V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet flow PIM 2 1200 V / 75 A Features flow 2 housing ● 3~rectifier,BRC,Inverter, NTC ● Very Compact housing, easy to route ● Mitsubishi IGBT and FWD Target Applications Schematic ● Motor Drives ● Power Generation Types ● V23990-P769-A60-PM ● V23990-P769-A60Y-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 92 A 890 A 3960 A 2s 126 W Input Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM Tj=Tjmax tp=10ms Th=80°C Tj=25°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V 76 A tp limited by Tjmax 150 A VCE ≤ 1200V, Tj ≤ Top max 150 A 172 W ±20 V 10 850 µs V 175 °C Tj=Tjmax Th=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V T jmax 1 Th=80°C Th=80°C 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 67 A 150 A 141 W 175 °C Inverter Diode Peak Repetitive Reverse Voltage DC forward current V RRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax Th=80°C Th=80°C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC Tj=Tjmax Th=80°C V 60 A tp limited by Tjmax 100 A VCE ≤ 1200V, Tj ≤ Top max 100 A 150 W ±20 V 10 850 µs V T jmax 175 °C V RRM 1200 V 16 A 20 A 69 W I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature 1200 V CE Tj=Tjmax Th=80°C Tj≤150°C VGE=15V Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Th=80°C Repetitive peak forward current I FRM tp limited by Tjmax Brake Inverse Diode P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C V RRM 1200 V 28 A 100 A 86 W 175 °C Th=80°C Brake Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax copyright Vincotech 2 Th=80°C Th=80°C 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech V is t=2s DC voltage CTI >200 3 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 1 1,24 1,26 0,89 0,73 5 7 1,8 Input Rectifier Diode Forward voltage VF 75 Threshold voltage (for power loss calc. only) V to 75 Slope resistance (for power loss calc. only) rt 75 Reverse current Ir Thermal resistance chip to heatsink 1500 R th(j-s) Phase-Change Material ʎ=3,4W/mK V GE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mΩ 0,1 0,55 mA K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode V CEsat I GES Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time 75 1200 0 0 20 tr t d(off) tf E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG R th(j-s) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5,4 6 6,6 1,82 2,18 2,15 260 500 none t d(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink 15 I CES Gate-emitter leakage current 0,0075 Rgoff=8 Ω Rgon=8 Ω 600 ±15 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA nA Ω 82,6 81,8 15 18 157 203,8 60,4 96,4 3,292 5,733 4,074 6,784 ns mWs 7500 f=1MHz 0 Tj=25°C 25 1500 pF 130 ±15 Tj=25°C Phase-Change Material ʎ=3,4W/mK 175 nC 0,55 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech 75 Rgoff=8 Ω ±15 600 ( di rf/dt )max E rec R th(j-s) Phase-Change Material ʎ=3,4W/mK 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,67 2,18 54,431 73,406 275,9 601,9 5,46 15,613 1767 625 2,378 7,286 0,67 4 3,3 V A ns µC A/µs mWs K/W 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5,4 6 6,6 1,4 1,77 2,12 2,3 Brake Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 10 15 50 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG R th(j-s) 300 500 none tr t d(off) Turn-on energy loss per pulse Thermal resistance chip to heatsink 0,005 Rgoff=16 Ω Rgon=16 Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 60 60,8 9,8 12,6 124 176 47 80 1,79 2,8 2,37 4,04 ns mWs 5000 f=1MHz 0 25 15 600 Tj=25°C 1000 pF Tj=25°C 117 nC 0,63 K/W 80 50 Phase-Change Material ʎ=3,4W/mK Brake Inverse Diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 10 Tj=25°C Tj=150°C 1,2 Phase-Change Material ʎ=3,4W/mK 1,80 1,76 2,2 1,38 V K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir t rr Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink 1200 I RRM Reverse recovery time Peak rate of fall of recovery current 25 Rgoff=16 Ω Rgoff=16 Ω ±15 600 ( di rf/dt )max E rec R th(j-s) 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 2,24 2,36 2,9 60 58 59,8 119 276 3,4 3,4 2926 1546 1,42 2,86 Phase-Change Material ʎ=3,4W/mK V µA A ns µC A/µs mWs 1,1 K/W 21511 Ω Thermistor Rated resistance T=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486 Ω T=25°C T=25°C Power dissipation constant -4,5 +4,5 % 210 mW T=25°C 3,5 mW/K B-value B (25/50) T=25°C 3884 K B-value B (25/100) T=25°C 3964 K Vincotech NTC Reference copyright Vincotech F 5 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) IC (A) 240 IC (A) 240 Output inverter IGBT 200 200 160 160 120 120 80 80 40 40 0 0 0 1 2 3 V CE (V) 4 5 0 At tp = 250 µs Tj = 25 °C V GE from 7 V to 17 V in steps of 1 V 1 2 3 4 V CE (V) 5 At tp = 250 µs Tj = 150 °C V GE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 240 IF (A) IC (A) 75 Output inverter FWD 200 60 160 45 120 30 80 15 40 0 0 0 At Tj = tp = V CE = 2 4 6 8 10 V GE (V) 12 0 1 2 3 4 V F (V) 5 At 25/150 250 10 copyright Vincotech °C µs V tp = 6 250 µs 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT Output inverter IGBT 14 Eon High T E (mWs) E (mWs) 15 Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 13 Eoff High T Eon High T 12 10 10 Eon Low T 8 Eon Low T Eoff High T 8 6 Eoff Low T 5 4 Eoff Low T 3 2 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 5 10 15 20 25 35 R ( Ω ) 40 G 30 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V IC = 75 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 15 E (mWs) E (mWs) 15 Output inverter FWD 12 12 Erec 9 9 6 6 Erec Erec 3 3 Erec 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V R gon = 8 Ω copyright Vincotech 5 10 15 20 25 30 35 R G ( Ω ) 40 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V IC = 75 A 7 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Output Inverter Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 1,00 t ( µs) Output inverter IGBT t ( µs) Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT tdoff tdon tdoff 0,10 tf 0,10 tdon tr tf tr 0,01 0,01 0,00 0,00 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 5 10 15 20 30 R G ( Ω ) 35 25 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 75 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 1,2 Output inverter FWD 1,2 t rr( µs) t rr( µs) trr trr 0,9 0,9 0,6 0,6 trr trr 0,3 0,3 0 0 0 At Tj = V CE = V GE = R gon = 25 25/150 600 ±15 8 copyright Vincotech 50 75 100 125 I C (A) 150 0 At Tj = VR= IF= V GE = °C V V Ω 8 7 25/150 600 75 ±15 14 21 28 R gon ( Ω ) 35 °C V A V 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr( µC) 20 Qrr( µC) 25 Output inverter FWD Qrr 20 16 15 12 10 Qrr 8 Qrr Qrr 5 4 0 0 0 25 At At Tj = V CE = V GE = R gon = 25/150 600 ±15 8 50 75 100 125 I C (A) 150 0 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Output inverter FWD 7 25/150 600 75 ±15 14 21 R gon ( Ω) 35 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) Output inverter FWD 160 IrrM (A) IrrM (A) 160 28 120 120 80 80 IRRM IRRM IRRM 40 40 IRRM 0 0 0 At Tj = V CE = V GE = R gon = 25 25/150 600 ±15 8 copyright Vincotech 50 75 100 125 I C (A) 150 0 At Tj = VR= IF= V GE = °C V V Ω 9 7 25/150 600 75 ±15 14 21 28 R gon ( Ω ) 35 °C V A V 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) direc / dt (A/ µs) 12000 direc / dt (A/µ s) 12000 Output inverter FWD dI0/dt dIrec/dt dI0/dt dIrec/dt 9000 9000 6000 6000 3000 3000 0 0 0 At Tj = V CE = V GE = R gon = 25 25/150 600 ±15 8 50 75 100 125 I C (A) 150 0 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 7 25/150 600 75 ±15 14 21 R gon ( Ω ) 35 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter FWD Zth-JH (K/W) 100 ZthJH (K/W) 100 28 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 10-4 At D= R thJH = tp / T 0,55 10-3 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 10110 At D= R thJH = K/W 10-4 10-3 R (K/W) 0,05 0,07 0,15 0,22 0,03 0,03 R (K/W) 0,05 0,08 0,20 0,28 0,04 0,04 10 100 t p (s) 10110 K/W FWD thermal model values Phase Change Material copyright Vincotech 10-1 tp / T 0,67 IGBT thermal model values Phase Change Material Tau (s) 3,6E+00 7,0E-01 1,3E-01 3,3E-02 8,1E-03 7,8E-04 10-2 Tau (s) 3,9E+00 6,6E-01 1,1E-01 3,0E-02 4,4E-03 5,5E-04 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 120 IC (A) Ptot (W) 320 Output inverter IGBT 100 240 80 160 60 40 80 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 100 IF (A) Ptot (W) 270 150 75 180 50 90 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 11 50 175 100 150 T h ( o C) 200 °C 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge Output inverter IGBT V GE = f(Q GE) 103 IC (A) VGE (V) 20 18 16 102 14 600V 100uS 12 10 10 1 1mS 8 10mS 6 100mS 100 4 DC 2 0 10-1 100 At D= Th = V GE = Tj = 10 1 10 103 2 0 V CE (V) At IC = single pulse 80 ºC ±15 V T jmax ºC Figure 27 Output inverter IGBT 50 100 75 150 Q g (nC) 250 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) 200 Output inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) tsc (µS) IC (sc) 22,5 20 10 9 8 17,5 7 15 6 12,5 5 10 4 7,5 3 5 2 2,5 1 0 0 12 At V CE = Tj ≤ 13 14 15 1200 V 175 ºC copyright Vincotech 16 17 18 19 V GE (V) 20 12 At V CE ≤ Tj = 12 13 14 15 1200 V 175 ºC 16 17 18 19 V (V) 20 GE 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Figure 29 Reverse bias safe operating area IGBT I C = f(V CE) IC (A) 175 IC MAX Ic CHIP 150 125 Ic MODULE 100 75 50 VCE MAX 25 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = R gon = R goff = 150 °C 7,9 Ω 8Ω copyright Vincotech 13 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Brake Figure 1 Typical output characteristics I C = f(V CE) Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) 150 IC (A) IC (A) 150 Brake IGBT 120 120 90 90 60 60 30 30 0 0 0 1 2 3 4 V CE (V) 0 5 At tp = 250 µs Tj = 25 °C V GE from 7 V to 17 V in steps of 1 V 1 2 3 4 V CE (V) 5 At tp = 250 µs Tj = 149 °C V GE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Brake IGBT Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Brake FWD 75 IC (A) IF (A) 50 40 60 30 45 20 30 10 15 0 0 0 At Tj = tp = V CE = 2 4 6 8 10 V GE (V) 12 0 1 2 3 4 V F (V) 5 At 25/150 250 10 copyright Vincotech °C µs V tp = 14 250 µs 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Brake Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) Brake IGBT 8 E (mWs) E (mWs) 8 Eoff 6 6 Eon Eon Eon Eoff 4 4 Eon Eoff Eoff 2 2 0 0 0 25 50 75 0 100 I C (A) With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 5 4 Brake FWD 5 4 Erec 3 3 Erec Erec 2 2 Erec 1 1 0 0 0 25 50 75 I C (A) 100 0 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V R gon = 8 Ω copyright Vincotech 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V IC = 50 A 15 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Brake Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 t ( µs) t ( µs) 1,00 Brake IGBT tdoff tdoff 0,10 tf 0,10 tdon tdon tr tf tr 0,01 0,01 0,00 0,00 0 25 50 I C (A) 75 100 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω Figure 11 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake IGBT 10 -1 24 RG (Ω ) 32 40 Brake FWD ZthJH (K/W) 101 ZthJH (K/W) 0 16 Figure 12 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 101 10 8 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 50 A 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 10-4 10-3 At D= Phase Change Material R thJH = 0,63 K/W copyright Vincotech 10-2 10-1 100 t p (s) 10110 10-5 tp / T 10-4 10-3 At D= Phase Change Material R thJH = 1,10 K/W 16 10-2 10-1 100 t p (s) 101 10 tp / T 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Brake Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake IGBT Figure 14 Collector current as a function of heatsink temperature I C = f(T h) 100 IC (A) Ptot (W) 300 Brake IGBT 250 80 200 60 150 40 100 20 50 0 0 0 50 At Tj = 175 100 150 200 0 At Tj = V GE = ºC Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake FWD 50 175 15 100 150 200 ºC V Figure 16 Forward current as a function of heatsink temperature I F = f(T h) 160 T h ( o C) Brake FWD 50 IF (A) Ptot (W) T h ( o C) 40 120 30 80 20 40 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Brake Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage I F = f(V F) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 30 Brake inverse diode IF (A) ZthJC (K/W) 101 25 20 10 0 15 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 5 0 0 At Tj = tp = 0,8 1,6 2,4 3,2 V F (V) 10-2 4 10 10 -4 10 -3 At D= Phase Change Material R thJH = 1,38 K/W °C µs 25/150 250 -5 Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake inverse diode 10 -2 -1 10 0 t p (s) 1012 10 tp / T Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Brake inverse diode 20 Ptot (W) IF (A) 140 10 120 15 100 80 10 60 40 5 20 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 18 50 150 100 150 T h ( o C) 200 ºC 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) Rectifier diode 100 IF (A) ZthJC (K/W) 180 150 120 90 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 60 30 0 0,0 At Tj = tp = 0,5 25/125 250 1,0 V F (V) 1,5 10-2 2,0 °C µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Rectifier diode 10-5 10-4 10-3 At D= R thJH = 0,56 10-2 10-1 t p (s) 12 10 10 tp / T K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Rectifier diode 120 IF (A) Ptot (W) 300 100 250 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 19 30 150 60 90 120 T h ( o C) 150 ºC 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 Thermistor R/Ω R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Switching Definitions Output Inverter General Tj R gon R goff conditions = 150 °C = 7,9 Ω = 8Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) 120 Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 tdoff % % IC VCE 100 VGE 90% VCE 90% 150 80 IC 100 60 VGE tdon tEoff 40 50 20 VGE10% IC 1% VCE 3% IC10% VCE 0 0 VGE tEon -20 -0,4 -0,2 0 0,2 0,4 0,6 0,8 -50 3,95 1 4,05 4,15 4,25 4,35 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 600 75 0,20 0,86 4,45 time(us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 75 0,08 0,31 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 200 Ic % % 120 fitted VCE IC 150 100 IC 90% 80 100 IC90% IC 60% 60 tr 40 VCE 50 IC 40% 20 IC10% IC10% 0 0 tf -20 0 0,1 0,2 0,3 0,4 -50 4,07 0,5 4,1 4,13 4,16 4,19 V C (100%) = I C (100%) = tf = copyright Vincotech 600 75 0,096 4,22 4,25 4,28 4,31 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 21 600 75 0,018 V A µs 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 200 120 % Eoff Poff % Pon 100 150 80 100 60 40 Eon 50 20 VCE 3% VGE 10% VGE 90% IC 1% 0 0 tEoff tEon -50 -20 -0,2 0 0,2 0,4 0,6 0,8 3,9 1 4 4,1 4,2 time (us) P off (100%) = E off (100%) = t E off = 44,94 6,78 0,86 4,3 4,4 4,5 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = 44,94 5,73 0,31 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 100 Id % trr 50 fitted 0 Vd IRRM10% -50 IRRM90% IRRM100% -100 4 4,2 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 4,4 600 75 -73 0,60 4,6 4,8 time(us) 5 V A A µs 22 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 125 150 % % Id Erec Qrr 100 100 75 50 tErec tQrr 50 0 25 Prec -50 0 -100 -25 4 4,2 4,4 4,6 4,8 5 5,2 5,4 4 4,2 4,4 4,6 4,8 time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 75 15,61 1,00 A µC µs P rec (100%) = E rec (100%) = t E rec = 23 44,94 7,29 1,00 5 5,2 time(us) 5,4 kW mJ µs 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Switching Definitions Brake General Tj R gon R goff conditions = 150 °C = 8Ω = 8Ω Figure 1 PFC MOSFET / IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 PFC MOSFET / IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 140 250 % % 120 tdoff IC 200 100 VGE 90% VCE 90% 150 80 IC 60 VCE 100 tEoff 40 tdon VGE 50 IC 1% 20 VCE VGE10% 0 VCE3% IC10% 0 VGE -20 tEon -50 -40 -0,2 -0,1 0 0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,2 -15 15 600 50 0,18 0,67 0,3 0,4 0,5 0,6 0,7 2,9 0,8 2,95 3 3,05 3,1 3,15 3,2 3,25 time (us) 3,3 time(us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 PFC MOSFET / IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 50 0,06 0,24 V V V A µs µs Figure 4 PFC MOSFET / IGBT Turn-on Switching Waveforms & definition of t r 140 250 % % fitted Ic 120 VCE IC 200 100 Ic 90% 150 80 VCE Ic 60% 60 40 IC90% 100 tr Ic 40% 50 20 IC10% Ic10% 0 0 tf -50 2,95 -20 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 2,99 3,03 3,07 V C (100%) = I C (100%) = tf = copyright Vincotech 600 50 0,08 3,11 3,15 3,19 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 24 600 50 0,01 V A µs 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Switching Definitions Brake Figure 5 PFC MOSFET / IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 PFC MOSFET / IGBT Turn-on Switching Waveforms & definition of t Eon 125 250 % Poff Eoff % Pon 100 200 75 150 50 100 Eon 25 50 Ic 1% U ge90% U ge10% 0 Uce 3% 0 tEon tEoff -25 -0,2 -0,05 0,1 0,25 -50 0,4 0,55 0,7 0,85 2,8 2,9 3 3,1 time (us) P off (100%) = E off (100%) = t E off = 30,05 4,04 0,67 3,2 3,3 3,4 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = 30,0456 2,80 0,24 kW mJ µs Figure 7 PFC FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 fitted trr 50 Ud 0 IRRM10% -50 -100 IRRM90% IRRM100% -150 2,9 3 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 600 50 -60 0,28 V A A µs 25 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Switching Definitions Brake Figure 8 PFC FWD Turn-on Switching Waveforms & definition of t Qrr Figure 9 PFC FWD Turn-on Switching Waveforms & definition of t Erec (t Qrr= integrating time for Q rr) (t Erec= integrating time for E rec) 120 150 % Id % Qrr Erec 100 100 80 50 tErec tQint 60 0 40 -50 20 Prec -100 0 -150 -20 2,7 2,9 3,1 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,3 50 6,52 1,00 3,5 3,7 3,9 4,1 4,3 time(us) 2,7 A µC µs 2,9 P rec (100%) = E rec (100%) = t E rec = 26 3,1 3,3 30,05 2,86 1,00 3,5 3,7 3,9 4,1 time(us) 4,3 kW mJ µs 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code V23990-P769-A60-PM V23990-P769-A60Y-PM V23990-P769-A60-/3/-PM V23990-P769-A60Y-/3/-PM without thermal paste with solder pins without thermal paste with Press-fit pins with thermal paste and solder pins with thermal paste and Press-fit pins in DataMatrix as P769A60 P769A60Y P769A60 P769A60Y in packaging barcode as P769A60 P769A60Y P769A60-/3/ P769A60Y-/3/ Outline Pin X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 71,2 68,7 66,2 63,7 55,95 53,45 55,95 53,45 48,4 45,9 38,9 36,1 38,9 36,1 31,3 28,5 31,3 28,5 19,3 19,3 12,3 9,8 12,3 9,8 2,8 0 2,8 0 0 0 0 0 0 0 2,8 2,8 0 0 0 0 2,8 2,8 0 0 2,8 2,8 0 2,8 0 0 2,8 2,8 0 0 2,8 2,8 Pin table Pin DCDCDCDCDC+ DC+ DC+ DC+ DC+ DC+ E DCG DCDCE DCG R2 R1 DC+ DC+ DC+ DC+ E DCG DC- 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 X Y 0 2,5 5 7,8 10,6 18,45 21,25 24,05 26,55 29,05 36,1 38,6 41,1 43,9 46,7 53,7 56,2 58,7 71,2 71,2 71,2 71,2 71,2 71,2 71,2 68,7 71,2 71,2 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 35 32 25 23 20 13 13 5,6 2,8 U U U E G G E V V V W W W E G L1 L1 L1 L2 L2 L2 L3 L3 L3 BrC BrC BrG BrE Pinout Identification ID Component Voltage Current Function T1, T3, T5, T7, T9, T11 IGBT 1200V 75A Inverter Switch D9, D10, D11, D12, D13, D14 FWD 1200V 75A Inverter Diode T13 IGBT 1200V 50A Brake Switch D7 FWD 1200V 25A Brake Diode D1, D2, D3,D4, D5, D6 Diode 1600V 60A NTC NTC copyright Vincotech Comment Rectifier Thermistor 27 05 Jun. 2015 / Revision 4 V23990-P769-A60-PM V23990-P769-A60Y-PM datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 28 05 Jun. 2015 / Revision 4