V23990 P769 A60 D4 14

V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
flow PIM 2
1200 V / 75 A
Features
flow 2 housing
● 3~rectifier,BRC,Inverter, NTC
● Very Compact housing, easy to route
● Mitsubishi IGBT and FWD
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P769-A60-PM
● V23990-P769-A60Y-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
92
A
890
A
3960
A 2s
126
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
Tj=Tjmax
tp=10ms
Th=80°C
Tj=25°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
76
A
tp limited by Tjmax
150
A
VCE ≤ 1200V, Tj ≤ Top max
150
A
172
W
±20
V
10
850
µs
V
175
°C
Tj=Tjmax
Th=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
1
Th=80°C
Th=80°C
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
67
A
150
A
141
W
175
°C
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
Th=80°C
Th=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
Tj=Tjmax
Th=80°C
V
60
A
tp limited by Tjmax
100
A
VCE ≤ 1200V, Tj ≤ Top max
100
A
150
W
±20
V
10
850
µs
V
T jmax
175
°C
V RRM
1200
V
16
A
20
A
69
W
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
1200
V CE
Tj=Tjmax
Th=80°C
Tj≤150°C
VGE=15V
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
I FRM
tp limited by Tjmax
Brake Inverse Diode
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
175
°C
V RRM
1200
V
28
A
100
A
86
W
175
°C
Th=80°C
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
copyright Vincotech
2
Th=80°C
Th=80°C
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
DC voltage
CTI
>200
3
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Unit
Min
Typ
Max
1
1,24
1,26
0,89
0,73
5
7
1,8
Input Rectifier Diode
Forward voltage
VF
75
Threshold voltage (for power loss calc. only)
V to
75
Slope resistance (for power loss calc. only)
rt
75
Reverse current
Ir
Thermal resistance chip to heatsink
1500
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
V GE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mΩ
0,1
0,55
mA
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
V CEsat
I GES
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
75
1200
0
0
20
tr
t d(off)
tf
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
R th(j-s)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5,4
6
6,6
1,82
2,18
2,15
260
500
none
t d(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink
15
I CES
Gate-emitter leakage current
0,0075
Rgoff=8 Ω
Rgon=8 Ω
600
±15
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
nA
Ω
82,6
81,8
15
18
157
203,8
60,4
96,4
3,292
5,733
4,074
6,784
ns
mWs
7500
f=1MHz
0
Tj=25°C
25
1500
pF
130
±15
Tj=25°C
Phase-Change
Material
ʎ=3,4W/mK
175
nC
0,55
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
75
Rgoff=8 Ω
±15
600
( di rf/dt )max
E rec
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,67
2,18
54,431
73,406
275,9
601,9
5,46
15,613
1767
625
2,378
7,286
0,67
4
3,3
V
A
ns
µC
A/µs
mWs
K/W
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5,4
6
6,6
1,4
1,77
2,12
2,3
Brake Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
10
15
50
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
R th(j-s)
300
500
none
tr
t d(off)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink
0,005
Rgoff=16 Ω
Rgon=16 Ω
±15
600
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
60
60,8
9,8
12,6
124
176
47
80
1,79
2,8
2,37
4,04
ns
mWs
5000
f=1MHz
0
25
15
600
Tj=25°C
1000
pF
Tj=25°C
117
nC
0,63
K/W
80
50
Phase-Change
Material
ʎ=3,4W/mK
Brake Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
10
Tj=25°C
Tj=150°C
1,2
Phase-Change
Material
ʎ=3,4W/mK
1,80
1,76
2,2
1,38
V
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
t rr
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink
1200
I RRM
Reverse recovery time
Peak rate of fall of recovery current
25
Rgoff=16 Ω
Rgoff=16 Ω
±15
600
( di rf/dt )max
E rec
R th(j-s)
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
2,24
2,36
2,9
60
58
59,8
119
276
3,4
3,4
2926
1546
1,42
2,86
Phase-Change
Material
ʎ=3,4W/mK
V
µA
A
ns
µC
A/µs
mWs
1,1
K/W
21511
Ω
Thermistor
Rated resistance
T=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486 Ω
T=25°C
T=25°C
Power dissipation constant
-4,5
+4,5
%
210
mW
T=25°C
3,5
mW/K
B-value
B (25/50)
T=25°C
3884
K
B-value
B (25/100)
T=25°C
3964
K
Vincotech NTC Reference
copyright Vincotech
F
5
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IC (A)
240
IC (A)
240
Output inverter IGBT
200
200
160
160
120
120
80
80
40
40
0
0
0
1
2
3
V CE (V)
4
5
0
At
tp =
250
µs
Tj =
25
°C
V GE from 7 V to 17 V in steps of 1 V
1
2
3
4
V CE (V)
5
At
tp =
250
µs
Tj =
150
°C
V GE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
240
IF (A)
IC (A)
75
Output inverter FWD
200
60
160
45
120
30
80
15
40
0
0
0
At
Tj =
tp =
V CE =
2
4
6
8
10
V GE (V) 12
0
1
2
3
4
V F (V)
5
At
25/150
250
10
copyright Vincotech
°C
µs
V
tp =
6
250
µs
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
Output inverter IGBT
14
Eon High T
E (mWs)
E (mWs)
15
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
13
Eoff High T
Eon High T
12
10
10
Eon Low T
8
Eon Low T
Eoff High T
8
6
Eoff Low T
5
4
Eoff Low T
3
2
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
5
10
15
20
25
35 R ( Ω ) 40
G
30
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
IC =
75
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
15
E (mWs)
E (mWs)
15
Output inverter FWD
12
12
Erec
9
9
6
6
Erec
Erec
3
3
Erec
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
copyright Vincotech
5
10
15
20
25
30
35 R G ( Ω ) 40
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
IC =
75
A
7
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Output Inverter
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
1,00
t ( µs)
Output inverter IGBT
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
tdoff
tdon
tdoff
0,10
tf
0,10
tdon
tr
tf
tr
0,01
0,01
0,00
0,00
0
25
50
75
100
125
I C (A) 150
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
5
10
15
20
30 R G ( Ω ) 35
25
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
75
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
1,2
Output inverter FWD
1,2
t rr( µs)
t rr( µs)
trr
trr
0,9
0,9
0,6
0,6
trr
trr
0,3
0,3
0
0
0
At
Tj =
V CE =
V GE =
R gon =
25
25/150
600
±15
8
copyright Vincotech
50
75
100
125
I C (A)
150
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
7
25/150
600
75
±15
14
21
28
R gon ( Ω )
35
°C
V
A
V
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr( µC)
20
Qrr( µC)
25
Output inverter FWD
Qrr
20
16
15
12
10
Qrr
8
Qrr
Qrr
5
4
0
0
0
25
At
At
Tj =
V CE =
V GE =
R gon =
25/150
600
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
7
25/150
600
75
±15
14
21
R gon ( Ω) 35
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
Output inverter FWD
160
IrrM (A)
IrrM (A)
160
28
120
120
80
80
IRRM
IRRM
IRRM
40
40
IRRM
0
0
0
At
Tj =
V CE =
V GE =
R gon =
25
25/150
600
±15
8
copyright Vincotech
50
75
100
125
I C (A)
150
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
9
7
25/150
600
75
±15
14
21
28
R gon ( Ω )
35
°C
V
A
V
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
direc / dt (A/ µs)
12000
direc / dt (A/µ s)
12000
Output inverter FWD
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
9000
9000
6000
6000
3000
3000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
25
25/150
600
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
7
25/150
600
75
±15
14
21
R gon ( Ω )
35
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter FWD
Zth-JH (K/W)
100
ZthJH (K/W)
100
28
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
10-4
At
D=
R thJH =
tp / T
0,55
10-3
10-2
10-1
100
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
10110
At
D=
R thJH =
K/W
10-4
10-3
R (K/W)
0,05
0,07
0,15
0,22
0,03
0,03
R (K/W)
0,05
0,08
0,20
0,28
0,04
0,04
10
100
t p (s)
10110
K/W
FWD thermal model values
Phase Change Material
copyright Vincotech
10-1
tp / T
0,67
IGBT thermal model values
Phase Change Material
Tau (s)
3,6E+00
7,0E-01
1,3E-01
3,3E-02
8,1E-03
7,8E-04
10-2
Tau (s)
3,9E+00
6,6E-01
1,1E-01
3,0E-02
4,4E-03
5,5E-04
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
120
IC (A)
Ptot (W)
320
Output inverter IGBT
100
240
80
160
60
40
80
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
100
IF (A)
Ptot (W)
270
150
75
180
50
90
25
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
T h ( o C)
200
°C
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
Output inverter IGBT
V GE = f(Q GE)
103
IC (A)
VGE (V)
20
18
16
102
14
600V
100uS
12
10
10
1
1mS
8
10mS
6
100mS
100
4
DC
2
0
10-1
100
At
D=
Th =
V GE =
Tj =
10
1
10
103
2
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
Figure 27
Output inverter IGBT
50
100
75
150
Q g (nC)
250
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
200
Output inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
tsc (µS)
IC (sc)
22,5
20
10
9
8
17,5
7
15
6
12,5
5
10
4
7,5
3
5
2
2,5
1
0
0
12
At
V CE =
Tj ≤
13
14
15
1200
V
175
ºC
copyright Vincotech
16
17
18
19
V GE (V)
20
12
At
V CE ≤
Tj =
12
13
14
15
1200
V
175
ºC
16
17
18
19 V (V) 20
GE
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Figure 29
Reverse bias safe operating area
IGBT
I C = f(V CE)
IC (A)
175
IC MAX
Ic CHIP
150
125
Ic
MODULE
100
75
50
VCE MAX
25
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
R gon =
R goff =
150 °C
7,9 Ω
8Ω
copyright Vincotech
13
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Brake
Figure 1
Typical output characteristics
I C = f(V CE)
Brake IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
150
IC (A)
IC (A)
150
Brake IGBT
120
120
90
90
60
60
30
30
0
0
0
1
2
3
4
V CE (V)
0
5
At
tp =
250
µs
Tj =
25
°C
V GE from 7 V to 17 V in steps of 1 V
1
2
3
4
V CE (V)
5
At
tp =
250
µs
Tj =
149
°C
V GE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Brake IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake FWD
75
IC (A)
IF (A)
50
40
60
30
45
20
30
10
15
0
0
0
At
Tj =
tp =
V CE =
2
4
6
8
10
V GE (V) 12
0
1
2
3
4
V F (V)
5
At
25/150
250
10
copyright Vincotech
°C
µs
V
tp =
14
250
µs
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Brake
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
Brake IGBT
8
E (mWs)
E (mWs)
8
Eoff
6
6
Eon
Eon
Eon
Eoff
4
4
Eon
Eoff
Eoff
2
2
0
0
0
25
50
75
0
100
I C (A)
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
5
4
Brake FWD
5
4
Erec
3
3
Erec
Erec
2
2
Erec
1
1
0
0
0
25
50
75
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
copyright Vincotech
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
IC =
50
A
15
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
t ( µs)
t ( µs)
1,00
Brake IGBT
tdoff
tdoff
0,10
tf
0,10
tdon
tdon
tr
tf
tr
0,01
0,01
0,00
0,00
0
25
50
I C (A)
75
100
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake IGBT
10
-1
24
RG (Ω )
32
40
Brake FWD
ZthJH (K/W)
101
ZthJH (K/W)
0
16
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
101
10
8
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
10-4
10-3
At
D=
Phase Change Material
R thJH =
0,63
K/W
copyright Vincotech
10-2
10-1
100
t p (s)
10110
10-5
tp / T
10-4
10-3
At
D=
Phase Change Material
R thJH =
1,10
K/W
16
10-2
10-1
100
t p (s)
101 10
tp / T
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T h)
100
IC (A)
Ptot (W)
300
Brake IGBT
250
80
200
60
150
40
100
20
50
0
0
0
50
At
Tj =
175
100
150
200
0
At
Tj =
V GE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T h)
160
T h ( o C)
Brake FWD
50
IF (A)
Ptot (W)
T h ( o C)
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Brake Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
30
Brake inverse diode
IF (A)
ZthJC (K/W)
101
25
20
10
0
15
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
5
0
0
At
Tj =
tp =
0,8
1,6
2,4
3,2
V F (V)
10-2
4
10
10
-4
10
-3
At
D=
Phase Change Material
R thJH =
1,38
K/W
°C
µs
25/150
250
-5
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake inverse diode
10
-2
-1
10
0
t p (s)
1012
10
tp / T
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Brake inverse diode
20
Ptot (W)
IF (A)
140
10
120
15
100
80
10
60
40
5
20
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
18
50
150
100
150
T h ( o C)
200
ºC
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Rectifier diode
100
IF (A)
ZthJC (K/W)
180
150
120
90
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
60
30
0
0,0
At
Tj =
tp =
0,5
25/125
250
1,0
V F (V)
1,5
10-2
2,0
°C
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Rectifier diode
10-5
10-4
10-3
At
D=
R thJH =
0,56
10-2
10-1
t p (s)
12
10
10
tp / T
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Rectifier diode
120
IF (A)
Ptot (W)
300
100
250
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
19
30
150
60
90
120
T h ( o C)
150
ºC
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25



NTC-typical temperature characteristic
24000
Thermistor
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Switching Definitions Output Inverter
General
Tj
R gon
R goff
conditions
= 150 °C
= 7,9 Ω
= 8Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
120
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
tdoff
%
%
IC
VCE
100
VGE 90%
VCE 90%
150
80
IC
100
60
VGE
tdon
tEoff
40
50
20
VGE10%
IC 1%
VCE 3%
IC10%
VCE
0
0
VGE
tEon
-20
-0,4
-0,2
0
0,2
0,4
0,6
0,8
-50
3,95
1
4,05
4,15
4,25
4,35
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
600
75
0,20
0,86
4,45
time(us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
600
75
0,08
0,31
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
200
Ic
%
%
120
fitted
VCE
IC
150
100
IC 90%
80
100
IC90%
IC 60%
60
tr
40
VCE
50
IC 40%
20
IC10%
IC10%
0
0
tf
-20
0
0,1
0,2
0,3
0,4
-50
4,07
0,5
4,1
4,13
4,16
4,19
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
600
75
0,096
4,22
4,25
4,28
4,31
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
21
600
75
0,018
V
A
µs
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
200
120
%
Eoff
Poff
%
Pon
100
150
80
100
60
40
Eon
50
20
VCE 3%
VGE 10%
VGE 90%
IC 1%
0
0
tEoff
tEon
-50
-20
-0,2
0
0,2
0,4
0,6
0,8
3,9
1
4
4,1
4,2
time (us)
P off (100%) =
E off (100%) =
t E off =
44,94
6,78
0,86
4,3
4,4
4,5
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
44,94
5,73
0,31
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
100
Id
%
trr
50
fitted
0
Vd
IRRM10%
-50
IRRM90%
IRRM100%
-100
4
4,2
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
4,4
600
75
-73
0,60
4,6
4,8
time(us)
5
V
A
A
µs
22
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
125
150
%
%
Id
Erec
Qrr
100
100
75
50
tErec
tQrr
50
0
25
Prec
-50
0
-100
-25
4
4,2
4,4
4,6
4,8
5
5,2
5,4
4
4,2
4,4
4,6
4,8
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
75
15,61
1,00
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
23
44,94
7,29
1,00
5
5,2
time(us)
5,4
kW
mJ
µs
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Switching Definitions Brake
General
Tj
R gon
R goff
conditions
= 150 °C
= 8Ω
= 8Ω
Figure 1
PFC MOSFET / IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
PFC MOSFET / IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
140
250
%
%
120
tdoff
IC
200
100
VGE 90%
VCE 90%
150
80
IC
60
VCE
100
tEoff
40
tdon
VGE
50
IC 1%
20
VCE
VGE10%
0
VCE3%
IC10%
0
VGE
-20
tEon
-50
-40
-0,2
-0,1
0
0,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,2
-15
15
600
50
0,18
0,67
0,3
0,4
0,5
0,6
0,7
2,9
0,8
2,95
3
3,05
3,1
3,15
3,2
3,25
time (us)
3,3
time(us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
PFC MOSFET / IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
600
50
0,06
0,24
V
V
V
A
µs
µs
Figure 4
PFC MOSFET / IGBT
Turn-on Switching Waveforms & definition of t r
140
250
%
%
fitted
Ic
120
VCE
IC
200
100
Ic 90%
150
80
VCE
Ic 60%
60
40
IC90%
100
tr
Ic 40%
50
20
IC10%
Ic10%
0
0
tf
-50
2,95
-20
0
0,05
0,1
0,15
0,2
0,25
0,3
0,35
0,4
2,99
3,03
3,07
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
600
50
0,08
3,11
3,15
3,19
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
24
600
50
0,01
V
A
µs
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Switching Definitions Brake
Figure 5
PFC MOSFET / IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
PFC MOSFET / IGBT
Turn-on Switching Waveforms & definition of t Eon
125
250
%
Poff
Eoff
%
Pon
100
200
75
150
50
100
Eon
25
50
Ic 1%
U ge90%
U ge10%
0
Uce 3%
0
tEon
tEoff
-25
-0,2
-0,05
0,1
0,25
-50
0,4
0,55
0,7
0,85
2,8
2,9
3
3,1
time (us)
P off (100%) =
E off (100%) =
t E off =
30,05
4,04
0,67
3,2
3,3
3,4
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
30,0456
2,80
0,24
kW
mJ
µs
Figure 7
PFC FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
fitted
trr
50
Ud
0
IRRM10%
-50
-100
IRRM90%
IRRM100%
-150
2,9
3
3,1
3,2
3,3
3,4
3,5
3,6
3,7
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
600
50
-60
0,28
V
A
A
µs
25
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Switching Definitions Brake
Figure 8
PFC FWD
Turn-on Switching Waveforms & definition of t Qrr
Figure 9
PFC FWD
Turn-on Switching Waveforms & definition of t Erec
(t Qrr= integrating time for Q rr)
(t Erec= integrating time for E rec)
120
150
%
Id
%
Qrr
Erec
100
100
80
50
tErec
tQint
60
0
40
-50
20
Prec
-100
0
-150
-20
2,7
2,9
3,1
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,3
50
6,52
1,00
3,5
3,7
3,9
4,1
4,3
time(us)
2,7
A
µC
µs
2,9
P rec (100%) =
E rec (100%) =
t E rec =
26
3,1
3,3
30,05
2,86
1,00
3,5
3,7
3,9
4,1
time(us)
4,3
kW
mJ
µs
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
V23990-P769-A60-PM
V23990-P769-A60Y-PM
V23990-P769-A60-/3/-PM
V23990-P769-A60Y-/3/-PM
without thermal paste with solder pins
without thermal paste with Press-fit pins
with thermal paste and solder pins
with thermal paste and Press-fit pins
in DataMatrix as
P769A60
P769A60Y
P769A60
P769A60Y
in packaging barcode as
P769A60
P769A60Y
P769A60-/3/
P769A60Y-/3/
Outline
Pin
X
Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
71,2
68,7
66,2
63,7
55,95
53,45
55,95
53,45
48,4
45,9
38,9
36,1
38,9
36,1
31,3
28,5
31,3
28,5
19,3
19,3
12,3
9,8
12,3
9,8
2,8
0
2,8
0
0
0
0
0
0
0
2,8
2,8
0
0
0
0
2,8
2,8
0
0
2,8
2,8
0
2,8
0
0
2,8
2,8
0
0
2,8
2,8
Pin table
Pin
DCDCDCDCDC+
DC+
DC+
DC+
DC+
DC+
E
DCG
DCDCE
DCG
R2
R1
DC+
DC+
DC+
DC+
E
DCG
DC-
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
X
Y
0
2,5
5
7,8
10,6
18,45
21,25
24,05
26,55
29,05
36,1
38,6
41,1
43,9
46,7
53,7
56,2
58,7
71,2
71,2
71,2
71,2
71,2
71,2
71,2
68,7
71,2
71,2
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
35
32
25
23
20
13
13
5,6
2,8
U
U
U
E
G
G
E
V
V
V
W
W
W
E
G
L1
L1
L1
L2
L2
L2
L3
L3
L3
BrC
BrC
BrG
BrE
Pinout
Identification
ID
Component
Voltage
Current
Function
T1, T3, T5, T7, T9, T11
IGBT
1200V
75A
Inverter Switch
D9, D10, D11, D12, D13,
D14
FWD
1200V
75A
Inverter Diode
T13
IGBT
1200V
50A
Brake Switch
D7
FWD
1200V
25A
Brake Diode
D1, D2, D3,D4, D5, D6
Diode
1600V
60A
NTC
NTC
copyright Vincotech
Comment
Rectifier
Thermistor
27
05 Jun. 2015 / Revision 4
V23990-P769-A60-PM
V23990-P769-A60Y-PM
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
28
05 Jun. 2015 / Revision 4