V23990-P866-F49/F48-PM datasheet flowPACK 0 3rd gen 600V/75A Features flow0 housing ● 2 clip housing in 12mm and 17mm height ● Trench Fieldstop IGBT technology ● Compact and low inductance design 3 ● Built-in NTC Target Applications Schematic ● Motor Drives ● Power Generation ● UPS Types ● V23990-P866-F49-PM: 17mm height ● V23990-P866-F48-PM: 12mm height Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Inverter Transistor Collector-emitter voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings* tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax 225 Th=80°C Tc=80°C Tj=Tjmax 58 90 A A W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V Tj≤150°C VGE=15V Inverter Diode Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Copyright by Vincotech 50 150 Th=80°C Tc=80°C 67 175 1 A A W °C Revision: 2 V23990-P866-F49/F48-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal properties Storage temperature Tstg -40…..+125 °C Operation junction temperature Top -40…..+Tjmax-25 °C 4000 V Creepage distance min.12,7 mm Clearance min.12,7 mm Insulation properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2 V23990-P866-F49/F48-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,50 1,72 2,1 Inverter Transistor Gate emitter threshold voltage VGE(th) 0,0012 VCE=VGE VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH 40 650 Rgon=4Ω Rgoff=4Ω V V µA nA Ω none Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C tr Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 94,4 94,4 11 14,6 159 183 76 95,8 0,55 0,89 1,70 2,26 ns mWs 4620 f=1MHz 0 25 ±15 300 Tj=25°C 288 pF 137 75 Tj=25°C Thermal grease thickness≤50um λ = 0,61 W/mK 470 nC 1,06 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 75 Rgon=4Ω ±15 300 di(rec)max /dt Erec RthJH 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,1 Thermal grease thickness≤50um λ = 0,61 W/mK 1,63 1,58 101 117 107 140 3,13 6,46 8274 5117 0,69 1,51 2,2 V Α ns µC A/µs mWs 1,43 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P B(25/100) B-value Tj=25°C R100=1486Ω Tj=100°C Tol. ±3% Vincotech NTC Reference Copyright by Vincotech -5 +5 % Tj=25°C 210 mW Tj=25°C 4000 K A 3 Revision: 2 V23990-P866-F49/F48-PM datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 240 IC (A) IC (A) 240 200 200 160 160 120 120 80 80 40 40 0 0 0 1 tp = Tj = VGE from 2 3 VCE (V) 4 5 0 250 µs 25 °C 7 V to 17 V in steps of 1 V tp = Tj = VGE from Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 µs 250 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 240 IC (A) IF (A) 75 VCE (V) 200 60 Tj = 25°C 160 Tj = Tjmax-25°C 45 120 Tj = Tjmax-25°C 30 80 Tj = 25°C 15 40 0 0 0 2 4 tp = VCE = 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0 tp = 4 0,5 250 1 1,5 2 2,5 VF (V) 3 µs Revision: 2 V23990-P866-F49/F48-PM datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) 4 E (mWs) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff 3,2 4 Eon 3,2 Eoff 2,4 Eoff 2,4 Eoff Eon 1,6 1,6 Eon: 0,8 0,8 Eon 0 0 0 30 inductive load Tj = 25/150 VCE = 300 VGE = ±15 Rgon = 4 Rgoff = 4 60 90 120 I C (A) 150 0 4 inductive load Tj = 25/150 VCE = 300 VGE = ±15 IC = 75 °C V V Ω Ω Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) 12 E (mWs) Erec R G( Ω ) 16 20 °C V V A Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,5 E (mWs) 8 2 2 1,6 1,5 1,2 Erec Erec 1 0,8 Erec 0,5 0,4 0 0 0 30 inductive load Tj = 25/150 VCE = 300 VGE = ±15 Rgon = 4 60 90 120 I C (A) 150 0 inductive load Tj = 25/150 VCE = 300 VGE = ±15 IC = 75 °C V V Ω Copyright by Vincotech 4 5 8 12 16 R G( Ω ) 20 °C V V A Revision: 2 V23990-P866-F49/F48-PM datasheet Output Inverter Output inverter IGBT Output inverter IGBT 1 1 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdon tdoff tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 30 inductive load Tj = 150 VCE = 300 VGE = ±15 Rgon = 4 Rgoff = 4 60 90 120 I C (A ) 150 0 4 inductive load Tj = 150 VCE = 300 VGE = ±15 IC = 75 °C V V Ω Ω Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) 8 12 RG (Ω ) 20 °C V V A Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,4 t rr( µs) 0,2 16 trr trr 0,3 0,15 trr trr 0,1 0,2 0,05 0,1 0 0 0 Tj = VCE = VGE = Rgon = 30 25/150 300 ±15 4 60 90 120 I C (A) 150 0 Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 4 25/150 300 75 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 2 V23990-P866-F49/F48-PM datasheet Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 9 Qrr ( µC) 10 Qrr ( µC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr 7,5 8 Qrr 6 6 Qrr 4,5 4 Qrr 3 2 1,5 0 0 0 30 Tj = VCE = VGE = Rgon = 25/150 300 ±15 4 At 60 90 120 I C (A) 150 0 Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/150 300 75 ±15 8 12 R gon ( Ω) 20 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 175 IrrM (A) IrrM (A) 175 16 150 150 IRRM 125 125 IRRM 100 100 75 75 50 50 IRRM IRRM 25 25 0 0 0 30 Tj = VCE = VGE = Rgon = 25/150 300 ±15 4 60 90 120 I C (A) 150 0 Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/150 300 75 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 2 V23990-P866-F49/F48-PM datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 10000 15000 direc / dt (A/ µs) direc / dt (A/ µs) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 dI0/dt dIrec/dt 12000 6000 9000 4000 6000 2000 3000 dI0/dt dIrec/dt 0 0 0 Tj = VCE = VGE = Rgon = 30 25/150 300 ±15 4 60 90 I C (A) 120 150 0 Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 300 75 ±15 8 12 R gon ( Ω) 20 16 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10 10110 tp / T 1,06 -5 D= RthJH = K/W 10 -4 10 -3 R (C/W) 0,02 0,15 0,53 0,24 0,07 0,04 R (C/W) 0,03 0,16 0,63 0,41 0,12 0,08 8 10 -1 10 0 t p (s) 1 10 10 K/W FWD thermal model values Copyright by Vincotech -2 tp / T 1,43 IGBT thermal model values Tau (s) 9,5E+00 1,1E+00 1,7E-01 4,1E-02 6,9E-03 4,2E-04 10 Tau (s) 9,1E+00 1,0E+00 1,5E-01 4,0E-02 6,7E-03 4,6E-04 Revision: 2 V23990-P866-F49/F48-PM datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 75 IC (A) Ptot (W) 200 160 60 120 45 80 30 40 15 0 0 0 Tj = 50 175 100 150 Th ( o C) 200 0 Tj = °C VGE = Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 Th ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 75 IF (A) Ptot (W) 150 150 120 60 90 45 60 30 30 15 0 0 0 Tj = 50 175 100 150 Th ( o C) 200 0 Tj = °C Copyright by Vincotech 9 50 175 100 150 Th ( o C) 200 °C Revision: 2 V23990-P866-F49/F48-PM datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 3 17,5 IC (A) VGE (V) 10 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 15 10uS 2 12,5 100uS 10mS 120V 1mS 480V 10 10 1 DC 7,5 100mS 5 10 0 2,5 0 10-1 0 10 D= Th = VGE = 101 0 103 V CE (V) 102 IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = 50 75 100 150 200 250 300 350 400 450 Qg (nC) 500 A Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 10 Revision: 2 V23990-P866-F49/F48-PM datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 280 140 120 Ic tdoff 240 Uce 100 200 Uce 90% Uge 90% 80 160 Ic 60 % % 120 tEoff 40 Uce 80 20 tdon Ic 1% 40 0 Uge Uge10% Uge -20 Ic10% 0 Uce3% tEon -40 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 0,3 time (us) -15 15 300 75 0,18 0,45 0,4 0,5 0,6 -40 0,7 2,7 2,8 2,9 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3 3,1 time(us) -15 15 300 75 0,09 0,16 3,2 3,3 3,5 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,4 Turn-on Switching Waveforms & definition of tr 140 280 fitted 120 240 Uce Ic Ic 100 200 Ic 90% 80 160 Ic 60% % 60 % 120 Uce Ic90% Ic 40% 40 80 20 tr 40 Ic10% tf 0 -20 0,15 VC (100%) = IC (100%) = tf = Ic10% 0 -40 0,2 0,25 300 75 0,10 Copyright by Vincotech 0,3 0,35 time (us) 0,4 0,45 0,5 3 VC (100%) = IC (100%) = tr = V A µs 11 3,05 3,1 300 75 0,02 time(us) 3,15 3,2 3,25 V A µs Revision: 2 V23990-P866-F49/F48-PM datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 Eoff 100 Pon Poff 120 80 90 Eon 60 60 % % 40 30 20 Uge10% Uge90% Uce3% 0 0 tEoff tEon Ic 1% -20 -0,1 -30 0,05 Poff (100%) = Eoff (100%) = tEoff = 0,2 22,56 2,26 0,45 0,35 time (us) 0,5 0,65 2,9 0,8 3 3,2 3,3 3,4 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 3,1 22,56 0,90 0,16 kW mJ µs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 15 80 10 40 5 0 0 % -40 -5 -80 -10 -120 -15 -160 Id trr Uge (V) fitted Ud IRRM10% IRRM90% -20 -200 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = IRRM100% -200 0 200 400 Qg (nC) -15 15 300 75 4441 V V V A nC Copyright by Vincotech 600 800 3 1000 3,08 3,16 3,24 3,32 3,4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 12 300 75 -117 0,14 V A A µs Revision: 2 V23990-P866-F49/F48-PM datasheet Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec Qrr 100 100 50 80 tQrr 0 tErec 60 % % -50 40 -100 20 -150 0 Prec -200 -20 2,9 Id (100%) = Qrr (100%) = tQrr = 3 3,1 3,2 75 6,46 0,32 Copyright by Vincotech 3,3 3,4 time(us) 3,5 3,6 3,7 3,8 2,9 3 Prec (100%) = Erec (100%) = tErec = A µC µs 13 3,1 3,2 3,3 3,4 time(us) 22,56 1,51 0,32 kW mJ µs 3,5 3,6 3,7 3,8 Revision: 2 V23990-P866-F49/F48-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 17mm housing Ordering Code V23990-P866-F48-PM V23990-P866-F49-PM in DataMatrix as P866-F48 P866-F49 in packaging barcode as P866-F48 P866-F49 Outline Pinout Copyright by Vincotech 14 Revision: 2 V23990-P866-F49/F48-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 2