INTERSIL IRFBC40

IRFBC40
Data Sheet
July 1999
6.2A, 600V, 1.200 Ohm, N-Channel Power
MOSFET
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
File Number
2157.3
Features
• 6.2A, 600V
• rDS(ON) = 1.200Ω
• Single Pulse Avalanche Energy Rated
• Simple Drive Requirements
• Ease of Paralleling
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Formerly developmental type TA17426.
D
Ordering Information
PART NUMBER
IRFBC40
PACKAGE
TO-220AB
BRAND
G
IRFBC40
S
NOTE: When ordering, include the entire part number.
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
4-263
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRFBC40
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 2) (See Figures 15,16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
IRFBC40
600
600
6.2
3.9
25
±20
125
1.0
570
-55 to 150
UNITS
V
V
A
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
VGS = 0V, ID = 250µA, (Figure 11)
600
-
-
V
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
2.0
-
4.0
V
-
-
25
µA
-
-
250
µA
6.2
-
-
A
Zero Gate Voltage Drain Current
IDSS
TEST CONDITIONS
VDS = Rated BVDSS, VGS = 0V
VDS = 0.8 x Rated BVDSS, VGS = 0V, TJ = 125oC
On-State Drain Current (Note 4)
Gate to Source Leakage
ID(ON)
VGS = ±20V
-
-
±100
nA
rDS(ON)
VGS = 10V, ID = 3.4A (Figures 9, 10)
-
0.97
1.2
Ω
gfs
VDS ≥ 100V, IDS = 3.4A (Figure 13)
4.7
70
-
S
-
13
20
ns
-
18
27
ns
-
55
83
ns
IGSS
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 4)
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
VDS > ID(ON) x rDS(ON)MAX, VGS = 10V
VDD = 300V, ID ≈ 6.2A, RG = 9.1Ω, VGS = 10V,
RL = 47Ω Switching Speeds are Essentially
ndependent of Operating Temperature
td(OFF)
Fall Time
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
Gate to Source Charge
Qg(TOT)
Qgs
-
20
30
ns
VGS = 10V, ID = 6.2A, VDS = 0.7 x Rated BVDSS
(Figure 14) Gate Charge is Essentially Independent of
Operating Temperature
-
40
60
nC
-
5.5
-
nC
-
20
-
nC
VGS = 0V, VDS = 25V, f = 1.0MHz (Figure 12)
-
1300
-
pF
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
-
160
-
pF
Reverse Transfer Capacitance
CRSS
-
45
-
pF
-
4.5
-
nH
-
7.5
-
nH
-
-
1.0
oC/W
-
-
80
oC/W
Internal Drain Inductance
LD
Measured from the Drain
Lead, 6mm (0.25in) from
Package to Center of Die
Internal Source Inductance
LS
Measured from the Source
Lead, 6mm (0.25in) from
Header to Source Bonding
Pad
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
D
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to Ambient
RθJA
4-264
Typical Socket Mount
IRFBC40
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
ISD
Pulse Source to Drain Current (Note 3)
ISDM
TEST CONDITIONS
Modified MOSFET
Symbol Showing the
Integral Reverse P-N
Junction Diode
MIN
TYP
MAX
UNITS
-
-
6.2
A
-
-
25
A
-
-
1.5
V
200
450
940
ns
1.8
3.8
8.0
µC
D
G
S
Diode Source to Drain Voltage (Note 2)
VSD
Reverse Recovery Time
trr
Reverse Recovery Charge
QRR
TJ = 25oC, ISD = 6.2A, VGS = 0V (Figure 8)
TJ = 25oC, ISD = 6.2A, dISD/dt = 100A/µs
TJ = 25oC, ISD = 6.2A, dISD/dt = 100A/µs
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 16mH, RG = 25Ω, peak IAS = 6.8A
Typical Performance Curves
Unless Otherwise Specified
10
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
8
6
4
2
0
0
50
100
150
25
50
TC, CASE TEMPERATURE (oC)
75
100
125
150
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
1
ZθJC, NORMALIZED TRANSIENT
THERMAL IMPEDANCE (oC/W)
POWER DISSIPATION MULTIPLIER
1.2
0.5
0.2
0.1
0.1
0.05
0.02
0.02
0.01
10-2
10-3
10-5
PDM
SINGLE PULSE
t1
t2 t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
10-4
0.1
10-3
10-2
t1, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
4-265
1
10
IRFBC40
Typical Performance Curves
(Continued)
10
OPERATION IN THIS REGION
IS LIMITED BY rDS(ON)
10µs
10
100µs
1ms
1
10ms
TC = 25oC
TJ = MAX RATED
1
VGS = 6.0V
6
VGS = 5.0V
4
VGS = 4.5V
2
102
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 4.0V
0
103
0
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS =10V
6
VGS = 5.0V
4
2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDS ≥ 100V
VGS = 4.5V
VGS = 4.0V
0
0
3
6
9
12
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
TJ = 150oC
10-2
0
15
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
10
FIGURE 7. TRANSFER CHARACTERISTICS
5
102
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
DRAIN TO SOURCE ON RESISTANCE
ISD, SOURCE TO DRAIN CURRENT (A)
TJ = 25oC
0.1
FIGURE 6. SATURATION CHARACTERISTICS
10
TJ = 150oC
TJ = 25oC
1
0.1
0
300
10
VGS = 6.0V
VGS = 5.5V
8
60
120
180
240
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 5. OUTPUT CHARACTERISTICS
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
10
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
DC
SINGLE PULSE
0.1
VGS = 5.5V
VGS = 10V
8
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
102
Unless Otherwise Specified
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
4
3
VGS = 10V
2
VGS = 20V
1
0
0.3
0.6
0.9
1.2
VSD, SOURCE TO DRAIN VOLTAGE (V)
FIGURE 8. SOURCE TO DRAIN DIODE VOLTAGE
4-266
1.5
0
6
12
18
ID, DRAIN CURRENT (A)
24
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
30
IRFBC40
Typical Performance Curves
2.4
1.25
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID = 3.4A, VGS = 10V
1.8
1.2
0.6
0
-60
-40
-20
0
20
40
(Continued)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
3.0
Unless Otherwise Specified
60
1.15
1.05
0.95
0.85
0.75
-60
100 120 140 160
80
ID = 250µA
-40
-20
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
10
C, CAPACITANCE (pF)
gfs, TRANSCONDUCTANCE (S)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
1800
20
40
60
80
100 120 140 160
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
3000
2400
0
TJ, JUNCTION TEMPERATURE (oC)
CISS
1200
COSS
600
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDS ≥ 100V
8
TJ = 25oC
TJ = 150oC
6
4
2
CRSS
0
0
2
0
102
10
20
50
5
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
GATE TO SOURCE VOLTAGE (V)
20
0
2
4
6
ID, DRAIN CURRENT (A)
FIGURE 13. TRANSCONDUCTANCE vs DRAIN CURRENT
ID = 6.2A
16
VDS = 120V
VDS = 240V
12
VDS = 360V
8
4
0
0
12
24
36
48
60
Qg, GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
4-267
8
10
IRFBC40
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
+
RG
REQUIRED PEAK IAS
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01Ω
tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
RG
-
VDD
10%
10%
0
DUT
90%
VGS
VGS
0
FIGURE 17. SWITCHING TIME TEST CIRCUIT
0.2µF
50%
PULSE WIDTH
10%
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
12V
BATTERY
50%
VDD
Qg(TOT)
SAME TYPE
AS DUT
50kΩ
Qgd
0.3µF
VGS
Qgs
D
VDS
DUT
G
0
IG(REF)
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
4-268
IG(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRFBC40
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
4-269
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029