V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet flow BOOST 0 1200 V / 40 A Features flow 0 12mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode ● Antiparallel IGBT protection diode with high current Target Applications ● solar inverter Schematic Types ● V23990-P629-L63-PM ● V23990-P629-L63Y-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 38 45 A 220 A 200 A2s 47 71 W 150 °C Bypass Diode\Input Boost Prot. Diode Repetitive peak reverse voltage V RRM Mean forward current I FAV Surge (non-repetitive) forward current I FSM t p=10ms T j=25°C 2 I2t-value I t Power dissipation P tot Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C T j=T jmax T s=80°C T c=80°C T jmax Input Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current V CES IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech T j = T jmax T s=80°C T c=80°C t p limited by T jmax T j = T jmax T j≤150°C V GE=15V T jmax 1 T s=80°C T c=80°C 1200 V 43 57 A 160 A 145 220 W ±20 V 10 600 µs V 150 °C 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 28 34 A 138 A 95 A2s 78 A 81 123 W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C Input Boost FWD Peak Repetitive Reverse Voltage V RRM Mean forward current I FAV Surge (non-repetitive) forward current I FSM I2t-value Repetitive peak forward current Power dissipation Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C t p=10ms T j=25°C 2 I t I FRM P tot t p limited by T jmax T s=80°C T c=80°C T j=T jmax Thermal Properties Insulation Properties Insulation voltage t=2s DC voltage Creepage distance Clearance Comparative Tracking Index copyright Vincotech CTI 4000 V min 12,7 mm 9,55 mm >200 2 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 0,8 1,14 1,10 0,92 0,80 0,009 0,012 1,9 Bypass Diode\Input Boost Prot. Diode Forward voltage VF Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance junction to sink Thermal resistance junction to sink 25 1600 25 125 25 125 25 125 25 125 V V Ω 0,05 mA R th(j-s) phase-change material ʎ=3,4W/mK 1,49 K/W R th(j-s) Thermal grease tickness≤ 50um λ= 1 W/K 1,73 K/W V GE(th) V GE=V CE Input Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,00025 15 50 Collector-emitter cut-off I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance junction to sink Thermal resistance junction to sink 3,5 5,5 7,5 1,5 2,89 3,09 3,2 1 250 250 R goff=4 Ω R gon=4 Ω 15 700 40 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω none tr t d(off) 25 125 25 125 25 125 25 125 24 23 9 11 178 208 11 39 0,467 0,550 0,934 1,760 ns mWs 3200 f=1MHz 25 0 25 370 pF 125 15 600 40 25 220 330 nC R th(j-s) phase-change material ʎ=3,4W/mK 0,65 K/W R th(j-s) Thermal grease tickness≤ 50um λ= 1 W/K 0,79 K/W Input Boost FWD Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy E rec Peak rate of fall of recovery current Thermal resistance junction to sink Thermal resistance junction to case copyright Vincotech 15 1200 R gon=4 Ω 15 700 ( di rf/dt )max 40 25 1,43 125 25 125 25 125 25 125 25 125 25 125 25 125 1,69 2 150 17 15 10 9 0,116 0,109 0,016 0,014 6570 5559 V µA A ns µC mWs A/µs R th(j-s) phase-change material ʎ=3,4W/mK 1,17 K/W R th(j-s) Thermal grease tickness≤ 50um λ= 1 W/K 1,36 K/W 3 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P T=25 R 100=1486 Ω T=100 Power dissipation constant 22 -12 +14 200 mW T=25 2 mW/K K B (25/50) Tol. ±3% T=25 3950 B-value B (25/100) Tol. ±3% T=25 3998 copyright Vincotech % T=25 B-value Vincotech NTC Reference kΩ K B 4 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 2 Typical output characteristics I C = f(V CE) 120 120 IC (A) IGBT IC(A) Figure 1 Typical output characteristics I C = f(V CE) 90 90 60 60 30 30 0 IGBT 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 250 µs 126 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) IGBT 50 IF (A) ID (A) 50 5 40 40 30 30 20 20 10 10 0 0 0 At tp = V CE = 2 100 10 copyright Vincotech 4 µs V 6 Tj = 8 25/125 V GE (V) 10 0 At tp = °C 5 1 250 2 µs 3 Tj = 4 25/125 V F (V) 5 °C 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 5 E (mWs) E (mWs) 5 IGBT 4 4 3 3 Eoff High T Eon High T Eoff High T Eoff Low T 2 2 Eon Low T 1 Eoff Low T Eon High T Eon Low T 1 0 0 0 20 40 60 80 0 I C (A) With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V IC = 40 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,025 E (mWs) E (mWs) 0,025 FWD 0,02 0,02 0,015 0,015 Erec High T Erec Low T Erec Low T 0,01 0,01 Erec High T 0,005 0,005 0 R (K/W) 0 0 20 40 60 I C (A) R (K/W) 0 80 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω copyright Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V IC = 40 A 6 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 IGBT tdoff tdoff 0,1 0,1 tf tf tdon tdon tr 0,01 0,01 tr 0,001 0,001 0 20 40 60 0 80 I C (A) With an inductive load at Tj = 125 °C V CE = 700 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 125 °C V CE = 700 V V GE = 15 V IC = 40 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,014 t rr( µs) t rr( µs) 0,014 FWD 0,012 0,012 0,01 0,01 trr High T trr High T trr Low T 0,008 0,008 trr Low T 0,006 0,006 0,004 0,004 0,002 0,002 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 0 80 At Tj = VR= IF= V GE = °C V V Ω 7 4 25/125 700 40 15 8 12 16 R Gon (Ω) 20 °C V A V 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr ( µC) 0,2 Qrr ( µC) 0,2 FWD Qrr Low T Qrr High T 0,15 0,15 Qrr Low T 0,1 0,1 0,05 0,05 0 Qrr High T 0 0 At At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 40 60 I C (A) 80 0 At Tj = °C V V Ω VR= IF= V GE = Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 4 25/125 700 40 15 8 12 16 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 40 IrrM (A) IrrM (A) 25 R Gon ( Ω) IRRM Low T 20 30 15 20 IRRM High T 10 10 5 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 0 80 At Tj = VR= IF= V GE = °C V V Ω 8 4 25/125 700 40 15 8 12 16 R Gon (Ω) 20 °C V A V 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 12000 15000 dI0/dt direc / dt (A/ µs) dI0/dt direc / dt (A/ µs) FWD dIrec/dt 10000 dIrec/dt 12000 8000 9000 6000 6000 4000 3000 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 40 60 80 I C (A) 0 At Tj = °C V V Ω VR= IF= V GE = Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width Z thJS = f(t p) IGBT 4 25/125 700 40 15 8 12 16 R Gon ( Ω) °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJS = f(t p) FWD 101 ZthJH (K/W) ZthJS (K/W) 100 20 100 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10 10 10-2 10-5 -2 10-5 At D = 10-4 10-3 10-2 10-1 100 t p (s) 101 At D = tp/T phase-change material Thermal grease R thJS = R thJS = 0,65 K/W K/W 0,79 IGBT thermal model values phase-change material Thermal grease R (K/W) Tau (s) R (K/W) Tau (s) 0,173 0,561 0,208 0,561 0,381 0,125 0,459 0,125 0,078 0,010 0,094 0,010 -0,003 0,048 -0,004 0,048 0,026 0,001 0,032 0,001 copyright Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 -1 10-4 10-3 10-2 10-1 100 t p (s) 101 tp/T phase-change material Thermal grease R thJS = R thJS = 1,17 K/W 1,36 K/W FWD thermal model values phase-change material Thermal grease R (K/W) Tau (s) R (K/W) Tau (s) 0,043 9,803 0,050 9,803 0,101 0,815 0,118 0,815 0,383 0,098 0,445 0,098 0,308 0,026 0,358 0,026 0,233 0,005 0,271 0,005 0,098 0,001 0,114 0,001 9 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 21 Power dissipation as a function of sink temperature P tot = f(T s) IGBT Figure 22 Collector/Drain current as a function of sink temperature I C = f(T s) 70 IC (A) Ptot (W) 240 IGBT 210 60 180 50 150 40 120 30 90 20 60 10 30 0 0 0 At Tj = 50 150 100 150 Ts ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of sink temperature P tot = f(T s) FWD 50 150 15 100 150 Ts ( o C) ºC V Figure 24 Forward current as a function of sink temperature I F = f(T s) FWD 50 IF (A) Ptot (W) 175 200 150 40 125 30 100 75 20 50 10 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = ºC 10 50 175 100 150 T s ( o C) 200 ºC 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) IGBT Figure 26 Gate voltage vs Gate charge V GE = f(Q g) 16 IC (A) UGE (V) 1103 14 10uS 10 IGBT 2 240V 12 960V 10 100uS 8 101 6 1mS 10 4 0 10mS 2 100mS DC 100 101 At D = Ts = V GE = Tj = 10 0 103 2 0 V CE (V) 50 At IC = single pulse 80 ºC V 15 T jmax ºC Figure 27 IGBT 40 100 150 200 250 Qg (nC) 300 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) tsc (µS) IC (sc) 17,5 400 350 15 300 12,5 250 10 200 7,5 150 5 100 2,5 50 0 0 12 At V CE = Tj ≤ 13 14 15 600 V 150 ºC copyright Vincotech 16 17 18 19 V GE (V) 20 12 At V CE ≤ Tj = 11 13 14 600 V 25 ºC 15 16 17 V GE (V) 18 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Input Boost IGBT / Input Boost FWD Figure 29 Reverse bias safe operating area IGBT I C = f(V CE) IC (A) 100 IC MAX MODULE Ic CHIP 80 VCE MAX Ic 60 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At T vj ≤ I C MAX= U CE MAX= 150 80 1200 copyright Vincotech ºC A V 12 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Bypass Diode\Input Boost Prot. Diode Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJS = f(t p) 75 1 ZthJS (K/W) IF (A) 10 Diode 60 100 45 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 30 10-1 15 0 0 0,4 At Tj = tp = 25/125 250 0,8 1,2 1,6 V F (V) 10 2 -2 10-5 10-4 At D = °C µs R thJH Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T s) Diode 10-3 10-2 10-1 10 2 100 t p (s) tp/T phase-change material = 1,49 K/W Thermal grease R thJH = 1,73 K/W Figure 4 Forward current as a function of sink temperature I F = f(T s ) Diode 50 Ptot (W) IF (A) 120 101 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T s ( o C) 150 0 At Tj = ºC 13 30 150 60 90 120 T s ( o C) 150 ºC 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Switching Definitions Boost General conditions Tj = 125 °C = 4Ω R gon R goff = 4Ω Figure 1 IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 125 % 150 % tdoff VCE VCE 90% VGE 90% IC 125 100 100 VCE 75 VGE VGE 75 IC 50 tdon tEoff 50 25 IC 1% 25 VGE 10% 0 VCE 3% IC 10% 0 tEon -25 -0,15 -0,05 0,05 0,15 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = 0 15 700 t doff = t E off = 0,25 0,35 -25 2,95 0,45 0,55 time (µs) 3 3,05 V V V V GE (0%) = V GE (100%) = V C (100%) = 40 A I C (100%) = 40 A 0,320 0,468 µs µs t don = t E on = 0,027 0,157 µs µs Figure 3 Turn-off Switching Waveforms & definition of t f IGBT 0 15 700 3,1 3,15 time(µs) V V V Figure 4 Turn-on Switching Waveforms & definition of t r 125 3,2 IGBT 150 fitted % IC 100 % VCE IC 125 IC 90% VCE 100 75 IC 90% 75 IC 60% tr 50 IC 40% 50 25 25 IC10% 0 -25 0,15 IC 10% tf 0,2 0,25 0,3 0 0,35 0,4 -25 2,95 0,45 time (µs) 3 3,05 V C (100%) = I C (100%) = 700 40 V A V C (100%) = I C (100%) = 700 40 V A tf = 0,057 µs tr = 0,017 µs copyright Vincotech 15 3,1 time(µs) 3,15 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Switching Definitions Boost Figure 5 Turn-off Switching Waveforms & definition of t Eoff IGBT Figure 6 Turn-on Switching Waveforms & definition of t Eon 125 125 % % Eoff 100 Eon IGBT Pon 100 Poff 75 75 50 50 25 25 IC 1% VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,1 0 P off (100%) = E off (100%) = t E off = 0,1 0,2 0,3 28,02 2,43 0,468 0,4 -25 2,95 0,5 0,6 time (µs) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Turn-off Switching Waveforms & definition of t rr 3 3,05 28,02 1,22 0,1567 3,1 3,15 3,2 time(µs) 3,25 kW mJ µs IGBT 125 % Id 100 75 trr 50 25 0 fitted Vd IRRM 10% -25 IRRM 90% IRRM 100% -50 -75 3,02 3,03 V C (100%) = I C (100%) = I RRM (100%) = t rr = copyright Vincotech 3,04 700 40 -15 0,009 3,05 3,06 3,07 3,08 time(µs) V A A µs 16 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Switching Definitions Boost Figure 8 Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) FWD Figure 9 Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 200 FWD 200 % % Erec Qrr 150 150 Id 100 100 tErec tQrr 50 50 Prec 0 0 -50 3 3,02 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,04 40 0,21 0,02 3,06 3,08 time(µs) -50 3,03 3,1 A µC µs P rec (100%) = E rec (100%) = t E rec = 17 3,04 3,05 28,02 0,07 0,02 3,06 time(µs) 3,07 kW mJ µs 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code w\o thermal paste 12mm housing w\o thermal paste 12mm housing with Press-fit pins in DataMatrix as in packaging barcode as V23990-P629-L63 P629-L63 P629-L63 V23990-P629-L63Y P629-L63Y P629-L63Y Outline Pin table Pin X Y Function 1 2 3 4 5 0 2,9 8,3 10,8 19,6 22,5 22,5 22,5 22,5 22,5 G25 S25 DCBoost1 DC+Boost 6 7 22,1 29,1 22,5 22,5 DC+Boost DC+In1 8 9 32 33,5 22,5 17,8 DC+In1 Boost1 10 11 33,5 33,5 15,3 7,2 Boost1 Boost2 12 13 33,5 32 4,7 0 Boost2 DC+In2 14 15 16 17 18 19 20 29,1 22,1 19,6 10,8 8,3 2,9 0 0 0 0 0 0 0 0 DC+In2 DC+Boost DC+Boost DC-Boost2 DC-Boost2 S27 G27 21 22 0 0 8 14,5 Therm1 Therm2 Pinout Identification ID Component Voltage Current Function T25,T27 IGBT 1200V 40A Input Boost Switch D25,D27 FWD 1200V 15A Input Boost Diode D26,D28,D45,D47 Rectifier 1600V 25A Bypass Diode\Input Boost Prot. Diode Rt NTC - - Thermistor copyright Vincotech 18 Comment 22 Sep. 2015 / Revision 3 V23990-P629-L63-PM V23990-P629-L63Y-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. Document No.: Date: V23990-P629-L63-D3-14 22 Sep. 2015 Modification: Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 22 Sep. 2015 / Revision 3