10-FY064PA050SG10-M582F08 600V/50A flowPACK 1H Features flow 1 ● Low inductive 12mm flow1 package ● H-Bridge topology ● High-speed IGBT + ultrafast FWD ● Temperature sensor Target Applications Schematic ● Solar inverter ● Power Supply ● Inverter based welding Types ● 10-FY064PA050SG10-M582F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 46 61 A tp limited by Tjmax 150 A VCE ≤ 650V, Tj ≤ Top max 150 A 95 144 W ±20 V 5 400 µs V Tjmax 175 °C VRRM 600 V 30 39 A 300 A 50 76 W 150 °C H-Bridge IGBT Collector-emitter break down voltage VCE DC collector current * IDC Pulsed collector current ICpulse Turn off safe operating area Power dissipation per IGBT * Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V * measured with phase-change material H-Bridge FWD Peak Repetitive Reverse Voltage DC forward current * IF Tj=Tjmax Non-repetitive Peak Surge Current IFSM 60Hz Single Half-Sine Wave Power dissipation per Diode * Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C * measured with phase-change material copyright by Vincotech 1 Revision: 1 10-FY064PA050SG10-M582F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 10-FY064PA050SG10-M582F08 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 4,2 5,1 5,8 1,38 1,79 1,99 2,22 H-Bridge IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0008 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Rgoff=8 Ω Rgon=8 Ω Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJH 300 ±15 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V uA nA Ω 93 96 19 21 133 148 6 24 0,54 0,79 0,32 0,57 ns mWs 3000 f=1MHz Reverse transfer capacitance 150 none tr td(off) 0,0028 V 0 25 Tj=25°C pF 11 15 520 120 nC Phase-Change Material 1,00 K/W Thermal grease thickness≤50um λ = 1 W/mK 1,17 K/W 50 Tj=25°C H-Bridge FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 30 Rgon=8 Ω 300 ±15 di(rec)max /dt 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,52 1,84 32 49 16 50 0,29 1,10 9152 5573 0,02 0,13 2,6 V A ns µC A/µs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 1,39 K/W Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 1,64 K/W 22000 Ω mWs Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Tj=25°C R100=1486Ω Tj=100°C Power dissipation constant -5 +5 Tj=25°C 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference copyright by Vincotech % K B 3 Revision: 1 10-FY064PA050SG10-M582F08 H-Bridge H-Bridge IGBT Figure 1 Typical output characteristics IC = f(VCE) H-Bridge IGBT Figure 2 Typical output characteristics IC = f(VCE) 180 IC (A) IC (A) 180 150 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V H-Bridge IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V H-Bridge FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IF (A) IC (A) 50 V CE (V) 40 120 30 90 20 60 Tj = Tjmax-25°C Tj = 25°C 10 30 Tj = 25°C Tj = Tjmax-25°C 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 4 1 250 2 3 4 V F (V) 5 µs Revision: 1 10-FY064PA050SG10-M582F08 H-Bridge H-Bridge IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) H-Bridge IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,0 E (mWs) E (mWs) 2,5 Eon High T Eon High T 2,0 Eon Low T 1,5 Eon Low T 1,5 1,0 Eoff High T 1,0 Eoff Low T Eoff High T 0,5 Eoff Low T 0,5 0,0 0,0 0 25 50 75 100 I C (A) 0 With an inductive load at Tj = °C 25/126 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/126 VCE = 300 V VGE = ±15 V IC = 50 A H-Bridge FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) H-Bridge FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,2 E (mWs) E (mWs) 0,2 Erec 0,15 0,15 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,1 0,1 0,05 0,05 Erec Tj = 25°C Tj = 25°C Erec Erec 0 0 0 25 50 75 I C (A) 0 100 With an inductive load at Tj = °C 25/126 VCE = 300 V VGE = ±15 V Rgon = 8 Ω copyright by Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 25/126 °C VCE = 300 V VGE = ±15 V IC = 50 A 5 Revision: 1 10-FY064PA050SG10-M582F08 H-Bridge H-Bridge IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) H-Bridge IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdon tdoff 0,10 0,10 tdon tr tf tf 0,01 0,01 tr 0,00 0,00 0 25 50 75 0 100 I C (A) With an inductive load at Tj = °C 126 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 126 °C VCE = 300 V VGE = ±15 V IC = 50 A H-Bridge FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) H-Bridge FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,12 t rr( µs) 0,05 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,04 trr 0,09 trr 0,03 0,06 0,02 Tj = 25°C trr 0,03 0,01 trr Tj = 25°C 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 25 25/126 300 ±15 8 copyright by Vincotech 50 75 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 6 8 25/126 300 50 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 1 10-FY064PA050SG10-M582F08 H-Bridge H-Bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) H-Bridge FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 1,2 Qrr( µC) 1,6 Qrr Tj = Tjmax -25°C 0,9 1,2 Tj = Tjmax -25°C Qrr 0,8 0,6 0,4 0,3 Tj = 25°C Qrr Tj = 25°C Qrr 0 0 0 At At Tj = VCE = VGE = Rgon = 25 50 75 I C (A) °C V V Ω 25/126 300 ±15 8 H-Bridge FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 8 At Tj = VR = IF = VGE = 25/126 300 50 ±15 100 16 24 R g on ( Ω) 40 °C V A V H-Bridge FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 70 32 IrrM (A) IrrM (A) 100 IRRM 60 80 Tj = Tjmax -25°C 50 60 40 IRRM Tj = Tjmax - 25°C 30 40 Tj = 25°C 20 20 IRRM 10 Tj = 25°C IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/126 300 ±15 8 copyright by Vincotech 50 75 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/126 300 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 1 10-FY064PA050SG10-M582F08 H-Bridge H-Bridge FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 12000 35000 direc / dt (A/ µs) dI0/dt direc / dt (A/µ s) H-Bridge FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 10000 dI0/dt dIrec/dt 30000 25000 8000 20000 6000 15000 4000 10000 2000 5000 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/126 300 ±15 8 50 75 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω H-Bridge IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/126 300 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V H-Bridge FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 8 10 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 K/W RthJH = 1,17 -2 10 -5 At D= RthJH = tp / T 1,00 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10-5 0 K/W 10-4 10-3 10-2 10-1 K/W RthJH = 1,64 FWD thermal model values Phase change interface Thermal grease R (C/W) 0,12 0,46 0,25 0,12 0,04 R (C/W) 0,04 0,09 0,56 0,40 0,20 0,12 copyright by Vincotech R (C/W) 0,15 0,54 0,29 0,14 0,05 Tau (s) 7,7E-01 1,3E-01 4,3E-02 9,4E-03 1,2E-03 8 t p (s) 10110 tp / T 1,39 IGBT thermal model values Phase change interface Thermal grease Tau (s) 7,7E-01 1,3E-01 4,3E-02 9,4E-03 1,2E-03 100 Tau (s) 4,0E+00 8,3E-01 1,3E-01 3,6E-02 7,3E-03 1,1E-03 R (C/W) 0,04 0,10 0,65 0,47 0,24 0,14 K/W Tau (s) 4,0E+00 8,3E-01 1,3E-01 3,6E-02 7,3E-03 1,1E-03 Revision: 1 10-FY064PA050SG10-M582F08 H-Bridge H-Bridge IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) H-Bridge IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 IC (A) Ptot (W) 200 150 60 100 40 50 20 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = °C 175 H-Bridge FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 °C V H-Bridge FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 120 T h ( o C) 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 9 50 150 100 150 T h ( o C) 200 °C Revision: 1 10-FY064PA050SG10-M582F08 H-Bridge H-Bridge IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 15 VGE (V) IC (A) 10 H-Bridge IGBT Figure 26 Gate voltage vs Gate charge 10 100uS 2 12 130V 520V 1mS 10mS 100mS 10 9 1 DC 10 6 0 3 10-1 0 10 0 At D= Th = VGE = 10 1 10 0 103 V CE (V) 2 40 60 80 100 120 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Tj = 20 50 A H-Bridge IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) 160 IC (A) IC MAX 140 MODULE Ic CHIP 120 Ic 100 VCE MAX 80 60 40 20 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Switching mode : copyright by Vincotech ºC 3phase SPWM 10 Revision: 1 10-FY064PA050SG10-M582F08 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e B25/100⋅ 1 − 1 T T 25 [Ω] 20000 16000 12000 8000 4000 0 25 50 copyright by Vincotech 75 100 T (°C) 125 11 Revision: 1 10-FY064PA050SG10-M582F08 Switching Definitions H-Bridge General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω H-Bridge IGBT Figure 1 H-Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 200 tdoff % IC % VCE 100 150 VCE 90% VGE 90% 75 VCE VGE 100 IC VGE 50 tdon tEoff 50 25 IC 1% 0 -25 -0,1 tEon -50 0 0,1 0,2 0,3 0,4 2,4 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 2,5 2,6 2,7 2,8 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 300 50 0,15 0,23 H-Bridge IGBT Figure 3 -15 15 300 50 0,10 0,23 V V V A µs µs H-Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 200 fitted % VCE 3% IC10% VGE10% 0 Ic VCE IC % 100 150 IC 90% 75 100 VCE IC 90% IC 60% 50 tr IC 40% 50 25 IC10% 0 -25 0,04 IC 10% 0 tf 0,08 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,12 300 50 0,024 0,16 time (us) -50 2,58 0,2 VC (100%) = IC (100%) = tr = V A µs 12 2,6 2,62 300 50 0,021 2,64 2,66 time(us) 2,68 V A µs Revision: 1 10-FY064PA050SG10-M582F08 Switching Definitions H-Bridge H-Bridge IGBT Figure 5 H-Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 150 Pon % % Poff Eoff 100 125 Eon 100 75 75 50 50 25 VGE 90% 25 IC 1% VGE 10% 0 -25 -0,1 VCE 3% 0 tEoff tEon -25 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 15,12 0,57 0,23 0,2 time (us) 0,3 2,4 Pon (100%) = Eon (100%) = tEon = kW mJ µs 2,5 2,6 15,12 0,79 0,23 2,7 2,8 time(us) 2,9 kW mJ µs H-Bridge IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 -150 2,55 2,6 2,65 2,7 2,75 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 300 50 -49 0,05 V A A µs 13 Revision: 1 10-FY064PA050SG10-M582F08 Switching Definitions H-Bridge H-Bridge FWD Figure 8 H-Bridge FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 Erec % % Id Qrr 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 -100 2,55 0 2,6 Id (100%) = Qrr (100%) = tQrr = copyright by Vincotech 2,65 50 1,10 0,10 2,7 time(us) -25 2,55 2,75 2,6 2,65 2,7 2,75 2,8 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 14 15,12 0,13 0,10 kW mJ µs Revision: 1 10-FY064PA050SG10-M582F08 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FY064PA050SG10-M582F08 in DataMatrix as M582F08 in packaging barcode as M582F08 Outline Pinout copyright by Vincotech 15 Revision: 1 10-FY064PA050SG10-M582F08 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 16 Revision: 1