V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM flow BOOST 0 1200V/40A Features flow0 12mm and 17mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode ● PressFiT option 12mm solder pin 12mm PressFiT pin 17mm solder pin 17mm PressFiT pin Target Applications ● solar inverter Schematic Types ● V23990-P629-F62-PM ● V23990-P629-F629-PM ● V23990-P629-F628Y-PM ● V23990-P629-F629Y-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Bypass Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM Th=80°C Tc=80°C tp=10ms Tj=25°C 35 45 A 220 A 240 A2s 41 62 W Tjmax 150 °C VCE 1200 V 35 48 A 160 A 108 164 W ±25 V 10 600 µs V 150 °C I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Tj=Tjmax Th=80°C Tc=80°C Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 6 9 A 6 A 24 37 W 150 °C 1200 V 24 28 A 90 A Boost IGBT Protection Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax tp=8.3 ms, Half Sine Wave Power dissipation Ptot Tj=Tjmax Th=80°C Tc=80°C 90 136 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,13 1,09 0,93 0,80 0,008 0,011 1,9 Bypass Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir 25 1600 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V Ω 0,05 mA 1,71 K/W 1,13 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,00025 40 15 Collector-emitter cut-off ICES 0 1200 Gate-emitter leakage current IGES 25 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Total gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 3,5 5,5 7,5 1 1,64 1,65 3,5 1 300 Rgoff=4 Ω Rgon=4 Ω 600 15 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 25 25 9 10 172 202 13 35 0,41 0,51 0,85 1,66 ns mWs 3200 f=1MHz 30 0 Tj=25°C pF 370 125 600 15 40 Tj=25°C nC 220 Thermal grease thickness≤50um λ = 1 W/mK 0,65 K/W 0,43 Boost IGBT Protection Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 3 Tj=25°C Tj=125°C 0,7 Thermal grease thickness≤50um λ = 1 W/mK 1,8 1,63 2,4 V 2,87 K/W 1,89 Boost FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current 1200 Rgon=4 Ω 600 15 di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright Vincotech 15 Thermal grease thickness≤50um λ = 1 W/mK 40 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,58 2,17 1,9 600 24 23 9 9 100 112 0,004 0,011 10933 7266 V µA A ns nC mWs A/µs 1,06 K/W 0,70 3 Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P R100=1486 Ω Tc=100°C Power dissipation constant Ω 22000 Tj=25°C -5 +5 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference copyright Vincotech Tj=25°C 4 B Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Boost IGBT Protection Diode Boost IGBT Protection Diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Boost IGBT Protection Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 ZthJC (K/W) IF (A) 101 8 10 0 6 4 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 2 Tj = 25°C Tj = Tjmax-25°C 0 0 At tp = 0,5 1 1,5 2 2,5 V F (V) 10 3 10-5 At D= RthJH = µs 250 -2 Boost IGBT Protection Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 2,87 10-2 10-1 100 t p (s) 1021 K/W Boost IGBT Protection Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 16 IF (A) Ptot (W) 60 50 12 40 30 8 20 4 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 5 50 150 100 150 Th ( o C) 200 ºC Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM INPUT BOOST BOOST IGBT Figure 3 Typical output characteristics ID = f(VDS) BOOST FWD Figure 4 Typical output characteristics ID = f(VDS) 120 IC (A) IC(A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGS from µs 250 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 40 V CE (V) ID (A) IF (A) 30 25 30 20 Tj = 25°C 15 20 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 10 10 5 0 0 0 At tp = VDS = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 0 10 At tp = µs V 6 1 250 2 3 V F (V) 4 µs Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,4 E (mWs) E (mWs) 2,4 Eoff High T Eoff High T 2 2 1,6 1,6 Eoff Low T Eoff Low T 1,2 1,2 Eon High T Eon Low T Eon High T 0,8 0,8 Eon Low T 0,4 0,4 0 0 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = °C 25/125 VDS = 600 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 600 V VGS = 15 V ID = A 40 BOOST IGBT Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,015 E (mWs) E (mWs) 0,020 0,012 Erec High T 0,015 Erec Low T 0,009 0,010 Erec Low T 0,006 Erec High T 0,005 0,003 0 0,000 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = °C 25/125 VDS = 600 V VGS = 15 V Rgon = 4 Ω copyright Vincotech 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 600 V VGS = 15 V ID = 40 A 7 Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff 0,1 0,1 tf tdon tdon tf 0,01 0,01 tr tr 0,001 0,001 0 15 30 45 60 I D (A) 75 0 With an inductive load at Tj = °C 125 VDS = 600 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 R G( Ω ) 15 20 With an inductive load at Tj = 125 °C VDS = 600 V VGS = 15 V IC = A 40 BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,015 t rr( µs) t rr( µs) 0,015 trr High T 0,012 0,012 trr High T trr Low T trr Low T 0,009 0,009 0,006 0,006 0,003 0,003 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/125 600 15 4 copyright Vincotech 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGS = °C V V Ω 8 5 25/125 600 40 15 10 15 R Gon ( Ω ) 20 °C V A V Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr ( µC) 0,12 Qrr ( µC) 0,15 Qrr Low T 0,12 Qrr High T 0,09 Qrr High T Qrr Low T 0,09 0,06 0,06 0,03 0,03 0 0 At At Tj = VCE = VGE = Rgon = 0 15 25/125 600 15 4 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 5 25/125 600 40 15 10 15 R Gon ( Ω) 20 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 40 IrrM (A) 30 IrrM (A) IRRM Low T 25 IRRM Low T IRRM High T 30 20 IRRM High T 15 20 10 10 5 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/125 600 15 4 copyright Vincotech 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGS = °C V V Ω 9 5 25/125 600 40 15 10 15 R Gon ( Ω ) 20 °C V A V Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 15000 direc / dt (A/ µs) 15000 dI0/dt dIrec/dt direc / dt (A/ µs) dI0/dt dIrec/dt 12000 12000 9000 9000 6000 6000 3000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/125 600 15 4 30 45 I C (A) 60 0 75 At Tj = VR = IF = VGS = °C V V Ω BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 5 25/125 600 40 15 10 R Gon ( Ω) 15 20 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) -4210 -3 -2 -1 10 10-5 ZthJH (K/W) ZthJH (K/W) 101 100 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) t p (s) 1021 At D= RthJH = tp / T 0,65 Thermal grease R (C/W) 0,198 0,347 0,075 0,028 0,027 10-3 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tau (s) 0,495 0,111 0,015 0,001 0,004 copyright Vincotech K/W RthJH = 0,56 K/W IGBT thermal model values Phase change R (C/W) 0,164 0,287 0,062 0,023 0,022 tp / T 1,06 Thermal grease Tau (s) 0,409 0,092 0,012 0,001 0,003 R (C/W) 0,063 0,180 0,525 0,203 0,089 10 Tau (s) 3,888 0,398 0,062 0,009 0,001 K/W RthJH = 0,92 K/W FWD thermal model values Phase change R (C/W) 0,055 0,157 0,458 0,177 0,077 Tau (s) 3,394 0,347 0,054 0,008 0,001 Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 250 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 100 150 Th ( o C) 0 200 At Tj = VGS = ºC 150 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 15 100 150 Th ( o C) 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 175 IF (A) Ptot (W) 35 150 30 125 25 100 20 75 15 50 10 25 5 0 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 11 50 175 100 150 T h ( o C) 200 ºC Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) BOOST IGBT Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 102 ID (A) UGE (V) 15 400V 600V 12 10 1 10uS 9 100uS 1mS 100mS 6 10 DC 0 10mS 3 10-1 At D= Th = VGS = Tj = 0 100 10 1 102 103 0 V DS (V) At ID = single pulse 80 ºC V 15 Tjmax ºC copyright Vincotech 12 50 40 100 150 200 Qg (nC) 250 A Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 Tj = 25°C 80 10 Tj = Tjmax-25°C 0 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 0 0 At tp = 0,5 1 1,5 V F (V) 10-2 2 10-5 At D= RthJH = µs 250 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 t p (s) 1021 tp / T 1,705 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 10-4 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Switching Definitions BOOST IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 125 % tdoff % VCE 100 VGE 90% 150 VCE 90% IC 75 VCE 100 IC 50 tdon tEoff VGE 50 25 VGE 10% IC 1% tEon VGE -25 -0,2 0 0,2 0,4 0,6 -50 2,95 0,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 600 40 0,202 0,754 Output inverter IGBT Figure 3 3,05 0 15 600 40 0,025 0,120 3,10 time(us) 3,15 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 200 % fitted 100 3,00 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs VCE 3% IC 10% 0 0 % VCE IC IC 150 IC 90% 75 VCE 100 IC 60% IC 90% 50 tr IC 40% 50 25 IC 10% 0 -25 0,05 0 IC 10% tf 0,1 VC (100%) = IC (100%) = tf = copyright Vincotech 0,15 600 40 0,035 0,2 0,25 time (us) -50 3,02 0,3 VC (100%) = IC (100%) = tr = V A µs 15 3,03 3,04 600 40 0,010 3,05 time(us) 3,06 V A µs Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Switching Definitions BOOST IGBT Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % Pon % IC 1% Eon Eoff 100 100 Poff 75 75 50 50 25 25 VGE 10% VGE 90% VCE 3% 0 0 tEon tEoff -25 -0,2 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,4 24,06 1,66 0,75 0,6 0,8 time (us) -25 2,95 1 3,00 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,05 24,06 0,51 0,12 3,10 time(us) 3,15 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 Id % 80 15 trr 40 10 Vd 0 fitted IRRM 10% 5 -40 IRRM 90% IRRM 100% 0 -80 -5 -120 -50 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 50 0 15 600 40 180 100 150 Qg (nC) 200 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 16 3,02 3,04 600 40 -23 0,009 3,06 3,08 time(us) 3,1 V A A µs Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Switching Definitions BOOST IGBT Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 300 % % 250 150 Erec 200 Id 100 150 tQrr 50 100 0 tErec Qrr 50 Prec -50 -100 3,02 0 3,03 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,04 40 0,110 0,019 3,05 3,06 time(us) -50 3,03 3,07 Prec (100%) = Erec (100%) = tErec = A µC µs 17 3,04 3,05 24,06 0,011 0,019 3,06 time(us) 3,07 kW mJ µs Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version in DataMatrix as Ordering Code without thermal paste 12mm housing without thermal paste 17mm housing without thermal paste 12mm housing with PressFiT without thermal paste 17mm housing with PressFiT V23990-P629-F62-PM V23990-P629-F629-PM V23990-P629-F628Y-PM V23990-P629-F629Y-PM P629-F62-PM P629-F629-PM P629-F628Y-PM P629-F629Y-PM in packaging barcode as P629-F62-PM P629-F629-PM P629-F628Y-PM P629-F629Y-PM Outline Pin Pin table X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 2,9 8,3 10,8 19,6 22,1 29,1 32 33,5 33,5 33,5 33,5 32 29,1 22,1 19,6 10,8 8,3 2,9 0 0 0 Y 22,5 22,5 22,5 22,5 22,5 22,5 22,5 22,5 17,8 15,3 7,2 4,7 0 0 0 0 0 0 0 0 8 14,5 Pinout copyright Vincotech 18 Revision: 6 V23990-P629-F62-PM / V23990-P629-F629-PM V23990-P629-F628Y-PM / V23990-P629-F629Y-PM flow BOOST 0 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 Revision: 6