V23990-P866-F49/F48-PM Maximum Ratings

V23990-P866-F49/F48-PM
datasheet
flowPACK 0 3rd gen
600V/75A
Features
flow0 housing
● 2 clip housing in 12mm and 17mm height
● Trench Fieldstop IGBT technology
● Compact and low inductance design
3
● Built-in NTC
Target Applications
Schematic
● Motor Drives
● Power Generation
● UPS
Types
● V23990-P866-F49-PM: 17mm height
● V23990-P866-F48-PM: 12mm height
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Transistor
Collector-emitter voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings*
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
225
Th=80°C
Tc=80°C
Tj=Tjmax
58
90
A
A
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
Tj≤150°C
VGE=15V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tjmax
Copyright by Vincotech
50
150
Th=80°C
Tc=80°C
67
175
1
A
A
W
°C
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal properties
Storage temperature
Tstg
-40…..+125
°C
Operation junction temperature
Top
-40…..+Tjmax-25
°C
4000
V
Creepage distance
min.12,7
mm
Clearance
min.12,7
mm
Insulation properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,50
1,72
2,1
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
0,0012
VCE=VGE
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
40
650
Rgon=4Ω
Rgoff=4Ω
V
V
µA
nA
Ω
none
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
tr
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
94,4
94,4
11
14,6
159
183
76
95,8
0,55
0,89
1,70
2,26
ns
mWs
4620
f=1MHz
0
25
±15
300
Tj=25°C
288
pF
137
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 0,61 W/mK
470
nC
1,06
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
75
Rgon=4Ω
±15
300
di(rec)max
/dt
Erec
RthJH
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,1
Thermal grease
thickness≤50um
λ = 0,61 W/mK
1,63
1,58
101
117
107
140
3,13
6,46
8274
5117
0,69
1,51
2,2
V
Α
ns
µC
A/µs
mWs
1,43
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
B(25/100)
B-value
Tj=25°C
R100=1486Ω
Tj=100°C
Tol. ±3%
Vincotech NTC Reference
Copyright by Vincotech
-5
+5
%
Tj=25°C
210
mW
Tj=25°C
4000
K
A
3
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
240
IC (A)
IC (A)
240
200
200
160
160
120
120
80
80
40
40
0
0
0
1
tp =
Tj =
VGE from
2
3
VCE (V)
4
5
0
250
µs
25
°C
7 V to 17 V in steps of 1 V
tp =
Tj =
VGE from
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
µs
250
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
240
IC (A)
IF (A)
75
VCE (V)
200
60
Tj = 25°C
160
Tj = Tjmax-25°C
45
120
Tj = Tjmax-25°C
30
80
Tj = 25°C
15
40
0
0
0
2
4
tp =
VCE =
250
10
µs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0
tp =
4
0,5
250
1
1,5
2
2,5
VF (V)
3
µs
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
E (mWs)
4
E (mWs)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff
3,2
4
Eon
3,2
Eoff
2,4
Eoff
2,4
Eoff
Eon
1,6
1,6
Eon:
0,8
0,8
Eon
0
0
0
30
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
Rgon =
4
Rgoff =
4
60
90
120
I C (A)
150
0
4
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
IC =
75
°C
V
V
Ω
Ω
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
12
E (mWs)
Erec
R G( Ω )
16
20
°C
V
V
A
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,5
E (mWs)
8
2
2
1,6
1,5
1,2
Erec
Erec
1
0,8
Erec
0,5
0,4
0
0
0
30
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
Rgon =
4
60
90
120
I C (A)
150
0
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
IC =
75
°C
V
V
Ω
Copyright by Vincotech
4
5
8
12
16
R G( Ω )
20
°C
V
V
A
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Output Inverter
Output inverter IGBT
Output inverter IGBT
1
1
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdon
tdoff
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
30
inductive load
Tj =
150
VCE =
300
VGE =
±15
Rgon =
4
Rgoff =
4
60
90
120
I C (A )
150
0
4
inductive load
Tj =
150
VCE =
300
VGE =
±15
IC =
75
°C
V
V
Ω
Ω
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
8
12
RG (Ω )
20
°C
V
V
A
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,4
t rr( µs)
0,2
16
trr
trr
0,3
0,15
trr
trr
0,1
0,2
0,05
0,1
0
0
0
Tj =
VCE =
VGE =
Rgon =
30
25/150
300
±15
4
60
90
120
I C (A)
150
0
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
4
25/150
300
75
±15
8
12
16
R gon ( Ω ) 20
°C
V
A
V
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
9
Qrr ( µC)
10
Qrr ( µC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr
7,5
8
Qrr
6
6
Qrr
4,5
4
Qrr
3
2
1,5
0
0
0
30
Tj =
VCE =
VGE =
Rgon =
25/150
300
±15
4
At
60
90
120
I C (A)
150
0
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/150
300
75
±15
8
12
R gon ( Ω) 20
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
175
IrrM (A)
IrrM (A)
175
16
150
150
IRRM
125
125
IRRM
100
100
75
75
50
50
IRRM
IRRM
25
25
0
0
0
30
Tj =
VCE =
VGE =
Rgon =
25/150
300
±15
4
60
90
120
I C (A)
150
0
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/150
300
75
±15
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
10000
15000
direc / dt (A/ µs)
direc / dt (A/ µs)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
dI0/dt
dIrec/dt
12000
6000
9000
4000
6000
2000
3000
dI0/dt
dIrec/dt
0
0
0
Tj =
VCE =
VGE =
Rgon =
30
25/150
300
±15
4
60
90
I C (A)
120
150
0
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
300
75
±15
8
12
R gon ( Ω) 20
16
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10
10110
tp / T
1,06
-5
D=
RthJH =
K/W
10
-4
10
-3
R (C/W)
0,02
0,15
0,53
0,24
0,07
0,04
R (C/W)
0,03
0,16
0,63
0,41
0,12
0,08
8
10
-1
10
0
t p (s)
1
10 10
K/W
FWD thermal model values
Copyright by Vincotech
-2
tp / T
1,43
IGBT thermal model values
Tau (s)
9,5E+00
1,1E+00
1,7E-01
4,1E-02
6,9E-03
4,2E-04
10
Tau (s)
9,1E+00
1,0E+00
1,5E-01
4,0E-02
6,7E-03
4,6E-04
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
75
IC (A)
Ptot (W)
200
160
60
120
45
80
30
40
15
0
0
0
Tj =
50
175
100
150
Th ( o C)
200
0
Tj =
°C
VGE =
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
Th ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
75
IF (A)
Ptot (W)
150
150
120
60
90
45
60
30
30
15
0
0
0
Tj =
50
175
100
150
Th ( o C)
200
0
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
Th ( o C)
200
°C
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
3
17,5
IC (A)
VGE (V)
10
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
15
10uS
2
12,5
100uS
10mS
120V
1mS
480V
10
10
1
DC
7,5
100mS
5
10
0
2,5
0
10-1 0
10
D=
Th =
VGE =
101
0
103
V CE (V)
102
IC =
single pulse
ºC
80
±15
V
Tjmax
ºC
Tj =
50
75
100
150
200
250
300
350
400
450
Qg (nC)
500
A
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
10
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
280
140
120
Ic
tdoff
240
Uce
100
200
Uce 90%
Uge 90%
80
160
Ic
60
%
%
120
tEoff
40
Uce
80
20
tdon
Ic 1%
40
0
Uge
Uge10%
Uge
-20
Ic10%
0
Uce3%
tEon
-40
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
0,3
time (us)
-15
15
300
75
0,18
0,45
0,4
0,5
0,6
-40
0,7
2,7
2,8
2,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3
3,1
time(us)
-15
15
300
75
0,09
0,16
3,2
3,3
3,5
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,4
Turn-on Switching Waveforms & definition of tr
140
280
fitted
120
240
Uce
Ic
Ic
100
200
Ic 90%
80
160
Ic 60%
% 60
% 120
Uce
Ic90%
Ic 40%
40
80
20
tr
40
Ic10%
tf
0
-20
0,15
VC (100%) =
IC (100%) =
tf =
Ic10%
0
-40
0,2
0,25
300
75
0,10
Copyright by Vincotech
0,3
0,35
time (us)
0,4
0,45
0,5
3
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
3,05
3,1
300
75
0,02
time(us)
3,15
3,2
3,25
V
A
µs
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
150
Eoff
100
Pon
Poff
120
80
90
Eon
60
60
%
%
40
30
20
Uge10%
Uge90%
Uce3%
0
0
tEoff
tEon
Ic 1%
-20
-0,1
-30
0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
22,56
2,26
0,45
0,35
time (us)
0,5
0,65
2,9
0,8
3
3,2
3,3
3,4
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
3,1
22,56
0,90
0,16
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
80
10
40
5
0
0
% -40
-5
-80
-10
-120
-15
-160
Id
trr
Uge (V)
fitted
Ud
IRRM10%
IRRM90%
-20
-200
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
IRRM100%
-200
0
200
400
Qg (nC)
-15
15
300
75
4441
V
V
V
A
nC
Copyright by Vincotech
600
800
3
1000
3,08
3,16
3,24
3,32
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
12
300
75
-117
0,14
V
A
A
µs
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
Qrr
100
100
50
80
tQrr
0
tErec
60
%
%
-50
40
-100
20
-150
0
Prec
-200
-20
2,9
Id (100%) =
Qrr (100%) =
tQrr =
3
3,1
3,2
75
6,46
0,32
Copyright by Vincotech
3,3
3,4
time(us)
3,5
3,6
3,7
3,8
2,9
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
3,1
3,2
3,3
3,4
time(us)
22,56
1,51
0,32
kW
mJ
µs
3,5
3,6
3,7
3,8
Revision: 2
V23990-P866-F49/F48-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 17mm housing
Ordering Code
V23990-P866-F48-PM
V23990-P866-F49-PM
in DataMatrix as
P866-F48
P866-F49
in packaging barcode as
P866-F48
P866-F49
Outline
Pinout
Copyright by Vincotech
14
Revision: 2
V23990-P866-F49/F48-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 2