INTERSIL IRF646

IRF646
Data Sheet
June 1999
14A, 275V, 0.280 Ohm, N-Channel Power
MOSFET
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
Ordering Information
IRF646
PACKAGE
TO-220AB
2169.3
Features
• 14A, 275V
• rDS(ON) = 0.280Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• 275VDC Rating-120VAC Line System Operation
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Formerly developmental type TA17423.
PART NUMBER
File Number
Symbol
BRAND
IRF646
D
NOTE: When ordering, use the entire part number.
G
S
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
4-214
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRF646
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ , TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
IRF646
275
275
14
8.8
56
±20
125
1.0
550
-55 to 150
UNITS
V
V
A
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
275
-
-
V
VGS = VDS , ID = 250µA
2
-
4
V
VDS = Rated BVDSS , VGS = 0V
-
-
25
µA
VDS = 0.8 x Rated BVDSS , VGS = 0V, TJ = 125oC
-
-
250
µA
VDS > ID(ON) x rDS(ON)MAX , VGS = 10V (Figure 7)
14
-
-
A
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V (Figure 10)
Gate Threshold Voltage
VGS(TH)
Zero Gate Voltage Drain Current
On-State Drain Current (Note 2)
Gate to Source Leakage Current
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
IDSS
ID(ON)
IGSS
rDS(ON)
gfs
td(ON)
Rise Time
tr
Turn-Off Delay Time
VGS = ±20V
-
-
±100
nA
ID = 8A, VGS = 10V (Figures 8, 9)
-
0.200
0.280
Ω
VDS ≥ 50V, ID = 8A (Figure 12)
VDD = 125V, ID ≈ 14A, RGS = 9.1Ω, RL = 8.6Ω,
MOSFET Switching Times are Essentially
Independent of Operating Temperature
td(OFF)
Fall Time
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
Gate to Source Charge
Qg(TOT)
Qgs
VGS = 10V, ID = 14A, VDS = 0.8 x Rated BVDSS,
IG(REF) = 1.5mA, (Figure 14) Gate Charge is
Essentially Independent of Operating Temperature
6.7
10
-
S
-
16
24
ns
-
67
100
ns
-
53
80
ns
-
49
74
ns
-
39
59
nC
-
6.6
-
nC
-
20
-
nC
-
1300
-
pF
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
-
320
-
pF
Reverse Transfer Capacitance
CRSS
-
69
-
pF
-
4.5
-
nH
-
7.5
-
nH
-
7.5
-
nH
-
-
1
oC/W
-
-
80
oC/W
Internal Drain Inductance
LD
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11)
Measured from the Contact Modified MOSFET
Screw on Tab to Center of Symbol Showing the
Die
Internal Devices
Inductances
Measured from the Drain
D
Lead, 6mm (0.25in) from
Package to Center of Die
Internal Source Inductance
LS
Measured from the Source
Lead, 6mm (0.25in) from
Header to Source Bonding
Pad
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to Ambient
RθJA
4-215
Free Air Operation
IRF646
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
TEST CONDITIONS
ISD
Pulse Source to Drain Current
(Note 3)
Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction
Diode
ISDM
D
MIN
TYP
MAX
UNITS
-
-
14
A
-
-
56
A
-
-
1.8
V
150
300
640
ns
1.6
3.4
7.2
µC
G
S
Source to Drain Diode Voltage (Note 2)
TJ = 25oC, ISD = 14A, VGS = 0V (Figure 13)
VSD
Reverse Recovery Time
TJ = 25oC, ISD = 14A, dISD/dt = 100A/µs
TJ = 25oC, ISD = 14A, dISD/dt = 100A/µs
trr
Reverse Recovery Charge
QRR
NOTES:
2. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 2%.
3. Repetitive rating: Pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 4.5mH, RG = 25Ω, peak IAS = 14A.
Typical Performance Curves
Unless Otherwise Specified
15
ID , DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
12
9
6
3
0
0
50
100
25
150
50
TC , CASE TEMPERATURE (oC)
75
100
125
150
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
1
ZθJC, NORMALIZED TRANSIENT
THERMAL IMPEDANCE (oC/W)
POWER DISSIPATION MULTIPLIER
1.2
0.5
0.2
0.1
0.1
0.05
0.02
0.01
0.01
PDM
SINGLE PULSE
t1
t2
0.001
10-5
NOTES:
DUTY FACTOR: D = t1/t2
TJ = PDM x ZθJC x RθJC + TC
10-4
10-3
10-2
10-1
t 1, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
4-216
1
10
IRF646
Typical Performance Curves
Unless Otherwise Specified (Continued)
25
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
100
10µs
100µs
10
1ms
10ms
1
0.1
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
1
20
6V
15
5.5V
10
5V
5
DC
4.5V
4V
0
10
100
VDS , DRAIN TO SOURCE VOLTAGE (V)
0
1000
25
VGS = 5.5V
10
VGS = 5V
5
0
VGS = 4V
0
4
2
6
ID , DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
VGS = 6V
15
150oC
VGS = 4.5V
8
10
0.1
0
2
1.5
VGS = 10V
1.0
VGS = 20V
0.5
0
60
ID , DRAIN CURRENT (A)
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4-217
75
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (Ω)
3.0
45
6
8
10
FIGURE 7. TRANSFER CHARACTERISTICS
2.0
30
4
VGS , GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
15
25oC
1
FIGURE 6. SATURATION CHARACTERISTICS
0
125
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
2.5
100
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDS ≥ 50V
VGS = 10V
20
75
FIGURE 5. OUTPUT CHARACTERISTICS
100
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
50
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
25
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
10V
ID , DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
1000
2.4
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 14A
1.8
1.2
0.6
0
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
IRF646
Typical Performance Curves
Unless Otherwise Specified (Continued)
3000
VGS = 0V, f = 1MHz
ID = 250µA
1.15
1.05
0.95
0.85
1800
CISS
1200
COSS
600
CRSS
0.75
-60
-40
-20
0
20
40
80
60
0
100 120 140 160
10
0
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
100
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDS ≥ 50V
ISD , SOURCE TO DRAIN CURRENT (A)
gfs , TRANSCONDUCTANCE (S)
12
25oC
9
150oC
6
3
0
0
5
10
15
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
10
0.1
25
0.4
0.8
1.2
1.6
VSD , SOURCE TO DRAIN VOLTAGE (V)
0
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
VGS , GATE TO SOURCE (V)
20
25oC
150oC
1
ID , DRAIN CURRENT (A)
ID = 14A
16
VDS = 125V
VDS = 50V
12
VDS = 200V
8
4
0
12
2.0
FIGURE 13. SOURCE TO DRAIN DIODE FORWARD VOLTAGE
0
24
36
48
60
Qg, GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
4-218
100
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
15
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
2400
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.25
IRF646
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
+
RG
REQUIRED PEAK IAS
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
RG
-
VDD
10%
10%
0
DUT
90%
VGS
VGS
0
FIGURE 17. SWITCHING TIME TEST CIRCUIT
0.2µF
50%
PULSE WIDTH
10%
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
12V
BATTERY
50%
VDD
Qg(TOT)
SAME TYPE
AS DUT
50kΩ
Qgd
0.3µF
VGS
Qgs
D
VDS
DUT
G
0
IG(REF)
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
4-219
IG(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRF646
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
4-220
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029