10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet flow 1 NPC 650 V / 150 A Features flow 1 17mm housing ● switching with high speed components ● low voltage ride through (LVRT) ● reactive power capable ● improved Rth (AlN) substrat Target Applications Schematic ● UPS ● Motor Drive ● Solar inverters Types ● 10-F107NIB150SG06-M136F39 ● 10-P107NIB150SG06-M136F39Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 128 168 A 450 A 279 422 W Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T s=80°C T c=80°C T j≤150°C V GE=15V T jmax ±20 V 5 400 µs V 175 °C Buck Diode Peak Repetitive Reverse Voltage DC forward current Diode surge non repetitive forward current Power dissipation Maximum Junction Temperature copyright Vincotech V RRM IF I FSM P tot T j=T jmax T s=80°C T c=80°C t p=10ms, sine halfewave T c=100°C T j=T jmax T s=80°C T c=80°C T jmax 1 650 V 125 170 A 1280 A 241 365 W 175 °C 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V T s=80°C T c=80°C 173 228 A 450 A T s=80°C T c=80°C 324 490 W Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=T jmax t p limited by T jmax T j=T jmax T j≤150°C V GE=15V T jmax ±20 V 6 360 µs V 175 °C Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j=T jmax 600 V T s=80°C T c=80°C 124 164 A 200 A T s=80°C T c=80°C 204 310 W 175 °C t p limited by T jmax T j=T jmax T jmax Boost Diode Peak Repetitive Reverse Voltage V RRM T j=25°C 650 V T s=80°C T c=80°C 120 161 A 200 A T s=80°C T c=80°C 203 307 W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature IF I FRM P tot T j=T jmax t p limited by T jmax T j=T jmax Thermal Properties Insulation Properties Insulation voltage Comparative Tracking Index copyright Vincotech V is DC voltage CTI t=2s >200 2 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Buck IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0024 15 150 Collector-emitter cut-off current incl. Diode I CES 0 650 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 4,2 5,1 5,6 1,38 1,94 2,26 2,22 0,0076 300 none tr t d(off) 25 150 25 150 25 150 25 150 R goff=4 Ω R gon=4 Ω 350 ±15 150 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA Ω 147 149 30 34 197 219 18 27 1,53 2,45 1,69 2,68 ns mWs 9240 f=1MHz 0 25 25 480 pF 274 15 480 150 25 phase-change material ʎ=3,4W/mK 940 nC 0,34 K/W Buck Diode Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current t rr Reverse recovered charge Q rr Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech 650 I RRM Reverse recovery time Peak rate of fall of recovery current 160 R gon=4 Ω 350 ±15 ( di rf/dt )max E rec R th(j-s) phase-change material ʎ=3,4W/mK 150 25 150 25 150 25 150 25 150 25 150 25 150 25 150 1,67 2,01 160 104 157 59 97 5 10 6885 3093 0,92 2,07 0,39 3 1,7 V µA A ns µC A/µs mWs K/W 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 5 5,8 6,5 1,05 1,46 1,65 1,85 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0024 15 150 Collector-emitter cut-off incl diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) R goff=4 Ω R gon=4 Ω 350 ±15 0,0076 1200 tr t d(off) 25 150 25 150 25 150 150 25 150 25 150 25 150 25 150 25 150 25 150 25 150 none V V mA nA Ω 149 151 31 36 220 245 58 78 1,77 2,38 4,26 5,95 ns mWs 9240 f=1MHz 25 0 25 576 pF 274 480 15 150 phase-change material ʎ=3,4W/mK 940 nC 0,29 K/W Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink 25 VF R th(j-s) 100 1,20 150 1,77 1,90 V 1,54 phase-change material ʎ=3,4W/mK 0,46 K/W Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink 650 I RRM t rr Peak rate of fall of recovery current 100 R gon=4 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) 150 25 150 25 150 25 150 25 150 25 150 25 150 25 150 1,2 1,77 1,57 1,9 48 82 114 133 290 6 13 559 676 1,65 3,68 phase-change material ʎ=3,4W/mK V µA A ns µC A/µs mWs 0,47 K/W Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P 25 R 100=1486Ω 100 Power dissipation constant B-value B (25/50) B-value B (25/100) Tol. ±1% Vincotech NTC Reference copyright Vincotech 21511 -4,5 Ω +4,5 % 25 210 mW 25 3,5 mW/K 25 3884 K 25 3964 K F 4 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Buck Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 IGBT Typical output characteristics I C = f(V CE) 500 IC (A) IC (A) 500 400 400 300 300 200 200 100 100 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 5 350 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) FWD 400 IF (A) IC (A) 150 120 300 90 200 Tj = 25°C 60 Tj = Tjmax-25°C Tj = Tjmax-25°C 100 30 Tj = 25°C 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 5 1 350 2 3 V F (V) 4 µs 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Buck Figure 5 IGBT Figure 6 IGBT Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 12 6 E (mWs) E (mWs) Typical switching energy losses Eoff High T Eon High T 10 5 Eon Low T Eoff Low T 4 8 Eon High T 3 6 Eon Low T 2 Eoff High T 4 Eoff Low T 1 2 0 0 0 50 100 150 200 250 300 I C (A) 0 With an inductive load at Tj = °C 25/150 V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 20 R G (Ω) With an inductive load at Tj = °C 25/150 V CE = 350 V V GE = ±15 V IC = 150 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 3 E (mWs) 3 FWD E (mWs) Erec High T 2,5 2,5 2 2 1,5 1,5 Erec Low T Erec High T 1 1 0,5 0,5 Erec Low T 0 0 0 50 100 150 200 250 I C (A) 300 0 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V IC = 150 A 6 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Buck Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1,00 tdoff t (ms) t (ms) 1,00 tdoff tdon tdon 0,10 0,10 tr tf tf tr 0,01 0,01 0,00 0,00 0 50 100 150 200 250 I C (A) 300 0 With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V IC = 150 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,16 t rr(ms) 0,12 FWD trr High T t rr(ms) trr High T 0,10 0,12 0,08 trr Low T trr Low T 0,06 0,08 0,04 0,04 0,02 0,00 0,00 0 At Tj = V CE = V GE = R gon = 50 25/150 350 ±15 4 copyright Vincotech 100 150 200 250 I C (A) 300 0 At Tj = VR= IF= V GE = °C V V Ω 7 4 25/150 350 150 ±15 8 12 16 R gon (Ω) 20 °C V A V 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Buck Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Qrr High T Qrr (mC) Qrr (mC) 14 12 12 10 Qrr High T 10 8 8 6 Qrr Low T 6 4 4 Qrr Low T 2 2 0 0 0 At Tj = V CE = V GE = R gon = 50 100 150 200 250 I C (A) 300 0 4 8 25/150 350 °C V At Tj = VR= 25/150 350 °C V ±15 4 V Ω IF= V GE = 150 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 12 16 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 20 FWD IrrM (A) 200 IrrM (A) 200 R gon (Ω) IRRM High T 160 160 IRRM Low T 120 120 IRRM High T 80 80 40 40 IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 50 25/150 350 ±15 4 copyright Vincotech 100 150 200 250 I C (A) 300 0 At Tj = VR= IF= V GE = °C V V Ω 8 4 25/150 350 150 ±15 8 12 16 R gon (Ω) 20 °C V A V 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Buck Figure 17 FWD Figure 18 FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 12000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) 10000 di0/dt T 8000 dIrec/dt T dI0/dt T 10000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = 50 100 150 200 250 I C (A) 300 0 4 8 25/150 350 °C V At Tj = VR= 25/150 350 °C V ±15 4 V Ω IF= V GE = 150 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 12 16 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 100 FWD ZthJH (K/W) ZthJH (K/W) 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 At D = R = thJH 20 100 10-1 10-2 10-5 R gon (Ω) 10-4 10-3 10-2 10-1 100 t p (s) 10-2 10-5 101 At D = R thJH = tp/T 0,34 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-4 10-3 0,39 R (K/W) 0,04 0,06 0,10 0,09 0,02 0,02 R (K/W) 0,05 0,07 0,05 0,13 0,03 0,03 9 100 t p (s) 101 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 3,5E+00 8,6E-01 1,4E-01 4,3E-02 4,4E-03 6,2E-04 10-2 Tau (s) 3,8E+00 9,2E-01 2,2E-01 5,1E-02 1,2E-02 2,4E-03 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Buck Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 200 IC (A) Ptot (W) 600 500 150 400 100 300 200 50 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 200 Ptot (W) IF (A) 500 400 150 300 100 200 50 100 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Buck Figure 25 Safe operating area as a function IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) 103 10uS 100mS 10mS 2 VGE (V) 16 IC (A) 10 IGBT 14 100uS 1mS 12 130V DC 520V 10 10 1 8 100 6 4 10-1 2 0 0 100 At D = Th = V GE = Tj = 10 1 102 V CE (V) At IC = single pulse 80 ±15 T jmax copyright Vincotech 200 400 103 150 600 800 Q g (nC) 1000 A ºC V ºC 11 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Boost Figure 1 IGBT Figure 2 Typical output characteristics I C = f(V CE) IGBT Typical output characteristics I C = f(V CE) 600 IC (A) IC (A) 600 500 500 400 400 300 300 200 200 100 100 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 5 V CE (V) 350 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) FWD 250 IC (A) IF (A) 150 120 200 90 150 60 100 Tj = Tjmax-25°C Tj = Tjmax-25°C 50 30 Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 V GE (V) 0 10 At tp = µs V 12 0,5 350 1 1,5 2 2,5 V F (V) 3 µs 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Boost Figure 5 IGBT Figure 6 IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) E (mWs) E (mWs) 12 Eoff High T 10 12 Eon High T 10 Eon Low T 8 8 Eoff Low T Eoff High T 6 6 Eoff Low T Eon High T 4 4 Eon Low T 2 2 0 0 0 50 100 150 200 250 300 I C (A) 0 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V IC = 150 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 5 E (mWs) 5 FWD Erec High T 4 4 3 3 Erec High T Erec Low T 2 2 1 1 Erec Low T 0 0 0 50 100 150 200 250 I C (A) 0 300 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V IC = 150 A 13 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Boost Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 tdoff t ( µs) t ( µs) 1 tdoff tdon tdon tf 0,1 tr 0,1 tf tr 0,01 0,01 0,001 0,001 0 50 100 150 200 250 I C (A) 0 300 With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 20 R G( Ω ) With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V IC = 150 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) t rr(ms) 0,5 t rr(ms) 0,35 FWD trr High T 0,30 trr High T 0,4 0,25 0,3 0,20 trr Low T 0,15 trr Low T 0,2 0,10 0,1 0,05 0,00 0 50 100 150 200 250 0,0 300 0 I C (A) At Tj = V CE = V GE = R gon = 25/150 350 ±15 4 copyright Vincotech At Tj = VR= IF= V GE = °C V V Ω 14 4 25/150 350 150 ±15 8 12 16 R gon (Ω) 20 °C V A V 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Boost Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 18 Qrr (mC) Qrr (mC) 18 Qrr High T 15 15 12 12 9 9 Qrr High T Qrr Low T 6 6 Qrr Low T 3 3 0 0 0 At Tj = V CE = V GE = R gon = 50 100 150 200 250 I C (A) 300 0 4 8 25/150 350 ±15 °C V V At Tj = VR= IF= 25/150 350 150 °C V A 4 Ω V GE = ±15 V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 12 16 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 180 IrrM (A) IrrM (A) 180 20 R gon ( Ω ) 150 150 IRRM High T 120 120 IRRM Low T 90 90 60 60 30 30 IRRM High T IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 50 25/150 350 ±15 4 copyright Vincotech 100 150 200 250 I C (A) 300 0 At Tj = VR= IF= V GE = °C V V Ω 15 4 25/150 350 150 ±15 8 12 16 R gon (Ω) 20 °C V A V 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Boost Figure 17 FWD Figure 18 FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 10000 direc / dt (A/ms) direc / dt (A/ms) 10000 dIo/dt T dIrec/dt T 8000 dI0/dt T dIrec/dt T 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = 50 100 150 200 250 I C (A) 300 0 °C V At Tj = VR= 25/150 350 °C V ±15 4 V Ω IF= V GE = 150 ±15 A V IGBT 12 16 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) R gon (Ω) 20 FWD 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 At D = R thJH = 8 25/150 350 Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) 10-2 10-5 4 10-4 10-3 10-2 10-1 100 t p (s) 10-2 10-5 101 At D = R thJH = tp/T 0,29 K/W 10-4 10-3 0,47 R (K/W) 0,04 0,05 0,08 0,09 0,02 0,01 R (K/W) 0,05 0,07 0,10 0,14 0,06 0,05 16 100 t p (s) 101 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 3,0E+00 7,9E-01 1,4E-01 4,3E-02 3,8E-03 6,0E-04 10-2 Tau (s) 4,1E+00 9,2E-01 1,4E-01 3,8E-02 9,0E-03 2,0E-03 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Boost Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 300 IC (A) Ptot (W) 600 500 250 400 200 300 150 200 100 100 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 200 IF (A) Ptot (W) 400 200 300 150 200 100 100 50 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 0 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Boost inv. Diode Figure 25 Boost Inverse Diode Figure 26 Boost Inverse Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F = f(V F) as a function of pulse width Z thJH = f(t p) 100 IF (A) ZthJC (K/W) 400 300 10-1 200 100 Tj = Tjmax-25°C Tj = 25°C 10-2 10-5 0 0 At tp = 1 250 2 3 V F (V) 4 At D = R thJH = µs Figure 27 Power dissipation as a function of heatsink temperature P tot = f(T h) Boost Inverse Diode 10-4 10-3 10-2 10-1 100 t p (s) 101 tp/T 0,46 K/W Figure 28 Forward current as a function of heatsink temperature I F = f(T h) Boost Inverse Diode 200 IF (A) Ptot (W) 400 300 150 200 100 100 50 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Switching Definitions BUCK General conditions Tj = 150 °C R gon R goff = = 4Ω 4Ω Figure 1 Buck IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Buck IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 250 tdoff % % 125 IC 200 VCE 100 VGE 90% 150 VCE 90% VGE 75 IC 100 VGE tEoff 50 tdon VCE 50 25 IC 1% 0 -25 -0,1 VCE 3% IC 10% VGE 10% 0 tEon -50 0 0,1 0,2 0,3 0,4 2,9 3 3,1 3,2 3,3 time (µs) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 350 V V V V GE (0%) = V GE (100%) = V C (100%) = -15 15 350 V V V 150 0,22 0,31 A µs µs I C (100%) = t don = t E on = 150 0,15 0,25 A µs µs Figure 3 Buck IGBT Turn-off Switching Waveforms & definition of t f time(µs) 3,4 Figure 4 Buck IGBT Turn-on Switching Waveforms & definition of t r 250 150 % % IC 125 IC 200 VCE fitted 100 150 IC 90% 75 VCE 100 IC 60% IC 90% 50 tr IC 40% 50 25 IC 10% IC10% 0 0 tf -50 -25 0,1 0,14 V C (100%) = I C (100%) = tf = copyright Vincotech 0,18 0,22 350 150 0,03 V A µs 0,26 0,3 time (µs) 3,1 0,34 V C (100%) = I C (100%) = tr = 20 3,15 3,2 350 150 0,03 3,25 time(µs) 3,3 V A µs 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Switching Definitions BUCK Figure 5 Buck IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Buck IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % IC 1% Eon Eoff 100 100 75 75 50 50 Pon Poff 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEoff -25 -0,1 tEon -25 0 P off (100%) = E off (100%) = t E off = 0,1 52,50 2,68 0,31 0,2 0,3 time (µs) 3 0,4 kW mJ µs 3,1 P on (100%) = E on (100%) = t E on = 3,2 3,3 52,50 2,45 0,25 3,4 time(µs) 3,5 kW mJ µs Figure 8 Buck FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 fitted Vd 0 IRRM 10% -50 IRRM 90% -100 IRRM 100% -150 3,1 3,15 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 21 3,2 3,25 350 150 -157 0,10 V A A µs 3,3 3,35 3,4 time(µs) 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Switching Definitions BUCK Figure 9 Buck FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Buck FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % Qrr Id 100 Erec % 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 3,1 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,2 3,3 150 9,91 0,19 3,4 time(µs) 3,5 3,1 A µC µs P rec (100%) = E rec (100%) = t E rec = 22 3,2 3,3 52,50 2,07 0,19 3,4 time(µs) 3,5 kW mJ µs 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 17mm housing with thermal paste 17mm housing without thermal paste 17mm housing with press-fit pins in DataMatrix as in packaging barcode as 10-F107NIB150SG06-M136F39 M136F39 M136F39 10-P107NIB150SG06-M136F39-/3/ M136F39-/3/ M136F39-/3/ 10-P107NIB150SG06-M136F39Y M136F39Y M136F39Y Outline Pin table Pin table Pin X Y Pin X Y 1 52,2 6,9 23 2,7 28,2 2 52,2 0 24 0 28,2 3 36,2 6,75 25 18,3 22,45 4 33,2 7,9 26 21,3 21,3 5 33,2 4,9 27 21,3 24,3 6 9,2 5,75 28 43 22,15 7 6,2 6,9 29 46 21 8 6,2 3,9 30 46 24 9 2,7 0 31 52,2 20,1 22,8 10 0 0 32 49,5 11 2,7 2,7 33 52,2 22,8 12 0 2,7 34 49,5 25,5 13 2,7 5,4 35 52,2 25,5 14 0 5,4 36 49,5 28,2 15 2,7 12,75 37 52,2 28,2 16 0 12,75 17 2,7 15,45 18 0 15,45 19 2,7 22,8 20 0 22,8 21 2,7 25,5 22 0 25,5 Pinout Identification ID Component Voltage Current Function T1,T4,T5,T8 IGBT 650V 75A Buck Switch Boost Switch T2,T3,T6,T7 IGBT 600V 75A D1,D4,D5,D8 FWD 650V 50A Boost Diode D2,D3,D6,D7 FWD 600V 50A Boost Sw. Protection Diode D9,D10 FWD 650V 160A Buck Diode T NTC - - Thermistor copyright Vincotech 23 Comment 08 Sep. 2015 / Revision 5 10-F107NIB150SG06-M136F39 10-P107NIB150SG06-M136F39Y datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 100 Standard <SPQ Sample Handling instruction Handling instructions for flow 1 packages see vincotech.com website. General datasheet General datasheet for flow 1 packages see vincotech.com website. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 24 08 Sep. 2015 / Revision 5