
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
2
4
6
8
R G( Ω )
10
With an inductive load at
Tj =
125
°C
VDS =
350
V
VGS =
15
V
IC =
200
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,25
t rr( µs)
0,15
t rr( µs)
trr High T
trr High T
0,12
0,2
0,09
0,15
0,06
0,1
trr Low T
0,03
0,05
trr Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
8
2
25/125
350
200
15
4
6
8
R Gon ( Ω )
10
°C
V
A
V
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
12
10
Qrr High T
Qrr ( µC)
Qrr ( µC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10
Qrr High T
8
8
6
6
4
4
Qrr Low T
2
Qrr Low T
2
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
100
200
300
I C (A)
°C
V
V
Ω
25/125
350
15
4
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
2
At
Tj =
VR =
IF =
VGS =
25/125
350
200
15
400
4
6
8
10
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
300
IrrM (A)
200
R Gon ( Ω)
IRRM High T
250
160
200
120
150
IRRM Low T
80
IRRM High T
100
IRRM Low T
40
50
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
15
4
200
300
I C (A)
0
400
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
9
2
25/125
350
200
15
4
6
8
R Gon ( Ω )
10
°C
V
A
V
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
8000
12000
direc / dt (A/ µs)
direc / dt (A/ µs)
dI0/dt
dIrec/dt
7000
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
10000
6000
8000
5000
4000
6000
3000
4000
2000
2000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/125
350
200
15
4
6
R Gon ( Ω)
8
10
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10-5
102
101
At
D=
RthJH =
tp / T
0,32
K/W
10-4
10-3
R (C/W)
3,80E-02
7,45E-02
5,88E-02
6,30E-02
7,23E-02
1,31E-02
R (C/W)
2,51E-02
8,11E-02
7,23E-02
8,79E-02
1,05E-01
2,58E-02
10
100
t p (s)
102
101
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
0,42
IGBT thermal model values
Tau (s)
6,34E+00
1,65E+00
3,72E-01
8,42E-02
2,60E-02
3,72E-03
10-2
Tau (s)
9,71E+00
2,16E+00
5,30E-01
1,27E-01
3,93E-02
5,33E-03
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
600
IC (A)
Ptot (W)
175
150
500
125
400
100
300
75
200
50
100
25
0
0
0
At
Tj =
50
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
175
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
Th ( o C)
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
250
Ptot (W)
IF (A)
500
400
200
300
150
200
100
100
50
0
0
0
At
Tj =
50
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
11
50
175
100
150
T h ( o C)
200
ºC
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
16
UGS (V)
3
ID (A)
10
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
1mS
10uS
14
120V
100uS
10
2
12
480V
10mS
10
100mS
10
1
8
6
DC
4
100
2
0
10-1
10
0
At
D=
Th =
VGS =
Tj =
101
10
2
10
3
0
V DS (V)
100
150
200
250
300
350
Qg (nC)
At
ID =
single pulse
ºC
80
V
15
Tjmax
ºC
Copyright by Vincotech
50
12
200
A
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
500
ZthJC (K/W)
IF (A)
100
400
300
10-1
200
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = 25°C
100
Tj = Tjmax-25°C
0
0
0,4
At
tp =
0,8
1,2
1,6
V F (V)
2
10-2
10-5
At
D=
RthJH =
µs
250
10-4
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
101
102
tp / T
0,33
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
140
Ptot (W)
IF (A)
500
t p (s)
120
400
100
300
80
60
200
40
100
20
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
13
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
14
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Switching Definitions BOOST IGBT
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Input Boost IGBT
Figure 1
Input Boost IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
150
%
%
IC
125
tdoff
100
150
VGE 90%
VCE 90%
VCE
100
75
IC
VGE
VGE
tdon
50
IC 1%
tEoff
50
25
VGE 10%
VCE
V CE3%
IC 10%
0
tEon
0
-25
-0,3
-50
-0,1
0,1
0,3
0,5
0,7
0,9
3,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
350
199
0,67
0,74
4
4,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Input Boost IGBT
Figure 3
4,2
0
15
350
199
0,05
0,30
4,3
4,4
V
V
V
A
µs
µs
Input Boost IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
150
200
%
%
VCE
IC
125
150
fitted
IC
100
VCE
IC 90%
100
75
IC 90%
IC 60%
tr
50
50
IC 40%
25
IC 10%
IC10%
0
tf
0
-25
0,45
VC (100%) =
IC (100%) =
tf =
-50
0,5
0,55
0,6
350
199
0,03
V
A
µs
Copyright by Vincotech
0,65
0,7
time (us)
0,75
3,9
VC (100%) =
IC (100%) =
tr =
15
4
4,1
350
199
0,05
4,2
time(us)
4,3
V
A
µs
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Switching Definitions BOOST IGBT
Input Boost IGBT
Figure 5
Input Boost IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
Eoff
100
Pon
%
IC 1%
Eon
100
75
75
50
50
25
25
VGE 90%
VCE 3%
VGE 10%
Poff
0
0
tEoff
tEon
-25
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
69,74
5,16
0,74
0,4
0,6
time (us)
0,8
3,9
4
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Input Boost IGBT
Figure 7
Gate voltage vs Gate charge (measured)
4,1
4,2
69,74
7,28
0,30
kW
mJ
µs
4,3
4,4
time(us)
4,5
Input Boost FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
Id
%
80
15
trr
40
10
fitted
Vd
0
IRRM 10%
5
-40
IRRM 90%
IRRM 100%
0
-80
-5
-200
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-120
0
200
0
15
350
199
973,23
Copyright by Vincotech
400
600
800
1000
1200
Qg (nC)
4
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
16
4,05
4,1
350
199
-144
0,12
4,15
4,2
4,25
time(us)
4,3
V
A
A
µs
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Switching Definitions BOOST IGBT
Input Boost FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
100
Input Boost FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Erec
100
tErec
75
tQrr
50
50
Qrr
0
25
Prec
-50
0
-100
-25
3,8
Id (100%) =
Qrr (100%) =
tQrr =
4
4,2
199
8,32
0,24
Copyright by Vincotech
4,4
time(us)
4,6
4
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
17
4,1
4,2
69,74
1,25
0,24
4,3
4,4
time(us)
4,5
kW
mJ
µs
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 17mm housing
Ordering Code
30-F206NBA200SG-M235L25
in DataMatrix as
M235L25
in packaging barcode as
M235L25
Outline
Pinout
Copyright by Vincotech
18
Revision: 2
30-F206NBA200SG-M235L25
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
19
Revision: 2