INTERSIL IRF620

IRF620
Data Sheet
June 1999
5.0A, 200V, 0.800 Ohm, N-Channel
Power MOSFET
• 5.0A, 200V
Formerly developmental type TA9600.
Ordering Information
PACKAGE
1577.3
Features
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
PART NUMBER
File Number
• rDS(ON) = 0.800Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
BRAND
D
IRF620
NOTE:
TO-220AB
IRF620
When ordering, use the entire part number.
G
S
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
4-196
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRF620
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
IRF620
200
200
5.0
3.0
20
±20
40
0.32
85
-55 to 150
UNITS
V
V
A
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
BVDSS
VGS = 0V, ID = 250µA, (Figure 10)
200
-
-
V
Gate Threshold Voltage
VGS(TH)
VDS = VGS , ID = 250µA
2.0
-
4.0
V
-
-
25
µA
-
-
250
µA
5.0
-
-
A
Zero Gate Voltage Drain Current
SYMBOL
IDSS
TEST CONDITIONS
VDS = Rated BVDSS , VGS = 0V
VDS = 0.8 x Rated BVDSS , VGS = 0V, TJ = 125oC
On-State Drain Current (Note 2)
Gate to Source Leakage Current
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
ID(ON)
IGSS
rDS(ON)
gfs
td(ON)
Rise Time
tr
Turn-Off Delay Time
td(OFF)
Fall Time
VDS > ID(ON) x rDS(ON)MAX , VGS = 10V
VGS = ±20V
-
-
±100
nA
VGS = 10V, ID = 2.5A, (Figures 8, 9)
-
0.8
1.2
Ω
1.3
2.5
-
S
-
20
40
ns
-
30
60
ns
-
50
100
ns
-
30
60
ns
-
11
15
nC
-
5.0
-
nC
-
6.0
-
nC
-
450
-
pF
VDS > ID(ON) x rDS(ON)MAX , ID = 2.5A (Figure 12)
VDD = 100V, ID ≈ 5.0A, RG = 9.1Ω, RL = 20Ω,
MOSFET Switching Times are
Essentially Independent of Operating
Temperature
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
Gate to Source Charge
Qg(TOT)
Qgs
VGS = 10V, ID = 5.0A, VDS = 0.8 x Rated BVDSS,
IG(REF) = 1.5mA, (Figure 14)
Gate Charge is Essentially Independent of
Operating Temperature
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
-
150
-
pF
Reverse Transfer Capacitance
CRSS
-
40
-
pF
-
3.5
-
nH
-
4.5
-
nH
-
7.5
-
nH
-
-
3.12
oC/W
-
-
62.5
oC/W
Internal Drain Inductance
LD
VDS = 25V, VGS = 0V, f = 1MHz, (Figure 11)
Measured from the Contact Modified MOSFET
Screw on Tab to Center of Symbol Showing the
Die
Internal Devices
Inductances
Measured from the Drain
D
Lead, 6mm (0.25in) from
Package to Center of Die
Internal Source Inductance
LS
Measured from the Source
Lead, 6mm (0.25in) from
Header to Source Bonding
Pad
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to Ambient
RθJA
4-197
Free Air Operation
IRF620
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
ISD
Pulse Source to Drain Current
(Note 3)
TEST CONDITIONS
Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction
Rectifier
ISDM
D
MIN
TYP
MAX
UNITS
-
-
5.0
A
-
-
20
A
G
S
Source to Drain Diode Voltage (Note 2)
TJ = 25oC, ISD = 5.0A, VGS = 0V, (Figure 13)
-
-
1.8
V
trr
TJ = 150oC, ISD = 5.0A, dISD/dt = 100A/µs
-
350
-
ns
QRR
TJ = 150oC, ISD = 5.0A, dISD/dt = 100A/µs
-
2.3
-
µC
VSD
Reverse Recovery Time
Reverse Recovery Charge
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 10V, starting TJ = 25oC, L = 6.18mH, RG = 50Ω, peak IAS = 5A.
Typical Performance Curves
Unless Otherwise Specified
5
ID , DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
0
50
100
4
3
2
1
0
25
150
50
TC , CASE TEMPERATURE (oC)
75
100
150
125
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
1.0
THERMAL IMPEDENCE
ZθJC, NORMALIZED TRANSIENT
POWER DISSIPATION MULTIPLIER
1.2
0.5
0.2
0.1
0.1
PDM
0.05
0.02
0.01
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
t1 , RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
4-198
1
10
IRF620
Typical Performance Curves
Unless Otherwise Specified (Continued)
10
100
10V
10
7V
ID , DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
OPERATION IN THIS AREA IS LIMITED BY rDS(ON)
10µs
100µs
1ms
1
10ms
100ms
DC
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
0.1
6V
6
4
5V
2
4V
0
100
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
1
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
8
0
1000
10
ID , DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
VGS = 5V
3
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1
VGS = 4V
0
0
4
2
8
6
10
8
6
4
TJ = 125oC
TJ = 25oC
TJ = -55oC
2
0
0
8
6
10
VG , GATE TO SOURCE VOLTAGE (V)
FIGURE 6. SATURATION CHARACTERISTICS
FIGURE 7. TRANSFER CHARACTERISTICS
2.2
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
1.5
rDS(ON) , DRAIN TO SOURCE
ON RESISTANCE (Ω)
4
2
VDS , DRAIN TO SOURCE VOLTAGE (V)
VGS = 10V
1.0
VGS = 20V
0.5
100
80
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDS > ID(ON) x rDS(ON) MAX
VGS = 8V
VGS = 6V
2
60
FIGURE 5. OUTPUT CHARACTERISTICS
5
4
40
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
VGS = 10V
20
0
1.8
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 2A
1.4
1
0.6
0.2
0
5
10
15
ID , DRAIN CURRENT (A)
NOTE: Heating effect of 2.0µs pulse is minimal.
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4-199
20
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
IRF620
Typical Performance Curves
Unless Otherwise Specified (Continued)
1000
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
ID = 250µA
1.15
800
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.25
1.05
0.95
0.85
600
CISS
400
COSS
200
CRSS
0.75
-40
0
40
80
120
0
160
10
0
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDS > ID(ON) x rDS(ON) MAX
TJ = 25oC
3
TJ = 125oC
2
1
0
0
2
4
6
8
10
TJ = 150oC
10
TJ = 150oC
1
TJ = 25oC
1
0
2
3
VSD , SOURCE TO DRAIN VOLTAGE (V)
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
ID = 6A
VDS = 40V
15
V20
DS = 100V
10
VDS = 160V
5
0
4
8
12
16
20
Qg , GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
4-200
50
TJ = 25oC
ID , DRAIN CURRENT (A)
0
40
PULSE DURATION = 80µs
100 DUTY CYCLE = 0.5% MAX
ISD , SOURCE TO DRAIN CURRENT (A)
4
30
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
TJ = -55oC
VGS , GATE TO SOURCE (V)
gfs, TRANSCONDUCTANCE (S)
5
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
4
IRF620
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
+
RG
REQUIRED PEAK IAS
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
RG
-
VDD
10%
10%
0
DUT
90%
VGS
VGS
0
FIGURE 17. SWITCHING TIME TEST CIRCUIT
0.2µF
50%
PULSE WIDTH
10%
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
12V
BATTERY
50%
VDD
Qg(TOT)
SAME TYPE
AS DUT
50kΩ
Qgd
0.3µF
VGS
Qgs
D
VDS
DUT
G
0
IG(REF)
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
4-201
IG(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRF620
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
4-202
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029