10 FY064PA050SG10 M582F08 D1 14

10-FY064PA050SG10-M582F08
600V/50A
flowPACK 1H
Features
flow 1
● Low inductive 12mm flow1 package
● H-Bridge topology
● High-speed IGBT + ultrafast FWD
● Temperature sensor
Target Applications
Schematic
● Solar inverter
● Power Supply
● Inverter based welding
Types
● 10-FY064PA050SG10-M582F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
46
61
A
tp limited by Tjmax
150
A
VCE ≤ 650V, Tj ≤ Top max
150
A
95
144
W
±20
V
5
400
µs
V
Tjmax
175
°C
VRRM
600
V
30
39
A
300
A
50
76
W
150
°C
H-Bridge IGBT
Collector-emitter break down voltage
VCE
DC collector current *
IDC
Pulsed collector current
ICpulse
Turn off safe operating area
Power dissipation per IGBT *
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
* measured with phase-change material
H-Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current *
IF
Tj=Tjmax
Non-repetitive Peak Surge Current
IFSM
60Hz Single Half-Sine Wave
Power dissipation per Diode *
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
* measured with phase-change material
copyright by Vincotech
1
Revision: 1
10-FY064PA050SG10-M582F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
10-FY064PA050SG10-M582F08
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
4,2
5,1
5,8
1,38
1,79
1,99
2,22
H-Bridge IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0008
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Rgoff=8 Ω
Rgon=8 Ω
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to heatsink per chip
RthJH
300
±15
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
uA
nA
Ω
93
96
19
21
133
148
6
24
0,54
0,79
0,32
0,57
ns
mWs
3000
f=1MHz
Reverse transfer capacitance
150
none
tr
td(off)
0,0028
V
0
25
Tj=25°C
pF
11
15
520
120
nC
Phase-Change
Material
1,00
K/W
Thermal grease
thickness≤50um
λ = 1 W/mK
1,17
K/W
50
Tj=25°C
H-Bridge FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
30
Rgon=8 Ω
300
±15
di(rec)max
/dt
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,52
1,84
32
49
16
50
0,29
1,10
9152
5573
0,02
0,13
2,6
V
A
ns
µC
A/µs
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Phase-Change
Material
1,39
K/W
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
1,64
K/W
22000
Ω
mWs
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Tj=25°C
R100=1486Ω
Tj=100°C
Power dissipation constant
-5
+5
Tj=25°C
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
copyright by Vincotech
%
K
B
3
Revision: 1
10-FY064PA050SG10-M582F08
H-Bridge
H-Bridge IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
H-Bridge IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
180
IC (A)
IC (A)
180
150
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
H-Bridge IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
H-Bridge FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IF (A)
IC (A)
50
V CE (V)
40
120
30
90
20
60
Tj = Tjmax-25°C
Tj = 25°C
10
30
Tj = 25°C
Tj = Tjmax-25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
4
1
250
2
3
4
V F (V)
5
µs
Revision: 1
10-FY064PA050SG10-M582F08
H-Bridge
H-Bridge IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
H-Bridge IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,0
E (mWs)
E (mWs)
2,5
Eon High T
Eon High T
2,0
Eon Low T
1,5
Eon Low T
1,5
1,0
Eoff High T
1,0
Eoff Low T
Eoff High T
0,5
Eoff Low T
0,5
0,0
0,0
0
25
50
75
100
I C (A)
0
With an inductive load at
Tj =
°C
25/126
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
°C
25/126
VCE =
300
V
VGE =
±15
V
IC =
50
A
H-Bridge FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
H-Bridge FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,2
E (mWs)
E (mWs)
0,2
Erec
0,15
0,15
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,1
0,1
0,05
0,05
Erec
Tj = 25°C
Tj = 25°C
Erec
Erec
0
0
0
25
50
75
I C (A)
0
100
With an inductive load at
Tj =
°C
25/126
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
copyright by Vincotech
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
25/126
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
5
Revision: 1
10-FY064PA050SG10-M582F08
H-Bridge
H-Bridge IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
H-Bridge IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdon
tdoff
0,10
0,10
tdon
tr
tf
tf
0,01
0,01
tr
0,00
0,00
0
25
50
75
0
100
I C (A)
With an inductive load at
Tj =
°C
126
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
126
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
H-Bridge FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
H-Bridge FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,12
t rr( µs)
0,05
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,04
trr
0,09
trr
0,03
0,06
0,02
Tj = 25°C
trr
0,03
0,01
trr
Tj = 25°C
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/126
300
±15
8
copyright by Vincotech
50
75
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
8
25/126
300
50
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 1
10-FY064PA050SG10-M582F08
H-Bridge
H-Bridge FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
H-Bridge FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
1,2
Qrr( µC)
1,6
Qrr
Tj = Tjmax -25°C
0,9
1,2
Tj = Tjmax -25°C
Qrr
0,8
0,6
0,4
0,3
Tj = 25°C
Qrr
Tj = 25°C
Qrr
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
25
50
75
I C (A)
°C
V
V
Ω
25/126
300
±15
8
H-Bridge FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
8
At
Tj =
VR =
IF =
VGE =
25/126
300
50
±15
100
16
24
R g on ( Ω)
40
°C
V
A
V
H-Bridge FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
70
32
IrrM (A)
IrrM (A)
100
IRRM
60
80
Tj = Tjmax -25°C
50
60
40
IRRM
Tj = Tjmax - 25°C
30
40
Tj = 25°C
20
20
IRRM
10
Tj = 25°C
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/126
300
±15
8
copyright by Vincotech
50
75
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/126
300
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 1
10-FY064PA050SG10-M582F08
H-Bridge
H-Bridge FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
12000
35000
direc / dt (A/ µs)
dI0/dt
direc / dt (A/µ s)
H-Bridge FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
10000
dI0/dt
dIrec/dt
30000
25000
8000
20000
6000
15000
4000
10000
2000
5000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/126
300
±15
8
50
75
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
H-Bridge IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/126
300
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
H-Bridge FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
8
10
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
K/W
RthJH =
1,17
-2
10
-5
At
D=
RthJH =
tp / T
1,00
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10-5
0
K/W
10-4
10-3
10-2
10-1
K/W
RthJH =
1,64
FWD thermal model values
Phase change interface
Thermal grease
R (C/W)
0,12
0,46
0,25
0,12
0,04
R (C/W)
0,04
0,09
0,56
0,40
0,20
0,12
copyright by Vincotech
R (C/W)
0,15
0,54
0,29
0,14
0,05
Tau (s)
7,7E-01
1,3E-01
4,3E-02
9,4E-03
1,2E-03
8
t p (s)
10110
tp / T
1,39
IGBT thermal model values
Phase change interface
Thermal grease
Tau (s)
7,7E-01
1,3E-01
4,3E-02
9,4E-03
1,2E-03
100
Tau (s)
4,0E+00
8,3E-01
1,3E-01
3,6E-02
7,3E-03
1,1E-03
R (C/W)
0,04
0,10
0,65
0,47
0,24
0,14
K/W
Tau (s)
4,0E+00
8,3E-01
1,3E-01
3,6E-02
7,3E-03
1,1E-03
Revision: 1
10-FY064PA050SG10-M582F08
H-Bridge
H-Bridge IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
H-Bridge IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
IC (A)
Ptot (W)
200
150
60
100
40
50
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
175
H-Bridge FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
°C
V
H-Bridge FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
120
T h ( o C)
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
9
50
150
100
150
T h ( o C)
200
°C
Revision: 1
10-FY064PA050SG10-M582F08
H-Bridge
H-Bridge IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
15
VGE (V)
IC (A)
10
H-Bridge IGBT
Figure 26
Gate voltage vs Gate charge
10
100uS
2
12
130V
520V
1mS
10mS
100mS
10
9
1
DC
10
6
0
3
10-1
0
10
0
At
D=
Th =
VGE =
10
1
10
0
103
V CE (V)
2
40
60
80
100
120
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
20
50
A
H-Bridge IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
160
IC (A)
IC MAX
140
MODULE
Ic CHIP
120
Ic
100
VCE MAX
80
60
40
20
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Switching mode :
copyright by Vincotech
ºC
3phase SPWM
10
Revision: 1
10-FY064PA050SG10-M582F08
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
20000
16000
12000
8000
4000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
11
Revision: 1
10-FY064PA050SG10-M582F08
Switching Definitions H-Bridge
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
H-Bridge IGBT
Figure 1
H-Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
200
tdoff
%
IC
%
VCE
100
150
VCE 90%
VGE 90%
75
VCE
VGE
100
IC
VGE
50
tdon
tEoff
50
25
IC 1%
0
-25
-0,1
tEon
-50
0
0,1
0,2
0,3
0,4
2,4
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
2,5
2,6
2,7
2,8
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
300
50
0,15
0,23
H-Bridge IGBT
Figure 3
-15
15
300
50
0,10
0,23
V
V
V
A
µs
µs
H-Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
VCE 3%
IC10%
VGE10%
0
Ic
VCE
IC
%
100
150
IC 90%
75
100
VCE
IC 90%
IC 60%
50
tr
IC 40%
50
25
IC10%
0
-25
0,04
IC 10%
0
tf
0,08
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,12
300
50
0,024
0,16
time (us)
-50
2,58
0,2
VC (100%) =
IC (100%) =
tr =
V
A
µs
12
2,6
2,62
300
50
0,021
2,64
2,66
time(us)
2,68
V
A
µs
Revision: 1
10-FY064PA050SG10-M582F08
Switching Definitions H-Bridge
H-Bridge IGBT
Figure 5
H-Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
150
Pon
%
%
Poff
Eoff
100
125
Eon
100
75
75
50
50
25
VGE 90%
25
IC 1%
VGE 10%
0
-25
-0,1
VCE 3%
0
tEoff
tEon
-25
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
15,12
0,57
0,23
0,2
time (us)
0,3
2,4
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
2,5
2,6
15,12
0,79
0,23
2,7
2,8
time(us)
2,9
kW
mJ
µs
H-Bridge IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
-150
2,55
2,6
2,65
2,7
2,75
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
300
50
-49
0,05
V
A
A
µs
13
Revision: 1
10-FY064PA050SG10-M582F08
Switching Definitions H-Bridge
H-Bridge FWD
Figure 8
H-Bridge FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
Erec
%
%
Id
Qrr
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
-100
2,55
0
2,6
Id (100%) =
Qrr (100%) =
tQrr =
copyright by Vincotech
2,65
50
1,10
0,10
2,7
time(us)
-25
2,55
2,75
2,6
2,65
2,7
2,75
2,8
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
14
15,12
0,13
0,10
kW
mJ
µs
Revision: 1
10-FY064PA050SG10-M582F08
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FY064PA050SG10-M582F08
in DataMatrix as
M582F08
in packaging barcode as
M582F08
Outline
Pinout
copyright by Vincotech
15
Revision: 1
10-FY064PA050SG10-M582F08
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
16
Revision: 1