IRF646 Data Sheet June 1999 14A, 275V, 0.280 Ohm, N-Channel Power MOSFET This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. Ordering Information IRF646 PACKAGE TO-220AB 2169.3 Features • 14A, 275V • rDS(ON) = 0.280Ω • Single Pulse Avalanche Energy Rated • SOA is Power Dissipation Limited • Nanosecond Switching Speeds • Linear Transfer Characteristics • High Input Impedance • 275VDC Rating-120VAC Line System Operation • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA17423. PART NUMBER File Number Symbol BRAND IRF646 D NOTE: When ordering, use the entire part number. G S Packaging JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) 4-214 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 IRF646 Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ , TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg IRF646 275 275 14 8.8 56 ±20 125 1.0 550 -55 to 150 UNITS V V A A A V W W/oC mJ oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 275 - - V VGS = VDS , ID = 250µA 2 - 4 V VDS = Rated BVDSS , VGS = 0V - - 25 µA VDS = 0.8 x Rated BVDSS , VGS = 0V, TJ = 125oC - - 250 µA VDS > ID(ON) x rDS(ON)MAX , VGS = 10V (Figure 7) 14 - - A Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 10) Gate Threshold Voltage VGS(TH) Zero Gate Voltage Drain Current On-State Drain Current (Note 2) Gate to Source Leakage Current Drain to Source On Resistance (Note 2) Forward Transconductance (Note 2) Turn-On Delay Time IDSS ID(ON) IGSS rDS(ON) gfs td(ON) Rise Time tr Turn-Off Delay Time VGS = ±20V - - ±100 nA ID = 8A, VGS = 10V (Figures 8, 9) - 0.200 0.280 Ω VDS ≥ 50V, ID = 8A (Figure 12) VDD = 125V, ID ≈ 14A, RGS = 9.1Ω, RL = 8.6Ω, MOSFET Switching Times are Essentially Independent of Operating Temperature td(OFF) Fall Time tf Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Qg(TOT) Qgs VGS = 10V, ID = 14A, VDS = 0.8 x Rated BVDSS, IG(REF) = 1.5mA, (Figure 14) Gate Charge is Essentially Independent of Operating Temperature 6.7 10 - S - 16 24 ns - 67 100 ns - 53 80 ns - 49 74 ns - 39 59 nC - 6.6 - nC - 20 - nC - 1300 - pF Gate to Drain “Miller” Charge Qgd Input Capacitance CISS Output Capacitance COSS - 320 - pF Reverse Transfer Capacitance CRSS - 69 - pF - 4.5 - nH - 7.5 - nH - 7.5 - nH - - 1 oC/W - - 80 oC/W Internal Drain Inductance LD VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) Measured from the Contact Modified MOSFET Screw on Tab to Center of Symbol Showing the Die Internal Devices Inductances Measured from the Drain D Lead, 6mm (0.25in) from Package to Center of Die Internal Source Inductance LS Measured from the Source Lead, 6mm (0.25in) from Header to Source Bonding Pad LD G LS S Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA 4-215 Free Air Operation IRF646 Source to Drain Diode Specifications PARAMETER SYMBOL Continuous Source to Drain Current TEST CONDITIONS ISD Pulse Source to Drain Current (Note 3) Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Diode ISDM D MIN TYP MAX UNITS - - 14 A - - 56 A - - 1.8 V 150 300 640 ns 1.6 3.4 7.2 µC G S Source to Drain Diode Voltage (Note 2) TJ = 25oC, ISD = 14A, VGS = 0V (Figure 13) VSD Reverse Recovery Time TJ = 25oC, ISD = 14A, dISD/dt = 100A/µs TJ = 25oC, ISD = 14A, dISD/dt = 100A/µs trr Reverse Recovery Charge QRR NOTES: 2. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 2%. 3. Repetitive rating: Pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). 4. VDD = 50V, starting TJ = 25oC, L = 4.5mH, RG = 25Ω, peak IAS = 14A. Typical Performance Curves Unless Otherwise Specified 15 ID , DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 0 12 9 6 3 0 0 50 100 25 150 50 TC , CASE TEMPERATURE (oC) 75 100 125 150 TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 1 ZθJC, NORMALIZED TRANSIENT THERMAL IMPEDANCE (oC/W) POWER DISSIPATION MULTIPLIER 1.2 0.5 0.2 0.1 0.1 0.05 0.02 0.01 0.01 PDM SINGLE PULSE t1 t2 0.001 10-5 NOTES: DUTY FACTOR: D = t1/t2 TJ = PDM x ZθJC x RθJC + TC 10-4 10-3 10-2 10-1 t 1, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 4-216 1 10 IRF646 Typical Performance Curves Unless Otherwise Specified (Continued) 25 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 100 10µs 100µs 10 1ms 10ms 1 0.1 TC = 25oC TJ = MAX RATED SINGLE PULSE 1 20 6V 15 5.5V 10 5V 5 DC 4.5V 4V 0 10 100 VDS , DRAIN TO SOURCE VOLTAGE (V) 0 1000 25 VGS = 5.5V 10 VGS = 5V 5 0 VGS = 4V 0 4 2 6 ID , DRAIN CURRENT (A) ID , DRAIN CURRENT (A) VGS = 6V 15 150oC VGS = 4.5V 8 10 0.1 0 2 1.5 VGS = 10V 1.0 VGS = 20V 0.5 0 60 ID , DRAIN CURRENT (A) FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 4-217 75 NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (Ω) 3.0 45 6 8 10 FIGURE 7. TRANSFER CHARACTERISTICS 2.0 30 4 VGS , GATE TO SOURCE VOLTAGE (V) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 15 25oC 1 FIGURE 6. SATURATION CHARACTERISTICS 0 125 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 2.5 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDS ≥ 50V VGS = 10V 20 75 FIGURE 5. OUTPUT CHARACTERISTICS 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 50 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 25 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 10V ID , DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 1000 2.4 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 14A 1.8 1.2 0.6 0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE IRF646 Typical Performance Curves Unless Otherwise Specified (Continued) 3000 VGS = 0V, f = 1MHz ID = 250µA 1.15 1.05 0.95 0.85 1800 CISS 1200 COSS 600 CRSS 0.75 -60 -40 -20 0 20 40 80 60 0 100 120 140 160 10 0 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDS ≥ 50V ISD , SOURCE TO DRAIN CURRENT (A) gfs , TRANSCONDUCTANCE (S) 12 25oC 9 150oC 6 3 0 0 5 10 15 20 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 10 0.1 25 0.4 0.8 1.2 1.6 VSD , SOURCE TO DRAIN VOLTAGE (V) 0 FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT VGS , GATE TO SOURCE (V) 20 25oC 150oC 1 ID , DRAIN CURRENT (A) ID = 14A 16 VDS = 125V VDS = 50V 12 VDS = 200V 8 4 0 12 2.0 FIGURE 13. SOURCE TO DRAIN DIODE FORWARD VOLTAGE 0 24 36 48 60 Qg, GATE CHARGE (nC) FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE 4-218 100 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 15 CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 2400 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.25 IRF646 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN + RG REQUIRED PEAK IAS VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + RG - VDD 10% 10% 0 DUT 90% VGS VGS 0 FIGURE 17. SWITCHING TIME TEST CIRCUIT 0.2µF 50% PULSE WIDTH 10% FIGURE 18. RESISTIVE SWITCHING WAVEFORMS VDS (ISOLATED SUPPLY) CURRENT REGULATOR 12V BATTERY 50% VDD Qg(TOT) SAME TYPE AS DUT 50kΩ Qgd 0.3µF VGS Qgs D VDS DUT G 0 IG(REF) S 0 IG CURRENT SAMPLING RESISTOR VDS ID CURRENT SAMPLING RESISTOR FIGURE 19. GATE CHARGE TEST CIRCUIT 4-219 IG(REF) 0 FIGURE 20. GATE CHARGE WAVEFORMS IRF646 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 4-220 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029