10 x107NIB150SG06 M136F39x D5 14

10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
flow 1 NPC
650 V / 150 A
Features
flow 1 17mm housing
● switching with high speed components
● low voltage ride through (LVRT)
● reactive power capable
● improved Rth (AlN) substrat
Target Applications
Schematic
● UPS
● Motor Drive
● Solar inverters
Types
● 10-F107NIB150SG06-M136F39
● 10-P107NIB150SG06-M136F39Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
128
168
A
450
A
279
422
W
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T s=80°C
T c=80°C
T j≤150°C
V GE=15V
T jmax
±20
V
5
400
µs
V
175
°C
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
Diode surge non repetitive forward current
Power dissipation
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
I FSM
P tot
T j=T jmax
T s=80°C
T c=80°C
t p=10ms, sine halfewave
T c=100°C
T j=T jmax
T s=80°C
T c=80°C
T jmax
1
650
V
125
170
A
1280
A
241
365
W
175
°C
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
T s=80°C
T c=80°C
173
228
A
450
A
T s=80°C
T c=80°C
324
490
W
Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=T jmax
t p limited by T jmax
T j=T jmax
T j≤150°C
V GE=15V
T jmax
±20
V
6
360
µs
V
175
°C
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j=T jmax
600
V
T s=80°C
T c=80°C
124
164
A
200
A
T s=80°C
T c=80°C
204
310
W
175
°C
t p limited by T jmax
T j=T jmax
T jmax
Boost Diode
Peak Repetitive Reverse Voltage
V RRM
T j=25°C
650
V
T s=80°C
T c=80°C
120
161
A
200
A
T s=80°C
T c=80°C
203
307
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
IF
I FRM
P tot
T j=T jmax
t p limited by T jmax
T j=T jmax
Thermal Properties
Insulation Properties
Insulation voltage
Comparative Tracking Index
copyright Vincotech
V is
DC voltage
CTI
t=2s
>200
2
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Buck IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0024
15
150
Collector-emitter cut-off current incl. Diode
I CES
0
650
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
4,2
5,1
5,6
1,38
1,94
2,26
2,22
0,0076
300
none
tr
t d(off)
25
150
25
150
25
150
25
150
R goff=4 Ω
R gon=4 Ω
350
±15
150
25
150
25
150
25
150
25
150
25
150
25
150
V
V
mA
nA
Ω
147
149
30
34
197
219
18
27
1,53
2,45
1,69
2,68
ns
mWs
9240
f=1MHz
0
25
25
480
pF
274
15
480
150
25
phase-change
material
ʎ=3,4W/mK
940
nC
0,34
K/W
Buck Diode
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
t rr
Reverse recovered charge
Q rr
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
650
I RRM
Reverse recovery time
Peak rate of fall of recovery current
160
R gon=4 Ω
350
±15
( di rf/dt )max
E rec
R th(j-s)
phase-change
material
ʎ=3,4W/mK
150
25
150
25
150
25
150
25
150
25
150
25
150
25
150
1,67
2,01
160
104
157
59
97
5
10
6885
3093
0,92
2,07
0,39
3
1,7
V
µA
A
ns
µC
A/µs
mWs
K/W
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,46
1,65
1,85
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0024
15
150
Collector-emitter cut-off incl diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
R goff=4 Ω
R gon=4 Ω
350
±15
0,0076
1200
tr
t d(off)
25
150
25
150
25
150
150
25
150
25
150
25
150
25
150
25
150
25
150
25
150
none
V
V
mA
nA
Ω
149
151
31
36
220
245
58
78
1,77
2,38
4,26
5,95
ns
mWs
9240
f=1MHz
25
0
25
576
pF
274
480
15
150
phase-change
material
ʎ=3,4W/mK
940
nC
0,29
K/W
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
25
VF
R th(j-s)
100
1,20
150
1,77
1,90
V
1,54
phase-change
material
ʎ=3,4W/mK
0,46
K/W
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink
650
I RRM
t rr
Peak rate of fall of recovery current
100
R gon=4 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
150
25
150
25
150
25
150
25
150
25
150
25
150
25
150
1,2
1,77
1,57
1,9
48
82
114
133
290
6
13
559
676
1,65
3,68
phase-change
material
ʎ=3,4W/mK
V
µA
A
ns
µC
A/µs
mWs
0,47
K/W
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
25
R 100=1486Ω
100
Power dissipation constant
B-value
B (25/50)
B-value
B (25/100)
Tol. ±1%
Vincotech NTC Reference
copyright Vincotech
21511
-4,5
Ω
+4,5
%
25
210
mW
25
3,5
mW/K
25
3884
K
25
3964
K
F
4
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Buck
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
IGBT
Typical output characteristics
I C = f(V CE)
500
IC (A)
IC (A)
500
400
400
300
300
200
200
100
100
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
FWD
400
IF (A)
IC (A)
150
120
300
90
200
Tj = 25°C
60
Tj = Tjmax-25°C
Tj = Tjmax-25°C
100
30
Tj = 25°C
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
5
1
350
2
3
V F (V)
4
µs
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Buck
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
12
6
E (mWs)
E (mWs)
Typical switching energy losses
Eoff High T
Eon High T
10
5
Eon Low T
Eoff Low T
4
8
Eon High T
3
6
Eon Low T
2
Eoff High T
4
Eoff Low T
1
2
0
0
0
50
100
150
200
250
300
I C (A)
0
With an inductive load at
Tj =
°C
25/150
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
20
R G (Ω)
With an inductive load at
Tj =
°C
25/150
V CE =
350
V
V GE =
±15
V
IC =
150
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
3
E (mWs)
3
FWD
E (mWs)
Erec High T
2,5
2,5
2
2
1,5
1,5
Erec Low T
Erec High T
1
1
0,5
0,5
Erec Low T
0
0
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
IC =
150
A
6
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Buck
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1,00
tdoff
t (ms)
t (ms)
1,00
tdoff
tdon
tdon
0,10
0,10
tr
tf
tf
tr
0,01
0,01
0,00
0,00
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
IC =
150
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,16
t rr(ms)
0,12
FWD
trr High T
t rr(ms)
trr High T
0,10
0,12
0,08
trr Low T
trr Low T
0,06
0,08
0,04
0,04
0,02
0,00
0,00
0
At
Tj =
V CE =
V GE =
R gon =
50
25/150
350
±15
4
copyright Vincotech
100
150
200
250
I C (A)
300
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
4
25/150
350
150
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Buck
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr High T
Qrr (mC)
Qrr (mC)
14
12
12
10
Qrr High T
10
8
8
6
Qrr Low T
6
4
4
Qrr Low T
2
2
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
100
150
200
250
I C (A)
300
0
4
8
25/150
350
°C
V
At
Tj =
VR=
25/150
350
°C
V
±15
4
V
Ω
IF=
V GE =
150
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
12
16
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
20
FWD
IrrM (A)
200
IrrM (A)
200
R gon (Ω)
IRRM High T
160
160
IRRM Low T
120
120
IRRM High T
80
80
40
40
IRRM Low T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/150
350
±15
4
copyright Vincotech
100
150
200
250
I C (A)
300
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
4
25/150
350
150
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Buck
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
12000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
10000
di0/dt T
8000
dIrec/dt T
dI0/dt T
10000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
100
150
200
250
I C (A)
300
0
4
8
25/150
350
°C
V
At
Tj =
VR=
25/150
350
°C
V
±15
4
V
Ω
IF=
V GE =
150
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
12
16
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
100
FWD
ZthJH (K/W)
ZthJH (K/W)
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
At
D =
R =
thJH
20
100
10-1
10-2
10-5
R gon (Ω)
10-4
10-3
10-2
10-1
100
t p (s)
10-2
10-5
101
At
D =
R thJH =
tp/T
0,34
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-4
10-3
0,39
R (K/W)
0,04
0,06
0,10
0,09
0,02
0,02
R (K/W)
0,05
0,07
0,05
0,13
0,03
0,03
9
100
t p (s)
101
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
3,5E+00
8,6E-01
1,4E-01
4,3E-02
4,4E-03
6,2E-04
10-2
Tau (s)
3,8E+00
9,2E-01
2,2E-01
5,1E-02
1,2E-02
2,4E-03
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Buck
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
200
IC (A)
Ptot (W)
600
500
150
400
100
300
200
50
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
200
Ptot (W)
IF (A)
500
400
150
300
100
200
50
100
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Buck
Figure 25
Safe operating area as a function
IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
103
10uS
100mS
10mS
2
VGE (V)
16
IC (A)
10
IGBT
14
100uS
1mS
12
130V
DC
520V
10
10
1
8
100
6
4
10-1
2
0
0
100
At
D =
Th =
V GE =
Tj =
10
1
102
V CE (V)
At
IC =
single pulse
80
±15
T jmax
copyright Vincotech
200
400
103
150
600
800
Q g (nC)
1000
A
ºC
V
ºC
11
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Boost
Figure 1
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IGBT
Typical output characteristics
I C = f(V CE)
600
IC (A)
IC (A)
600
500
500
400
400
300
300
200
200
100
100
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
5
V CE (V)
350
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
FWD
250
IC (A)
IF (A)
150
120
200
90
150
60
100
Tj = Tjmax-25°C
Tj = Tjmax-25°C
50
30
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
V GE (V)
0
10
At
tp =
µs
V
12
0,5
350
1
1,5
2
2,5
V F (V)
3
µs
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Boost
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
E (mWs)
E (mWs)
12
Eoff High T
10
12
Eon High T
10
Eon Low T
8
8
Eoff Low T
Eoff High T
6
6
Eoff Low T
Eon High T
4
4
Eon Low T
2
2
0
0
0
50
100
150
200
250
300
I C (A)
0
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
IC =
150
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
5
E (mWs)
5
FWD
Erec High T
4
4
3
3
Erec High T
Erec Low T
2
2
1
1
Erec Low T
0
0
0
50
100
150
200
250
I C (A)
0
300
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/150
°C
V CE =
350
V
V GE =
±15
V
IC =
150
A
13
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Boost
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
tdoff
t ( µs)
t ( µs)
1
tdoff
tdon
tdon
tf
0,1
tr
0,1
tf
tr
0,01
0,01
0,001
0,001
0
50
100
150
200
250
I C (A)
0
300
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
20
R G( Ω )
With an inductive load at
Tj =
150
°C
V CE =
350
V
V GE =
±15
V
IC =
150
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
t rr(ms)
0,5
t rr(ms)
0,35
FWD
trr High T
0,30
trr High T
0,4
0,25
0,3
0,20
trr Low T
0,15
trr Low T
0,2
0,10
0,1
0,05
0,00
0
50
100
150
200
250
0,0
300
0
I C (A)
At
Tj =
V CE =
V GE =
R gon =
25/150
350
±15
4
copyright Vincotech
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
14
4
25/150
350
150
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Boost
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
18
Qrr (mC)
Qrr (mC)
18
Qrr High T
15
15
12
12
9
9
Qrr High T
Qrr Low T
6
6
Qrr Low T
3
3
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
100
150
200
250
I C (A)
300
0
4
8
25/150
350
±15
°C
V
V
At
Tj =
VR=
IF=
25/150
350
150
°C
V
A
4
Ω
V GE =
±15
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
12
16
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
180
IrrM (A)
IrrM (A)
180
20
R gon ( Ω )
150
150
IRRM High T
120
120
IRRM Low T
90
90
60
60
30
30
IRRM High T
IRRM Low T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/150
350
±15
4
copyright Vincotech
100
150
200
250
I C (A)
300
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
15
4
25/150
350
150
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Boost
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
10000
direc / dt (A/ms)
direc / dt (A/ms)
10000
dIo/dt T
dIrec/dt T
8000
dI0/dt T
dIrec/dt T
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
100
150
200
250
I C (A) 300
0
°C
V
At
Tj =
VR=
25/150
350
°C
V
±15
4
V
Ω
IF=
V GE =
150
±15
A
V
IGBT
12
16
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
R gon (Ω)
20
FWD
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
At
D =
R thJH =
8
25/150
350
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
10-2
10-5
4
10-4
10-3
10-2
10-1
100
t p (s)
10-2
10-5
101
At
D =
R thJH =
tp/T
0,29
K/W
10-4
10-3
0,47
R (K/W)
0,04
0,05
0,08
0,09
0,02
0,01
R (K/W)
0,05
0,07
0,10
0,14
0,06
0,05
16
100
t p (s)
101
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
3,0E+00
7,9E-01
1,4E-01
4,3E-02
3,8E-03
6,0E-04
10-2
Tau (s)
4,1E+00
9,2E-01
1,4E-01
3,8E-02
9,0E-03
2,0E-03
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Boost
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
300
IC (A)
Ptot (W)
600
500
250
400
200
300
150
200
100
100
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
200
IF (A)
Ptot (W)
400
200
300
150
200
100
100
50
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Boost inv. Diode
Figure 25
Boost Inverse Diode
Figure 26
Boost Inverse Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F = f(V F)
as a function of pulse width
Z thJH = f(t p)
100
IF (A)
ZthJC (K/W)
400
300
10-1
200
100
Tj = Tjmax-25°C
Tj = 25°C
10-2
10-5
0
0
At
tp =
1
250
2
3
V F (V)
4
At
D =
R thJH =
µs
Figure 27
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Boost Inverse Diode
10-4
10-3
10-2
10-1
100
t p (s)
101
tp/T
0,46
K/W
Figure 28
Forward current as a
function of heatsink temperature
I F = f(T h)
Boost Inverse Diode
200
IF (A)
Ptot (W)
400
300
150
200
100
100
50
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Switching Definitions BUCK
General conditions
Tj
=
150 °C
R gon
R goff
=
=
4Ω
4Ω
Figure 1
Buck IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Buck IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
250
tdoff
%
%
125
IC
200
VCE
100
VGE 90%
150
VCE 90%
VGE
75
IC
100
VGE
tEoff
50
tdon
VCE
50
25
IC 1%
0
-25
-0,1
VCE 3%
IC 10%
VGE 10%
0
tEon
-50
0
0,1
0,2
0,3
0,4
2,9
3
3,1
3,2
3,3
time (µs)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
350
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
-15
15
350
V
V
V
150
0,22
0,31
A
µs
µs
I C (100%) =
t don =
t E on =
150
0,15
0,25
A
µs
µs
Figure 3
Buck IGBT
Turn-off Switching Waveforms & definition of t f
time(µs)
3,4
Figure 4
Buck IGBT
Turn-on Switching Waveforms & definition of t r
250
150
%
%
IC
125
IC
200
VCE
fitted
100
150
IC 90%
75
VCE
100
IC 60%
IC 90%
50
tr
IC 40%
50
25
IC 10%
IC10%
0
0
tf
-50
-25
0,1
0,14
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,18
0,22
350
150
0,03
V
A
µs
0,26
0,3
time (µs)
3,1
0,34
V C (100%) =
I C (100%) =
tr =
20
3,15
3,2
350
150
0,03
3,25
time(µs)
3,3
V
A
µs
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Switching Definitions BUCK
Figure 5
Buck IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Buck IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
IC 1%
Eon
Eoff
100
100
75
75
50
50
Pon
Poff
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-25
-0,1
tEon
-25
0
P off (100%) =
E off (100%) =
t E off =
0,1
52,50
2,68
0,31
0,2
0,3
time (µs)
3
0,4
kW
mJ
µs
3,1
P on (100%) =
E on (100%) =
t E on =
3,2
3,3
52,50
2,45
0,25
3,4
time(µs)
3,5
kW
mJ
µs
Figure 8
Buck FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
fitted
Vd
0
IRRM 10%
-50
IRRM 90%
-100
IRRM 100%
-150
3,1
3,15
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
21
3,2
3,25
350
150
-157
0,10
V
A
A
µs
3,3
3,35
3,4
time(µs)
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Switching Definitions BUCK
Figure 9
Buck FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Buck FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
Qrr
Id
100
Erec
%
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
3,1
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,2
3,3
150
9,91
0,19
3,4
time(µs)
3,5
3,1
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
22
3,2
3,3
52,50
2,07
0,19
3,4
time(µs)
3,5
kW
mJ
µs
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 17mm housing
with thermal paste 17mm housing
without thermal paste 17mm housing with press-fit pins
in DataMatrix as
in packaging barcode as
10-F107NIB150SG06-M136F39
M136F39
M136F39
10-P107NIB150SG06-M136F39-/3/
M136F39-/3/
M136F39-/3/
10-P107NIB150SG06-M136F39Y
M136F39Y
M136F39Y
Outline
Pin table
Pin table
Pin
X
Y
Pin
X
Y
1
52,2
6,9
23
2,7
28,2
2
52,2
0
24
0
28,2
3
36,2
6,75
25
18,3
22,45
4
33,2
7,9
26
21,3
21,3
5
33,2
4,9
27
21,3
24,3
6
9,2
5,75
28
43
22,15
7
6,2
6,9
29
46
21
8
6,2
3,9
30
46
24
9
2,7
0
31
52,2
20,1
22,8
10
0
0
32
49,5
11
2,7
2,7
33
52,2
22,8
12
0
2,7
34
49,5
25,5
13
2,7
5,4
35
52,2
25,5
14
0
5,4
36
49,5
28,2
15
2,7
12,75
37
52,2
28,2
16
0
12,75
17
2,7
15,45
18
0
15,45
19
2,7
22,8
20
0
22,8
21
2,7
25,5
22
0
25,5
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T4,T5,T8
IGBT
650V
75A
Buck Switch
Boost Switch
T2,T3,T6,T7
IGBT
600V
75A
D1,D4,D5,D8
FWD
650V
50A
Boost Diode
D2,D3,D6,D7
FWD
600V
50A
Boost Sw. Protection Diode
D9,D10
FWD
650V
160A
Buck Diode
T
NTC
-
-
Thermistor
copyright Vincotech
23
Comment
08 Sep. 2015 / Revision 5
10-F107NIB150SG06-M136F39
10-P107NIB150SG06-M136F39Y
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
100
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 1 packages see vincotech.com website.
General datasheet
General datasheet for flow 1 packages see vincotech.com website.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
24
08 Sep. 2015 / Revision 5