Maximum Ratings

V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
flow BOOST 0
1200V/40A
Features
flow0 12mm and 17mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V SiC diode
● PressFiT option
12mm solder pin
12mm PressFiT pin
17mm solder pin
17mm PressFiT pin
Target Applications
● solar inverter
Schematic
Types
● V23990-P629-F62-PM
● V23990-P629-F629-PM
● V23990-P629-F628Y-PM
● V23990-P629-F629Y-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Bypass Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
35
45
A
220
A
240
A2s
41
62
W
Tjmax
150
°C
VCE
1200
V
35
48
A
160
A
108
164
W
±25
V
10
600
µs
V
150
°C
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Tj=Tjmax
Th=80°C
Tc=80°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
6
9
A
6
A
24
37
W
150
°C
1200
V
24
28
A
90
A
Boost IGBT Protection Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
tp=8.3 ms, Half Sine Wave
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
90
136
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,13
1,09
0,93
0,80
0,008
0,011
1,9
Bypass Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
25
1600
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
Ω
0,05
mA
1,71
K/W
1,13
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,00025
40
15
Collector-emitter cut-off
ICES
0
1200
Gate-emitter leakage current
IGES
25
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Total gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
3,5
5,5
7,5
1
1,64
1,65
3,5
1
300
Rgoff=4 Ω
Rgon=4 Ω
600
15
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
25
25
9
10
172
202
13
35
0,41
0,51
0,85
1,66
ns
mWs
3200
f=1MHz
30
0
Tj=25°C
pF
370
125
600
15
40
Tj=25°C
nC
220
Thermal grease
thickness≤50um
λ = 1 W/mK
0,65
K/W
0,43
Boost IGBT Protection Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
3
Tj=25°C
Tj=125°C
0,7
Thermal grease
thickness≤50um
λ = 1 W/mK
1,8
1,63
2,4
V
2,87
K/W
1,89
Boost FWD
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
1200
Rgon=4 Ω
600
15
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright Vincotech
15
Thermal grease
thickness≤50um
λ = 1 W/mK
40
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,58
2,17
1,9
600
24
23
9
9
100
112
0,004
0,011
10933
7266
V
µA
A
ns
nC
mWs
A/µs
1,06
K/W
0,70
3
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
R100=1486 Ω
Tc=100°C
Power dissipation constant
Ω
22000
Tj=25°C
-5
+5
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100) Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
4
B
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Boost IGBT Protection Diode
Boost IGBT Protection Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost IGBT Protection Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
ZthJC (K/W)
IF (A)
101
8
10
0
6
4
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
2
Tj = 25°C
Tj = Tjmax-25°C
0
0
At
tp =
0,5
1
1,5
2
2,5
V F (V)
10
3
10-5
At
D=
RthJH =
µs
250
-2
Boost IGBT Protection Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
2,87
10-2
10-1
100
t p (s)
1021
K/W
Boost IGBT Protection Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
16
IF (A)
Ptot (W)
60
50
12
40
30
8
20
4
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
5
50
150
100
150
Th ( o C)
200
ºC
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
INPUT BOOST
BOOST IGBT
Figure 3
Typical output characteristics
ID = f(VDS)
BOOST FWD
Figure 4
Typical output characteristics
ID = f(VDS)
120
IC (A)
IC(A)
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGS from
µs
250
25
°C
7 V to 17 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
ID = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
40
V CE (V)
ID (A)
IF (A)
30
25
30
20
Tj = 25°C
15
20
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
10
10
5
0
0
0
At
tp =
VDS =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
0
10
At
tp =
µs
V
6
1
250
2
3
V F (V)
4
µs
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
INPUT BOOST
BOOST IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,4
E (mWs)
E (mWs)
2,4
Eoff High T
Eoff High T
2
2
1,6
1,6
Eoff Low T
Eoff Low T
1,2
1,2
Eon High T
Eon Low T
Eon High T
0,8
0,8
Eon Low T
0,4
0,4
0
0
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
°C
25/125
VDS =
600
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
5
10
15
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
600
V
VGS =
15
V
ID =
A
40
BOOST IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,015
E (mWs)
E (mWs)
0,020
0,012
Erec High T
0,015
Erec Low T
0,009
0,010
Erec Low T
0,006
Erec High T
0,005
0,003
0
0,000
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
°C
25/125
VDS =
600
V
VGS =
15
V
Rgon =
4
Ω
copyright Vincotech
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
600
V
VGS =
15
V
ID =
40
A
7
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
INPUT BOOST
BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
0,1
0,1
tf
tdon
tdon
tf
0,01
0,01
tr
tr
0,001
0,001
0
15
30
45
60
I D (A)
75
0
With an inductive load at
Tj =
°C
125
VDS =
600
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
5
10
R G( Ω )
15
20
With an inductive load at
Tj =
125
°C
VDS =
600
V
VGS =
15
V
IC =
A
40
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,015
t rr( µs)
t rr( µs)
0,015
trr High T
0,012
0,012
trr High T
trr Low T
trr Low T
0,009
0,009
0,006
0,006
0,003
0,003
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
600
15
4
copyright Vincotech
30
45
60
I C (A)
75
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
8
5
25/125
600
40
15
10
15
R Gon ( Ω )
20
°C
V
A
V
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr ( µC)
0,12
Qrr ( µC)
0,15
Qrr Low T
0,12
Qrr High T
0,09
Qrr High T
Qrr Low T
0,09
0,06
0,06
0,03
0,03
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
15
25/125
600
15
4
30
45
60
I C (A)
75
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
5
25/125
600
40
15
10
15
R Gon ( Ω)
20
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
40
IrrM (A)
30
IrrM (A)
IRRM Low T
25
IRRM Low T
IRRM High T
30
20
IRRM High T
15
20
10
10
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
600
15
4
copyright Vincotech
30
45
60
I C (A)
75
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
9
5
25/125
600
40
15
10
15
R Gon ( Ω )
20
°C
V
A
V
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
15000
direc / dt (A/ µs)
15000
dI0/dt
dIrec/dt
direc / dt (A/ µs)
dI0/dt
dIrec/dt
12000
12000
9000
9000
6000
6000
3000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
600
15
4
30
45
I C (A)
60
0
75
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
5
25/125
600
40
15
10
R Gon ( Ω)
15
20
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-4210
-3
-2
-1
10
10-5
ZthJH (K/W)
ZthJH (K/W)
101
100
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
t p (s)
1021
At
D=
RthJH =
tp / T
0,65
Thermal grease
R (C/W)
0,198
0,347
0,075
0,028
0,027
10-3
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tau (s)
0,495
0,111
0,015
0,001
0,004
copyright Vincotech
K/W
RthJH =
0,56
K/W
IGBT thermal model values
Phase change
R (C/W)
0,164
0,287
0,062
0,023
0,022
tp / T
1,06
Thermal grease
Tau (s)
0,409
0,092
0,012
0,001
0,003
R (C/W)
0,063
0,180
0,525
0,203
0,089
10
Tau (s)
3,888
0,398
0,062
0,009
0,001
K/W
RthJH =
0,92
K/W
FWD thermal model values
Phase change
R (C/W)
0,055
0,157
0,458
0,177
0,077
Tau (s)
3,394
0,347
0,054
0,008
0,001
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
INPUT BOOST
BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
250
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
100
150
Th ( o C)
0
200
At
Tj =
VGS =
ºC
150
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
15
100
150
Th ( o C)
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
175
IF (A)
Ptot (W)
35
150
30
125
25
100
20
75
15
50
10
25
5
0
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
11
50
175
100
150
T h ( o C)
200
ºC
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
INPUT BOOST
BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
102
ID (A)
UGE (V)
15
400V
600V
12
10
1
10uS
9
100uS
1mS
100mS
6
10
DC
0
10mS
3
10-1
At
D=
Th =
VGS =
Tj =
0
100
10
1
102
103
0
V DS (V)
At
ID =
single pulse
80
ºC
V
15
Tjmax
ºC
copyright Vincotech
12
50
40
100
150
200
Qg (nC)
250
A
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
Tj = 25°C
80
10
Tj = Tjmax-25°C
0
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
10-1
20
0
0
At
tp =
0,5
1
1,5
V F (V)
10-2
2
10-5
At
D=
RthJH =
µs
250
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
t p (s)
1021
tp / T
1,705
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
10-4
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
13
50
150
100
150
T h ( o C)
200
ºC
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
14
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Switching Definitions BOOST IGBT
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
125
%
tdoff
%
VCE
100
VGE 90%
150
VCE 90%
IC
75
VCE
100
IC
50
tdon
tEoff
VGE
50
25
VGE 10%
IC 1%
tEon
VGE
-25
-0,2
0
0,2
0,4
0,6
-50
2,95
0,8
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
600
40
0,202
0,754
Output inverter IGBT
Figure 3
3,05
0
15
600
40
0,025
0,120
3,10
time(us)
3,15
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
200
%
fitted
100
3,00
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
VCE 3%
IC 10%
0
0
%
VCE
IC
IC
150
IC 90%
75
VCE
100
IC 60%
IC 90%
50
tr
IC 40%
50
25
IC 10%
0
-25
0,05
0
IC 10%
tf
0,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,15
600
40
0,035
0,2
0,25
time (us)
-50
3,02
0,3
VC (100%) =
IC (100%) =
tr =
V
A
µs
15
3,03
3,04
600
40
0,010
3,05
time(us)
3,06
V
A
µs
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Switching Definitions BOOST IGBT
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
Pon
%
IC 1%
Eon
Eoff
100
100
Poff
75
75
50
50
25
25
VGE 10%
VGE 90%
VCE 3%
0
0
tEon
tEoff
-25
-0,2
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0,4
24,06
1,66
0,75
0,6
0,8
time (us)
-25
2,95
1
3,00
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,05
24,06
0,51
0,12
3,10
time(us)
3,15
kW
mJ
µs
Output inverter FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
Id
%
80
15
trr
40
10
Vd
0
fitted
IRRM 10%
5
-40
IRRM 90%
IRRM 100%
0
-80
-5
-120
-50
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
50
0
15
600
40
180
100
150
Qg (nC)
200
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
16
3,02
3,04
600
40
-23
0,009
3,06
3,08
time(us)
3,1
V
A
A
µs
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Switching Definitions BOOST IGBT
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
300
%
%
250
150
Erec
200
Id
100
150
tQrr
50
100
0
tErec
Qrr
50
Prec
-50
-100
3,02
0
3,03
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,04
40
0,110
0,019
3,05
3,06
time(us)
-50
3,03
3,07
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
17
3,04
3,05
24,06
0,011
0,019
3,06
time(us)
3,07
kW
mJ
µs
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
in DataMatrix as
Ordering Code
without thermal paste 12mm housing
without thermal paste 17mm housing
without thermal paste 12mm housing with PressFiT
without thermal paste 17mm housing with PressFiT
V23990-P629-F62-PM
V23990-P629-F629-PM
V23990-P629-F628Y-PM
V23990-P629-F629Y-PM
P629-F62-PM
P629-F629-PM
P629-F628Y-PM
P629-F629Y-PM
in packaging barcode as
P629-F62-PM
P629-F629-PM
P629-F628Y-PM
P629-F629Y-PM
Outline
Pin
Pin table
X
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
0
2,9
8,3
10,8
19,6
22,1
29,1
32
33,5
33,5
33,5
33,5
32
29,1
22,1
19,6
10,8
8,3
2,9
0
0
0
Y
22,5
22,5
22,5
22,5
22,5
22,5
22,5
22,5
17,8
15,3
7,2
4,7
0
0
0
0
0
0
0
0
8
14,5
Pinout
copyright Vincotech
18
Revision: 6
V23990-P629-F62-PM / V23990-P629-F629-PM
V23990-P629-F628Y-PM / V23990-P629-F629Y-PM
flow BOOST 0
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
19
Revision: 6