V23990 P629 L63x D3 14

V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
flow BOOST 0
1200 V / 40 A
Features
flow 0 12mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V SiC diode
● Antiparallel IGBT protection diode with high current
Target Applications
● solar inverter
Schematic
Types
● V23990-P629-L63-PM
● V23990-P629-L63Y-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
38
45
A
220
A
200
A2s
47
71
W
150
°C
Bypass Diode\Input Boost Prot. Diode
Repetitive peak reverse voltage
V RRM
Mean forward current
I FAV
Surge (non-repetitive) forward current
I FSM
t p=10ms
T j=25°C
2
I2t-value
I t
Power dissipation
P tot
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
T j=T jmax
T s=80°C
T c=80°C
T jmax
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CES
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
T j = T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j = T jmax
T j≤150°C
V GE=15V
T jmax
1
T s=80°C
T c=80°C
1200
V
43
57
A
160
A
145
220
W
±20
V
10
600
µs
V
150
°C
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
28
34
A
138
A
95
A2s
78
A
81
123
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
Input Boost FWD
Peak Repetitive Reverse Voltage
V RRM
Mean forward current
I FAV
Surge (non-repetitive) forward current
I FSM
I2t-value
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
t p=10ms
T j=25°C
2
I t
I FRM
P tot
t p limited by T jmax
T s=80°C
T c=80°C
T j=T jmax
Thermal Properties
Insulation Properties
Insulation voltage
t=2s
DC voltage
Creepage distance
Clearance
Comparative Tracking Index
copyright Vincotech
CTI
4000
V
min 12,7
mm
9,55
mm
>200
2
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
0,8
1,14
1,10
0,92
0,80
0,009
0,012
1,9
Bypass Diode\Input Boost Prot. Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance junction to sink
Thermal resistance junction to sink
25
1600
25
125
25
125
25
125
25
125
V
V
Ω
0,05
mA
R th(j-s)
phase-change
material
ʎ=3,4W/mK
1,49
K/W
R th(j-s)
Thermal grease
tickness≤ 50um
λ= 1 W/K
1,73
K/W
V GE(th)
V GE=V CE
Input Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,00025
15
50
Collector-emitter cut-off
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance junction to sink
Thermal resistance junction to sink
3,5
5,5
7,5
1,5
2,89
3,09
3,2
1
250
250
R goff=4 Ω
R gon=4 Ω
15
700
40
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
none
tr
t d(off)
25
125
25
125
25
125
25
125
24
23
9
11
178
208
11
39
0,467
0,550
0,934
1,760
ns
mWs
3200
f=1MHz
25
0
25
370
pF
125
15
600
40
25
220
330
nC
R th(j-s)
phase-change
material
ʎ=3,4W/mK
0,65
K/W
R th(j-s)
Thermal grease
tickness≤ 50um
λ= 1 W/K
0,79
K/W
Input Boost FWD
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
E rec
Peak rate of fall of recovery current
Thermal resistance junction to sink
Thermal resistance junction to case
copyright Vincotech
15
1200
R gon=4 Ω
15
700
( di rf/dt )max
40
25
1,43
125
25
125
25
125
25
125
25
125
25
125
25
125
1,69
2
150
17
15
10
9
0,116
0,109
0,016
0,014
6570
5559
V
µA
A
ns
µC
mWs
A/µs
R th(j-s)
phase-change
material
ʎ=3,4W/mK
1,17
K/W
R th(j-s)
Thermal grease
tickness≤ 50um
λ= 1 W/K
1,36
K/W
3
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
T=25
R 100=1486 Ω
T=100
Power dissipation constant
22
-12
+14
200
mW
T=25
2
mW/K
K
B (25/50)
Tol. ±3%
T=25
3950
B-value
B (25/100)
Tol. ±3%
T=25
3998
copyright Vincotech
%
T=25
B-value
Vincotech NTC Reference
kΩ
K
B
4
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 2
Typical output characteristics
I C = f(V CE)
120
120
IC (A)
IGBT
IC(A)
Figure 1
Typical output characteristics
I C = f(V CE)
90
90
60
60
30
30
0
IGBT
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
250
µs
126
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
IGBT
50
IF (A)
ID (A)
50
5
40
40
30
30
20
20
10
10
0
0
0
At
tp =
V CE =
2
100
10
copyright Vincotech
4
µs
V
6
Tj =
8
25/125
V GE (V)
10
0
At
tp =
°C
5
1
250
2
µs
3
Tj =
4
25/125
V F (V)
5
°C
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
5
E (mWs)
E (mWs)
5
IGBT
4
4
3
3
Eoff High T
Eon High T
Eoff High T
Eoff Low T
2
2
Eon Low T
1
Eoff Low T
Eon High T
Eon Low T
1
0
0
0
20
40
60
80
0
I C (A)
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
IC =
40
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
0,025
E (mWs)
E (mWs)
0,025
FWD
0,02
0,02
0,015
0,015
Erec High T
Erec Low T
Erec Low T
0,01
0,01
Erec High T
0,005
0,005
0
R (K/W)
0
0
20
40
60
I C (A)
R (K/W)
0
80
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
copyright Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
IC =
40
A
6
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
IGBT
tdoff
tdoff
0,1
0,1
tf
tf
tdon
tdon
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
0
80
I C (A)
With an inductive load at
Tj =
125
°C
V CE =
700
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
125
°C
V CE =
700
V
V GE =
15
V
IC =
40
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,014
t rr( µs)
t rr( µs)
0,014
FWD
0,012
0,012
0,01
0,01
trr High T
trr High T
trr Low T
0,008
0,008
trr Low T
0,006
0,006
0,004
0,004
0,002
0,002
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
0
80
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
4
25/125
700
40
15
8
12
16
R Gon (Ω)
20
°C
V
A
V
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr ( µC)
0,2
Qrr ( µC)
0,2
FWD
Qrr Low T
Qrr High T
0,15
0,15
Qrr Low T
0,1
0,1
0,05
0,05
0
Qrr High T
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
40
60
I C (A)
80
0
At
Tj =
°C
V
V
Ω
VR=
IF=
V GE =
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
4
25/125
700
40
15
8
12
16
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
40
IrrM (A)
IrrM (A)
25
R Gon ( Ω)
IRRM Low T
20
30
15
20
IRRM High T
10
10
5
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
0
80
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
4
25/125
700
40
15
8
12
16
R Gon (Ω)
20
°C
V
A
V
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
12000
15000
dI0/dt
direc / dt (A/ µs)
dI0/dt
direc / dt (A/ µs)
FWD
dIrec/dt
10000
dIrec/dt
12000
8000
9000
6000
6000
4000
3000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
40
60
80
I C (A)
0
At
Tj =
°C
V
V
Ω
VR=
IF=
V GE =
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
Z thJS = f(t p)
IGBT
4
25/125
700
40
15
8
12
16
R Gon ( Ω)
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJS = f(t p)
FWD
101
ZthJH (K/W)
ZthJS (K/W)
100
20
100
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10
10
10-2
10-5
-2
10-5
At
D =
10-4
10-3
10-2
10-1
100
t p (s)
101
At
D =
tp/T
phase-change material
Thermal grease
R thJS =
R thJS =
0,65
K/W
K/W
0,79
IGBT thermal model values
phase-change material
Thermal grease
R (K/W)
Tau (s)
R (K/W)
Tau (s)
0,173
0,561
0,208
0,561
0,381
0,125
0,459
0,125
0,078
0,010
0,094
0,010
-0,003
0,048
-0,004
0,048
0,026
0,001
0,032
0,001
copyright Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
-1
10-4
10-3
10-2
10-1
100
t p (s)
101
tp/T
phase-change material
Thermal grease
R thJS =
R thJS =
1,17
K/W
1,36
K/W
FWD thermal model values
phase-change material
Thermal grease
R (K/W)
Tau (s)
R (K/W)
Tau (s)
0,043
9,803
0,050
9,803
0,101
0,815
0,118
0,815
0,383
0,098
0,445
0,098
0,308
0,026
0,358
0,026
0,233
0,005
0,271
0,005
0,098
0,001
0,114
0,001
9
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 21
Power dissipation as a
function of sink temperature
P tot = f(T s)
IGBT
Figure 22
Collector/Drain current as a
function of sink temperature
I C = f(T s)
70
IC (A)
Ptot (W)
240
IGBT
210
60
180
50
150
40
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
150
100
150
Ts ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of sink temperature
P tot = f(T s)
FWD
50
150
15
100
150
Ts ( o C)
ºC
V
Figure 24
Forward current as a
function of sink temperature
I F = f(T s)
FWD
50
IF (A)
Ptot (W)
175
200
150
40
125
30
100
75
20
50
10
25
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
ºC
10
50
175
100
150
T s ( o C)
200
ºC
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
IGBT
Figure 26
Gate voltage vs Gate charge
V GE = f(Q g)
16
IC (A)
UGE (V)
1103
14
10uS
10
IGBT
2
240V
12
960V
10
100uS
8
101
6
1mS
10
4
0
10mS
2
100mS
DC
100
101
At
D =
Ts =
V GE =
Tj =
10
0
103
2
0
V CE (V)
50
At
IC =
single pulse
80
ºC
V
15
T jmax
ºC
Figure 27
IGBT
40
100
150
200
250 Qg (nC) 300
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
tsc (µS)
IC (sc)
17,5
400
350
15
300
12,5
250
10
200
7,5
150
5
100
2,5
50
0
0
12
At
V CE =
Tj ≤
13
14
15
600
V
150
ºC
copyright Vincotech
16
17
18
19
V GE (V)
20
12
At
V CE ≤
Tj =
11
13
14
600
V
25
ºC
15
16
17
V GE (V)
18
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Input Boost IGBT / Input Boost FWD
Figure 29
Reverse bias safe operating area
IGBT
I C = f(V CE)
IC (A)
100
IC MAX
MODULE
Ic CHIP
80
VCE MAX
Ic
60
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
T vj ≤
I C MAX=
U CE MAX=
150
80
1200
copyright Vincotech
ºC
A
V
12
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Bypass Diode\Input Boost Prot. Diode
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJS = f(t p)
75
1
ZthJS (K/W)
IF (A)
10
Diode
60
100
45
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
30
10-1
15
0
0
0,4
At
Tj =
tp =
25/125
250
0,8
1,2
1,6
V F (V)
10
2
-2
10-5
10-4
At
D =
°C
µs
R thJH
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Diode
10-3
10-2
10-1
10
2
100
t p (s)
tp/T
phase-change material
=
1,49
K/W
Thermal grease
R thJH =
1,73
K/W
Figure 4
Forward current as a
function of sink temperature
I F = f(T s )
Diode
50
Ptot (W)
IF (A)
120
101
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T s ( o C)
150
0
At
Tj =
ºC
13
30
150
60
90
120
T s ( o C)
150
ºC
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T)
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
14
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Switching Definitions Boost
General conditions
Tj
= 125 °C
= 4Ω
R gon
R goff
= 4Ω
Figure 1
IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
125
%
150
%
tdoff
VCE
VCE 90%
VGE 90%
IC
125
100
100
VCE
75
VGE
VGE
75
IC
50
tdon
tEoff
50
25
IC 1%
25
VGE 10%
0
VCE 3%
IC 10%
0
tEon
-25
-0,15
-0,05
0,05
0,15
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
0
15
700
t doff =
t E off =
0,25
0,35
-25
2,95
0,45
0,55
time (µs)
3
3,05
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
40
A
I C (100%) =
40
A
0,320
0,468
µs
µs
t don =
t E on =
0,027
0,157
µs
µs
Figure 3
Turn-off Switching Waveforms & definition of t f
IGBT
0
15
700
3,1
3,15
time(µs)
V
V
V
Figure 4
Turn-on Switching Waveforms & definition of t r
125
3,2
IGBT
150
fitted
%
IC
100
%
VCE
IC
125
IC 90%
VCE
100
75
IC 90%
75
IC 60%
tr
50
IC 40%
50
25
25
IC10%
0
-25
0,15
IC 10%
tf
0,2
0,25
0,3
0
0,35
0,4
-25
2,95
0,45
time (µs)
3
3,05
V C (100%) =
I C (100%) =
700
40
V
A
V C (100%) =
I C (100%) =
700
40
V
A
tf =
0,057
µs
tr =
0,017
µs
copyright Vincotech
15
3,1
time(µs)
3,15
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Switching Definitions Boost
Figure 5
Turn-off Switching Waveforms & definition of t Eoff
IGBT
Figure 6
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Eoff
100
Eon
IGBT
Pon
100
Poff
75
75
50
50
25
25
IC 1%
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,1
0
P off (100%) =
E off (100%) =
t E off =
0,1
0,2
0,3
28,02
2,43
0,468
0,4
-25
2,95
0,5
0,6
time (µs)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Turn-off Switching Waveforms & definition of t rr
3
3,05
28,02
1,22
0,1567
3,1
3,15
3,2
time(µs)
3,25
kW
mJ
µs
IGBT
125
%
Id
100
75
trr
50
25
0
fitted
Vd
IRRM 10%
-25
IRRM 90%
IRRM 100%
-50
-75
3,02
3,03
V C (100%) =
I C (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,04
700
40
-15
0,009
3,05
3,06
3,07
3,08
time(µs)
V
A
A
µs
16
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Switching Definitions Boost
Figure 8
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
FWD
Figure 9
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
200
FWD
200
%
%
Erec
Qrr
150
150
Id
100
100
tErec
tQrr
50
50
Prec
0
0
-50
3
3,02
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,04
40
0,21
0,02
3,06
3,08
time(µs)
-50
3,03
3,1
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
17
3,04
3,05
28,02
0,07
0,02
3,06
time(µs)
3,07
kW
mJ
µs
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
w\o thermal paste 12mm housing
w\o thermal paste 12mm housing with Press-fit pins
in DataMatrix as
in packaging barcode as
V23990-P629-L63
P629-L63
P629-L63
V23990-P629-L63Y
P629-L63Y
P629-L63Y
Outline
Pin table
Pin
X
Y
Function
1
2
3
4
5
0
2,9
8,3
10,8
19,6
22,5
22,5
22,5
22,5
22,5
G25
S25
DCBoost1
DC+Boost
6
7
22,1
29,1
22,5
22,5
DC+Boost
DC+In1
8
9
32
33,5
22,5
17,8
DC+In1
Boost1
10
11
33,5
33,5
15,3
7,2
Boost1
Boost2
12
13
33,5
32
4,7
0
Boost2
DC+In2
14
15
16
17
18
19
20
29,1
22,1
19,6
10,8
8,3
2,9
0
0
0
0
0
0
0
0
DC+In2
DC+Boost
DC+Boost
DC-Boost2
DC-Boost2
S27
G27
21
22
0
0
8
14,5
Therm1
Therm2
Pinout
Identification
ID
Component
Voltage
Current
Function
T25,T27
IGBT
1200V
40A
Input Boost Switch
D25,D27
FWD
1200V
15A
Input Boost Diode
D26,D28,D45,D47
Rectifier
1600V
25A
Bypass Diode\Input Boost Prot. Diode
Rt
NTC
-
-
Thermistor
copyright Vincotech
18
Comment
22 Sep. 2015 / Revision 3
V23990-P629-L63-PM
V23990-P629-L63Y-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
135
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
Package data
Package data for flow 0 packages see vincotech.com website.
Document No.:
Date:
V23990-P629-L63-D3-14
22 Sep. 2015
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
19
22 Sep. 2015 / Revision 3