V23990 P629 L4x D3 14

V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
flow BOOST 0
1200 V / 40 A
Features
flow 0 housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V SiC diode
Target Applications
Schematic
● solar inverter
Types
● V23990-P629-L48-PM
● V23990-P629-L48Y-PM
● V23990-P629-L49-PM
● V23990-P629-L49Y-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
34
A
200
A
200
A2s
42
W
150
°C
Bypass Diode (D7,D8)
Repetitive peak reverse voltage
V RRM
Mean forward current
I FAV
Surge (non-repetitive) forward current
I FSM
2
T s=80°C
t p=10ms
T j=150°C
2
I t-value
I t
Power dissipation
P tot
Maximum Junction Temperature
T j=T jmax
T j=T jmax
T s=80°C
T jmax
Input Boost IGBT (T1,T2)
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CES
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
copyright Vincotech
T s=80°C
t p limited by T jmax
T j≤150°C
V CE<=V CES
Turn off safe operating area
Maximum Junction Temperature
T j=T jmax
V CC
T j=T jmax
T j≤150°C
V GE=15V
T jmax
1
T s=80°C
1200
V
41
A
120
A
80
A
113
W
±20
V
10
800
µs
V
175
°C
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
18
A
92
A
52
A
50
W
T jmax
175
°C
Peak Repetitive Reverse Voltage
V RRM
1200
V
Mean forward current
I FAV
T j=T jmax
6
A
Repetitive peak forward current
I FRM
t p limited by T jmax
6
A
Power dissipation
P tot
T j=T jmax
26
W
T jmax
150
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
4000
V
min 12,7
mm
Input Boost FWD (D1,D2,D4,D5)
Peak Repetitive Reverse Voltage
V RRM
Mean forward current
I FAV
T j=T jmax
Surge (non-repetitive) forward current
I FSM
t p=10ms
T s=80°C
T J=25°C
Repetitive peak forward current
I FRM
Half Sine Wave
Power dissipation
P tot
T j=T jmax
Maximum Junction Temperature
T s=80°C
Input Boost Inv. Diode (D9,D10)
Maximum Junction Temperature
T s=80°C
T s=80°C
Thermal Properties
Insulation Properties
Insulation voltage
t=2s
DC voltage
Creepage distance
Clearance
12mm housing with solder pins
min 9,55
mm
Clearance
12mm housing with pressfit pins
min 9,57
mm
Clearance
17mm housing
min 12,7
mm
copyright Vincotech
2
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
0,7
1,15
1,11
0,92
0,82
0,009
0,012
1,4
Bypass Diode (D7,D8)
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance junction to sink
R th(j-s)
1500
25
125
25
125
25
125
25
125
V
Ω
0,05
phase-change
material
ʎ=3,4W/mK
V
mA
K/W
1,67
Input Boost IGBT (T1,T2)
Gate emitter threshold voltage
V GE(th)
V GE=V CE
0,0015
Collector-emitter saturation voltage
V CEsat
15
40
Collector-emitter cut-off
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance junction to sink
R th(j-s)
5,2
5,8
6,4
1,7
2,1
2,48
2,6
0,25
120
none
t d(on)
t d(off)
25
150
25
150
25
150
25
150
R goff=16 Ω
R gon=16 Ω
15
700
40
25
150
25
150
25
150
25
150
25
150
25
150
V
V
mA
nA
Ω
35
34,2
26,4
27,2
372,2
430,8
9,4
69,8
2,061
2,19
1,78
3,039
ns
mWs
2360
f=1MHz
0
25
f=1MHz
0
25
25
230
pF
125
40
25
phase-change
material
ʎ=3,4W/mK
192
nC
0,84
K/W
Input Boost FWD (D1,D2,D4,D5)
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
E rec
Peak rate of fall of recovery current
Thermal resistance junction to sink
10
1200
R gon=16 Ω
15
700
40
( di rf/dt )max
R th(j-s)
25
150
25
150
25
150
25
150
25
150
25
150
25
150
phase-change
material
ʎ=3,4W/mK
1
1,46
1,8
2
300
7,78
8,1
9,5
9,5
0,04
0,04
0,002
0,002
2480
2790
1,88
V
µA
A
ns
µC
mWs
A/µs
K/W
Input Boost Inv. Diode (D9,D10)
Diode forward voltage
Thermal resistance junction to sink
copyright Vincotech
VF
R th(j-s)
3
phase-change
material
ʎ=3,4W/mK
25
1,65
125
1,58
2,72
3
V
K/W
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
25
R 100=1486 Ω
25
25
Power dissipation constant
21,5
-4,5
kΩ
+4,5
%
210
mW
25
3,5
mW/K
B-value
B(25/50)
25
3884
K
B-value
B(25/100)
25
3964
K
Vincotech NTC Reference
copyright Vincotech
F
4
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 2
Typical output characteristics
I C = f(V CE)
100
100
IC (A)
BOOST IGBT
IC(A)
Figure 1
Typical output characteristics
I C = f(V CE)
80
80
60
60
40
40
20
20
0
BOOST IGBT
0
0,0
At
tp =
Tj =
V GE from
1,0
2,0
3,0
4,0
V CE (V)
5,0
0,0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
BOOST IGBT
1,0
2,0
3,0
V CE (V) 5,0
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
I C = f(V GS)
4,0
BOOST FWD
Typical diode forward current as
a function of forward voltage
I F = f(V F)
40
IC (A)
IF (A)
40
30
30
20
20
10
10
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
µs
V
6
Tj =
8
25/125
10 V GE (V)
0
12
At
Tj =
tp =
°C
5
1
25/125
250
2
3
4
V F (V)
5
°C
µs
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 5
BOOST IGBT
Figure 6
BOOST IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
10
E (mWs)
E (mWs)
10
Eon High T
8
8
Eon Low T
Eon High T
6
6
Eon Low T
Eoff High T
Eoff High T
4
4
Eoff Low T
Eoff Low T
2
2
0
0
0
20
40
60
0
I C (A) 80
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
16
32
48
64
R G ( Ω ) 80
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
±15
V
ID =
40
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
0,008
E (mWs)
E (mWs)
0,008
BOOST FWD
0,006
0,006
0,004
0,004
Erec High T
0,002
0,002
Erec High T
Erec Low T
Erec Low T
0
0
R (K/W)
0
20
40
60
R (K/W)
0
I C (A) 80
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
copyright Vincotech
16
32
48
64
R G( Ω )
80
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
±15
V
IC =
40
A
6
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 9
BOOST IGBT
Figure 10
BOOST IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
10
t ( µs)
t ( µs)
10
1
tdoff
0,1
tdon
1
tdoff
tr
0,1
tdon
tr
tf
tf
0,01
0,01
0,001
0,001
0
20
40
60
I C (A) 80
0
With an inductive load at
Tj =
125
°C
V CE =
700
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
16
32
48
64
R G (Ω)
80
With an inductive load at
Tj =
125
°C
V CE =
700
V
V GE =
±15
V
IC =
40
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,02
t rr( µs)
t rr( µs)
0,02
BOOST FWD
0,016
trr Low T
0,016
0,012
trr High T
0,012
trr High T
trr Low T
0,008
0,008
0,004
0,004
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
±15
16
copyright Vincotech
40
60
0
I C (A) 80
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
16
25/125
700
40
±15
32
48
64
R Gon (Ω)
80
°C
V
A
V
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 13
BOOST FWD
Figure 14
BOOST FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
0,08
Qrr ( µC)
Qrr ( µC)
0,08
Qrr High T
0,06
0,06
Qrr Low T
Qrr High T
0,04
0,04
0,02
0,02
Qrr Low T
0,00
0,00
0
At
At
Tj =
V CE =
V GE =
R gon =
20
40
25/125
700
±15
°C
V
V
16
Ω
60
I C (A) 80
0
At
Tj =
VR =
IF=
V GS =
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
BOOST FWD
16
25/125
700
40
±15
32
48
64
80
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
BOOST FWD
20
IrrM (A)
IrrM (A)
20
R Gon ( Ω)
16
16
12
12
IRRM High T
8
8
IRRM Low T
IRRM High T
4
4
IRRM Low T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
±15
16
copyright Vincotech
40
60
I C (A) 80
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
16
25/125
700
40
±15
32
48
64
R Gon (Ω)
80
°C
V
A
V
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 17
BOOST FWD
Figure 18
BOOST FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
10000
direc / dt (A/ µs)
direc / dt (A/ µs)
5000
dI0/dt
dIrec/dt
4000
dI0/dt
dIrec/dt
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
25/125
700
°C
V
±15
16
V
Ω
60
I C (A) 80
0
At
Tj =
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
BOOST IGBT
16
32
VR =
IF=
25/125
700
40
°C
V
A
V GE =
±15
V
48
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
80
BOOST FWD
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
101
R Gon ( Ω)
64
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-5
10-4
At
D =
R th(j-s) =
tp/T
0,84
10-3
10-2
10-1
100
t p (s)
10-2
10110
K/W
IGBT thermal model values
R (K/W)
1,07E-01
3,91E-01
2,23E-01
9,23E-02
2,99E-02
0,00E+00
copyright Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-5
10-4
At
D =
R th(j-s) =
tp/T
1,88
10-3
10-2
10-1
100
t p (s)
10110
K/W
FWD thermal model values
τ (s)
1,41E+00
1,88E-01
5,60E-02
1,12E-02
1,11E-03
0,00E+00
R (K/W)
5,58E-02
1,47E-01
8,94E-01
4,33E-01
2,94E-01
5,99E-02
9
τ (s)
6,96E+00
5,43E-01
7,92E-02
1,33E-02
3,03E-03
6,32E-04
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 21
BOOST IGBT
Figure 22
BOOST IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T S)
function of heatsink temperature
I C = f(T S)
60
IC (A)
Ptot (W)
200
150
45
100
30
50
15
0
0
0
At
Tj =
50
175
100
150
Ts ( o C) 200
0
At
Tj =
V GE =
ºC
Figure 23
BOOST FWD
50
175
15
100
150
200
ºC
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T S)
Ts ( o C)
BOOST FWD
Forward current as a
function of heatsink temperature
I F = f(T S)
30
IF (A)
Ptot (W)
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T S ( o C)
200
0
At
Tj =
ºC
10
50
175
100
150
T S ( o C)
200
ºC
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 25
Safe operating area as a function
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
BOOST IGBT
17,5
IC (A)
VGE (V)
103
15
240V
102
12,5
960V
10uS
101
10
100uS
7,5
100
1mS
5
DC
10mS
10-1
2,5
100mS
0
100
101
At
D =
103
102
0
V GE =
Tj =
80
±15
T jmax
50
75
100
125
150
175
200
Qg (nC)
At
IC =
single pulse
TS =
25
V CE (V)
40
A
ºC
V
ºC
Figure 27
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
Output inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
tsc (µS)
IC (sc)
17,5
350
15
300
12,5
250
10
200
7,5
150
5
100
2,5
50
0
0
12
13
14
15
16
17
18
19
20
12
13
14
15
At
V CE =
Tj ≤
1200
V
150
ºC
copyright Vincotech
16
17
18
19
20
V GE (V)
V GE (V)
At
V CE ≤
Tj =
11
1200
V
150
ºC
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST
Figure 29
IGBT
Reverse bias safe operating area
I C = f(V CE)
IC (A)
100
IC MAX
Ic CHIP
80
MODULE
60
Ic
40
VCE MAX
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
copyright Vincotech
ºC
R gon =
R goff =
16
Ω
16
Ω
12
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
INPUT BOOST INV. Diode
Figure 1
INPUT BOOST INV. Diode
Figure 2
INPUT BOOST INV. Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
101
Zth(j-s) (K/W)
IF (A)
20
15
100
10
D=0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
5
0
10-2
0
At
Tj =
tp =
1
25/125
250
2
3
V F (V)
4
10-5
At
D =
R th(j-s) =
°C
µs
Figure 3
INPUT BOOST INV. Diode
10-4
10-3
10-2
100
tp (s)
101
tp/T
2,72
K/W
Figure 4
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
10-1
INPUT BOOST INV. Diode
Forward current as a
function of heatsink temperature
I F = f(T s)
8
IF (A)
Ptot (W)
60
45
6
30
4
15
2
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T S ( o C)
0
150
At
Tj =
ºC
13
30
150
60
90
120
T S ( o C)
150
ºC
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Bypass Diode
Figure 1
Bypass diode
Figure 2
Bypass diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
101
Zth(j-s) (K/W)
IF (A)
75
60
100
45
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
-1
10
15
0
0
0,5
At
Tj =
tp =
25/125
250
1
1,5
V F (V)
2
10-2
°C
µs
Figure 3
Bypass diode
10-5
10-4
At
D =
R th(j-s) =
tp/T
10-3
1,67
10-2
10-1
t p (s)
101
K/W
Figure 4
Power dissipation as a
function of heatsink temperature
P tot = f(T S)
100
Bypass diode
Forward current as a
function of heatsink temperature
I F = f(T S)
60
Ptot (W)
IF (A)
100
80
45
60
30
40
15
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T S ( o C)
150
0
At
Tj =
ºC
14
30
150
60
90
120
T S ( o C)
150
ºC
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
15
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Switching Definitions
General conditions
Tj
= 125 °C
= 16 Ω
R gon
R goff
= 16 Ω
Figure 1
BOOST IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
BOOST IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
125
%
125
%
tdoff
IC
100
100
VGE 90%
VCE 90%
VCE
VCE
75
75
tdon
VGE
IC
50
50
tEoff
25
25
IC 1%
VGE 10%
0
VCE 3%
IC 10%
0
tEon
VGE
-25
-0,2
-25
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
0
15
700
t doff =
t E off =
0,4
0,6
0,8
time (µs)
1
2,9
2,98
3,06
3,14
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
40
A
I C (100%) =
40
A
0,43
0,64
µs
µs
t don =
t E on =
0,034
0,230
µs
µs
Figure 3
BOOST IGBT
Turn-off Switching Waveforms & definition of t f
0
15
700
3,22
3,3
3,38
time(µs)
V
V
V
Figure 4
BOOST IGBT
Turn-on Switching Waveforms & definition of t r
125
125
fitted
%
%
100
100
IC 90%
IC
IC 90%
VCE
VCE
75
75
IC
tr
IC 60%
50
50
IC 40%
25
25
IC 10%
IC10%
0
-25
0,25
0
tf
-25
0,33
0,41
0,49
2,9
0,57 time (µs) 0,65
2,98
3,06
3,14
V C (100%) =
I C (100%) =
700
40
V
A
V C (100%) =
I C (100%) =
700
40
V
A
tf =
0,07
µs
tr =
0,027
µs
copyright Vincotech
16
3,22
time(µs)
3,3
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Switching Definitions
Figure 5
BOOST IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
BOOST IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Eon
Eoff
100
100
Poff
Pon
75
75
50
50
25
25
IC 1%
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
28,10
3,04
0,64
0,4
0,6
time (µs)
-25
2,95
0,8
kW
mJ
µs
3,01
P on (100%) =
E on (100%) =
t E on =
3,07
28,10
2,19
0,23
3,13
3,19
3,25
3,31
time(µs)
kW
mJ
µs
Figure 7
BOOST FWD
Turn-off Switching Waveforms & definition of t rr
125
%
Id
100
75
trr
50
25
Vd
0
IRRM 10%
IRRM 90%
IRRM 100%
-25
-50
3,02
fitted
3,035
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,05
700
40
-8
0,01
3,065
3,08
3,095
3,11
3,125
time(µs)
V
A
A
µs
17
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Switching Definitions
Figure 8
BOOST FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
BOOST FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
200
%
%
Qrr
150
100
Id
Erec
100
tQrr
tErec
50
50
0
Prec
0
-50
3,05
3,06
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,07
40
0,04
0,018
3,08
3,09
time(µs)
-50
3,06
3,1
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
18
3,07
3,08
28,10
0,002
0,018
3,09
time(µs)
3,1
kW
mJ
µs
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
Ordering Code and Marking - Outline - Pinout
datasheet
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
12mm housing with solder pins
V23990-P629-L48-PM
P629L48
P629L48
12mm housing with pressfit pins
V23990-P629-L48Y-PM
P629L48Y
P629L48Y
17mm housing with solder pins
V23990-P629-L49-PM
P629L49
P629L49
17mm housing with pressfit pins
V23990-P629-L49Y-PM
P629L49Y
P629L49Y
Outline
Pin table
Pin
X
Y
1
0
22,5
2
2,9
22,5
3
8,3
22,5
4
10,8
22,5
5
19,6
22,5
6
22,1
22,5
7
29,1
22,5
8
32
22,5
9
33,5
17,8
10
33,5
15,3
11
33,5
7,2
12
33,5
4,7
13
32
0
14
29,1
0
15
22,1
0
16
19,6
0
17
10,8
0
18
8,3
0
19
2,9
0
20
0
0
21
0
8
22
0
14,5
Pinout
copyright Vincotech
19
11 Sep. 2015 / Revision 3
V23990-P629-L48-PM V23990-P629-L48Y-PM
V23990-P629-L49-PM V23990-P629-L49Y-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
135
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
Package data
Package data for flow 0 packages see vincotech.com website.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
20
11 Sep. 2015 / Revision 3