V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet flow BOOST 0 1200 V / 40 A Features flow 0 housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode Target Applications Schematic ● solar inverter Types ● V23990-P629-L48-PM ● V23990-P629-L48Y-PM ● V23990-P629-L49-PM ● V23990-P629-L49Y-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 A 200 A 200 A2s 42 W 150 °C Bypass Diode (D7,D8) Repetitive peak reverse voltage V RRM Mean forward current I FAV Surge (non-repetitive) forward current I FSM 2 T s=80°C t p=10ms T j=150°C 2 I t-value I t Power dissipation P tot Maximum Junction Temperature T j=T jmax T j=T jmax T s=80°C T jmax Input Boost IGBT (T1,T2) Collector-emitter break down voltage DC collector current Pulsed collector current V CES IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC copyright Vincotech T s=80°C t p limited by T jmax T j≤150°C V CE<=V CES Turn off safe operating area Maximum Junction Temperature T j=T jmax V CC T j=T jmax T j≤150°C V GE=15V T jmax 1 T s=80°C 1200 V 41 A 120 A 80 A 113 W ±20 V 10 800 µs V 175 °C 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 18 A 92 A 52 A 50 W T jmax 175 °C Peak Repetitive Reverse Voltage V RRM 1200 V Mean forward current I FAV T j=T jmax 6 A Repetitive peak forward current I FRM t p limited by T jmax 6 A Power dissipation P tot T j=T jmax 26 W T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V min 12,7 mm Input Boost FWD (D1,D2,D4,D5) Peak Repetitive Reverse Voltage V RRM Mean forward current I FAV T j=T jmax Surge (non-repetitive) forward current I FSM t p=10ms T s=80°C T J=25°C Repetitive peak forward current I FRM Half Sine Wave Power dissipation P tot T j=T jmax Maximum Junction Temperature T s=80°C Input Boost Inv. Diode (D9,D10) Maximum Junction Temperature T s=80°C T s=80°C Thermal Properties Insulation Properties Insulation voltage t=2s DC voltage Creepage distance Clearance 12mm housing with solder pins min 9,55 mm Clearance 12mm housing with pressfit pins min 9,57 mm Clearance 17mm housing min 12,7 mm copyright Vincotech 2 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 0,7 1,15 1,11 0,92 0,82 0,009 0,012 1,4 Bypass Diode (D7,D8) Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance junction to sink R th(j-s) 1500 25 125 25 125 25 125 25 125 V Ω 0,05 phase-change material ʎ=3,4W/mK V mA K/W 1,67 Input Boost IGBT (T1,T2) Gate emitter threshold voltage V GE(th) V GE=V CE 0,0015 Collector-emitter saturation voltage V CEsat 15 40 Collector-emitter cut-off I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance junction to sink R th(j-s) 5,2 5,8 6,4 1,7 2,1 2,48 2,6 0,25 120 none t d(on) t d(off) 25 150 25 150 25 150 25 150 R goff=16 Ω R gon=16 Ω 15 700 40 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA Ω 35 34,2 26,4 27,2 372,2 430,8 9,4 69,8 2,061 2,19 1,78 3,039 ns mWs 2360 f=1MHz 0 25 f=1MHz 0 25 25 230 pF 125 40 25 phase-change material ʎ=3,4W/mK 192 nC 0,84 K/W Input Boost FWD (D1,D2,D4,D5) Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy E rec Peak rate of fall of recovery current Thermal resistance junction to sink 10 1200 R gon=16 Ω 15 700 40 ( di rf/dt )max R th(j-s) 25 150 25 150 25 150 25 150 25 150 25 150 25 150 phase-change material ʎ=3,4W/mK 1 1,46 1,8 2 300 7,78 8,1 9,5 9,5 0,04 0,04 0,002 0,002 2480 2790 1,88 V µA A ns µC mWs A/µs K/W Input Boost Inv. Diode (D9,D10) Diode forward voltage Thermal resistance junction to sink copyright Vincotech VF R th(j-s) 3 phase-change material ʎ=3,4W/mK 25 1,65 125 1,58 2,72 3 V K/W 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P 25 R 100=1486 Ω 25 25 Power dissipation constant 21,5 -4,5 kΩ +4,5 % 210 mW 25 3,5 mW/K B-value B(25/50) 25 3884 K B-value B(25/100) 25 3964 K Vincotech NTC Reference copyright Vincotech F 4 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 2 Typical output characteristics I C = f(V CE) 100 100 IC (A) BOOST IGBT IC(A) Figure 1 Typical output characteristics I C = f(V CE) 80 80 60 60 40 40 20 20 0 BOOST IGBT 0 0,0 At tp = Tj = V GE from 1,0 2,0 3,0 4,0 V CE (V) 5,0 0,0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 BOOST IGBT 1,0 2,0 3,0 V CE (V) 5,0 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GS) 4,0 BOOST FWD Typical diode forward current as a function of forward voltage I F = f(V F) 40 IC (A) IF (A) 40 30 30 20 20 10 10 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 µs V 6 Tj = 8 25/125 10 V GE (V) 0 12 At Tj = tp = °C 5 1 25/125 250 2 3 4 V F (V) 5 °C µs 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 5 BOOST IGBT Figure 6 BOOST IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 10 E (mWs) E (mWs) 10 Eon High T 8 8 Eon Low T Eon High T 6 6 Eon Low T Eoff High T Eoff High T 4 4 Eoff Low T Eoff Low T 2 2 0 0 0 20 40 60 0 I C (A) 80 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 16 32 48 64 R G ( Ω ) 80 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = ±15 V ID = 40 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,008 E (mWs) E (mWs) 0,008 BOOST FWD 0,006 0,006 0,004 0,004 Erec High T 0,002 0,002 Erec High T Erec Low T Erec Low T 0 0 R (K/W) 0 20 40 60 R (K/W) 0 I C (A) 80 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω copyright Vincotech 16 32 48 64 R G( Ω ) 80 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = ±15 V IC = 40 A 6 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 9 BOOST IGBT Figure 10 BOOST IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 10 t ( µs) t ( µs) 10 1 tdoff 0,1 tdon 1 tdoff tr 0,1 tdon tr tf tf 0,01 0,01 0,001 0,001 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 125 °C V CE = 700 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 16 32 48 64 R G (Ω) 80 With an inductive load at Tj = 125 °C V CE = 700 V V GE = ±15 V IC = 40 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,02 t rr( µs) t rr( µs) 0,02 BOOST FWD 0,016 trr Low T 0,016 0,012 trr High T 0,012 trr High T trr Low T 0,008 0,008 0,004 0,004 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 ±15 16 copyright Vincotech 40 60 0 I C (A) 80 At Tj = VR= IF= V GE = °C V V Ω 7 16 25/125 700 40 ±15 32 48 64 R Gon (Ω) 80 °C V A V 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 13 BOOST FWD Figure 14 BOOST FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 0,08 Qrr ( µC) Qrr ( µC) 0,08 Qrr High T 0,06 0,06 Qrr Low T Qrr High T 0,04 0,04 0,02 0,02 Qrr Low T 0,00 0,00 0 At At Tj = V CE = V GE = R gon = 20 40 25/125 700 ±15 °C V V 16 Ω 60 I C (A) 80 0 At Tj = VR = IF= V GS = Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) BOOST FWD 16 25/125 700 40 ±15 32 48 64 80 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) BOOST FWD 20 IrrM (A) IrrM (A) 20 R Gon ( Ω) 16 16 12 12 IRRM High T 8 8 IRRM Low T IRRM High T 4 4 IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 ±15 16 copyright Vincotech 40 60 I C (A) 80 0 At Tj = VR= IF= V GE = °C V V Ω 8 16 25/125 700 40 ±15 32 48 64 R Gon (Ω) 80 °C V A V 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 17 BOOST FWD Figure 18 BOOST FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 10000 direc / dt (A/ µs) direc / dt (A/ µs) 5000 dI0/dt dIrec/dt 4000 dI0/dt dIrec/dt 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 40 25/125 700 °C V ±15 16 V Ω 60 I C (A) 80 0 At Tj = Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) BOOST IGBT 16 32 VR = IF= 25/125 700 40 °C V A V GE = ±15 V 48 Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 80 BOOST FWD 101 Zth(j-s) (K/W) Zth(j-s) (K/W) 101 R Gon ( Ω) 64 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-5 10-4 At D = R th(j-s) = tp/T 0,84 10-3 10-2 10-1 100 t p (s) 10-2 10110 K/W IGBT thermal model values R (K/W) 1,07E-01 3,91E-01 2,23E-01 9,23E-02 2,99E-02 0,00E+00 copyright Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-5 10-4 At D = R th(j-s) = tp/T 1,88 10-3 10-2 10-1 100 t p (s) 10110 K/W FWD thermal model values τ (s) 1,41E+00 1,88E-01 5,60E-02 1,12E-02 1,11E-03 0,00E+00 R (K/W) 5,58E-02 1,47E-01 8,94E-01 4,33E-01 2,94E-01 5,99E-02 9 τ (s) 6,96E+00 5,43E-01 7,92E-02 1,33E-02 3,03E-03 6,32E-04 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 21 BOOST IGBT Figure 22 BOOST IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T S) function of heatsink temperature I C = f(T S) 60 IC (A) Ptot (W) 200 150 45 100 30 50 15 0 0 0 At Tj = 50 175 100 150 Ts ( o C) 200 0 At Tj = V GE = ºC Figure 23 BOOST FWD 50 175 15 100 150 200 ºC V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T S) Ts ( o C) BOOST FWD Forward current as a function of heatsink temperature I F = f(T S) 30 IF (A) Ptot (W) 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T S ( o C) 200 0 At Tj = ºC 10 50 175 100 150 T S ( o C) 200 ºC 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 25 Safe operating area as a function BOOST IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) BOOST IGBT 17,5 IC (A) VGE (V) 103 15 240V 102 12,5 960V 10uS 101 10 100uS 7,5 100 1mS 5 DC 10mS 10-1 2,5 100mS 0 100 101 At D = 103 102 0 V GE = Tj = 80 ±15 T jmax 50 75 100 125 150 175 200 Qg (nC) At IC = single pulse TS = 25 V CE (V) 40 A ºC V ºC Figure 27 Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Output inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) tsc (µS) IC (sc) 17,5 350 15 300 12,5 250 10 200 7,5 150 5 100 2,5 50 0 0 12 13 14 15 16 17 18 19 20 12 13 14 15 At V CE = Tj ≤ 1200 V 150 ºC copyright Vincotech 16 17 18 19 20 V GE (V) V GE (V) At V CE ≤ Tj = 11 1200 V 150 ºC 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST Figure 29 IGBT Reverse bias safe operating area I C = f(V CE) IC (A) 100 IC MAX Ic CHIP 80 MODULE 60 Ic 40 VCE MAX 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 copyright Vincotech ºC R gon = R goff = 16 Ω 16 Ω 12 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet INPUT BOOST INV. Diode Figure 1 INPUT BOOST INV. Diode Figure 2 INPUT BOOST INV. Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 101 Zth(j-s) (K/W) IF (A) 20 15 100 10 D=0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 5 0 10-2 0 At Tj = tp = 1 25/125 250 2 3 V F (V) 4 10-5 At D = R th(j-s) = °C µs Figure 3 INPUT BOOST INV. Diode 10-4 10-3 10-2 100 tp (s) 101 tp/T 2,72 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T s) 10-1 INPUT BOOST INV. Diode Forward current as a function of heatsink temperature I F = f(T s) 8 IF (A) Ptot (W) 60 45 6 30 4 15 2 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T S ( o C) 0 150 At Tj = ºC 13 30 150 60 90 120 T S ( o C) 150 ºC 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Bypass Diode Figure 1 Bypass diode Figure 2 Bypass diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 101 Zth(j-s) (K/W) IF (A) 75 60 100 45 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 -1 10 15 0 0 0,5 At Tj = tp = 25/125 250 1 1,5 V F (V) 2 10-2 °C µs Figure 3 Bypass diode 10-5 10-4 At D = R th(j-s) = tp/T 10-3 1,67 10-2 10-1 t p (s) 101 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T S) 100 Bypass diode Forward current as a function of heatsink temperature I F = f(T S) 60 Ptot (W) IF (A) 100 80 45 60 30 40 15 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T S ( o C) 150 0 At Tj = ºC 14 30 150 60 90 120 T S ( o C) 150 ºC 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 15 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Switching Definitions General conditions Tj = 125 °C = 16 Ω R gon R goff = 16 Ω Figure 1 BOOST IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 BOOST IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 125 % 125 % tdoff IC 100 100 VGE 90% VCE 90% VCE VCE 75 75 tdon VGE IC 50 50 tEoff 25 25 IC 1% VGE 10% 0 VCE 3% IC 10% 0 tEon VGE -25 -0,2 -25 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = 0 15 700 t doff = t E off = 0,4 0,6 0,8 time (µs) 1 2,9 2,98 3,06 3,14 V V V V GE (0%) = V GE (100%) = V C (100%) = 40 A I C (100%) = 40 A 0,43 0,64 µs µs t don = t E on = 0,034 0,230 µs µs Figure 3 BOOST IGBT Turn-off Switching Waveforms & definition of t f 0 15 700 3,22 3,3 3,38 time(µs) V V V Figure 4 BOOST IGBT Turn-on Switching Waveforms & definition of t r 125 125 fitted % % 100 100 IC 90% IC IC 90% VCE VCE 75 75 IC tr IC 60% 50 50 IC 40% 25 25 IC 10% IC10% 0 -25 0,25 0 tf -25 0,33 0,41 0,49 2,9 0,57 time (µs) 0,65 2,98 3,06 3,14 V C (100%) = I C (100%) = 700 40 V A V C (100%) = I C (100%) = 700 40 V A tf = 0,07 µs tr = 0,027 µs copyright Vincotech 16 3,22 time(µs) 3,3 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Switching Definitions Figure 5 BOOST IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 BOOST IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % Eon Eoff 100 100 Poff Pon 75 75 50 50 25 25 IC 1% VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 28,10 3,04 0,64 0,4 0,6 time (µs) -25 2,95 0,8 kW mJ µs 3,01 P on (100%) = E on (100%) = t E on = 3,07 28,10 2,19 0,23 3,13 3,19 3,25 3,31 time(µs) kW mJ µs Figure 7 BOOST FWD Turn-off Switching Waveforms & definition of t rr 125 % Id 100 75 trr 50 25 Vd 0 IRRM 10% IRRM 90% IRRM 100% -25 -50 3,02 fitted 3,035 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,05 700 40 -8 0,01 3,065 3,08 3,095 3,11 3,125 time(µs) V A A µs 17 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Switching Definitions Figure 8 BOOST FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 BOOST FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 200 % % Qrr 150 100 Id Erec 100 tQrr tErec 50 50 0 Prec 0 -50 3,05 3,06 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,07 40 0,04 0,018 3,08 3,09 time(µs) -50 3,06 3,1 A µC µs P rec (100%) = E rec (100%) = t E rec = 18 3,07 3,08 28,10 0,002 0,018 3,09 time(µs) 3,1 kW mJ µs 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM Ordering Code and Marking - Outline - Pinout datasheet Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as 12mm housing with solder pins V23990-P629-L48-PM P629L48 P629L48 12mm housing with pressfit pins V23990-P629-L48Y-PM P629L48Y P629L48Y 17mm housing with solder pins V23990-P629-L49-PM P629L49 P629L49 17mm housing with pressfit pins V23990-P629-L49Y-PM P629L49Y P629L49Y Outline Pin table Pin X Y 1 0 22,5 2 2,9 22,5 3 8,3 22,5 4 10,8 22,5 5 19,6 22,5 6 22,1 22,5 7 29,1 22,5 8 32 22,5 9 33,5 17,8 10 33,5 15,3 11 33,5 7,2 12 33,5 4,7 13 32 0 14 29,1 0 15 22,1 0 16 19,6 0 17 10,8 0 18 8,3 0 19 2,9 0 20 0 0 21 0 8 22 0 14,5 Pinout copyright Vincotech 19 11 Sep. 2015 / Revision 3 V23990-P629-L48-PM V23990-P629-L48Y-PM V23990-P629-L49-PM V23990-P629-L49Y-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 20 11 Sep. 2015 / Revision 3