V23990 P764 A D4 14

V23990-P764-A-PM
datasheet
flow PIM 2 3rd
600 V / 75 A
Features
flow 2 housing
● 3~rectifier,BRC,Inverter, NTC
● Very Compact housing, easy to route
● IGBT3/ EmCon3 technology for low saturation
losses and improved EMC behavior
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P764-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
100
100
A
1000
A
5000
A 2s
123
186
W
Tjmax
150
°C
VCE
600
V
80
100
A
150
A
144
219
W
±20
V
6
360
µs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
Forward current
IFAV
Surge forward current
IFSM
I2t-value
I2 t
Power dissipation
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
tSC
VCC
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
68
90
A
150
A
106
160
W
Tjmax
175
°C
VCE
600
V
50
50
A
150
A
118
179
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Brake IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Brake Inverse Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
20
20
A
40
A
53
80
W
Tjmax
175
°C
VRRM
600
V
Th=80°C
Tc=80°C
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
28
38
A
40
A
51
78
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+Tjmax-25
°C
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal properties
copyright Vincotech
2
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation properties
Insulation voltage
copyright Vincotech
Vis
t=1min
3
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,19
1,16
0,9
0,79
0,003
0,004
1,9
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
100
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
Ω
0,05
1,1
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
V
mA
0,57
K/W
0,38
Inverter IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
VCE=VGE
0,0012
15
75
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Coupled thermal resistance transistor-transistor
RthJHT-T
Coupled thermal resistance diode-transistor
RthJHD-T
5
5,8
6,5
1,44
1,64
2,1
0,25
700
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=4 Ω
Rgon=4 Ω
±15
300
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
103
100
12
15
161
184
60
88
0,4
0,69
1,55
2,09
ns
mWs
4620
f=1MHz
0
25
Tj=25°C
288
pF
137
480
±15
75
Tj=25°C
470
nC
0,66
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
0,43
K/W
0,11
0,15
Inverter FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
copyright Vincotech
VF
75
IRRM
trr
Qrr
Rgon=4 Ω
±15
300
di(rec)max
/dt
Erec
4
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,64
1,62
91
126
107
134
3,1
6,53
6092
5621
0,91
1,6
2,2
V
A
ns
µC
A/µs
mWs
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,58
1,82
2,1
Brake IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0008
15
50
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
0,5
700
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=8 Ω
Rgon=8 Ω
±15
300
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
100
102
14
18,6
158
185
108
125
0,43
0,63
1,42
1,97
ns
mWs
3140
f=1MHz
0
25
±15
480
Tj=25°C
200
Tj=25°C
310
pF
90
50
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
nC
0,8
K/W
0,53
Brake Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
10
Tj=25°C
Tj=150°C
1,2
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
1,78
1,77
2,1
V
1,81
K/W
1,19
K/W
Brake FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
±15
300
50
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
20
Rgon=8 Ω
±15
300
di(rec)max
/dt
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Reverse recovery energy
Erec
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
Rated resistance
R25
Tol. ±5%
Tj=25°C
Deviation of R100
DR/R
R100=1486.1Ω
Tc=100°C
1,65
1,56
2,1
140
40
47
22
141
1
2,37
6000
3416
0,35
0,58
V
µA
A
ns
µC
A/µs
mWs
1,85
K/W
1,22
Thermistor
Power dissipation given Epcos-Typ
B-value
copyright Vincotech
P
B(25/100)
Tol. ±3%
5
20,9
22
23,1
kΩ
2,9
%/K
Tj=25°C
210
mW
Tj=25°C
4000
K
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
Output inverter IGBT
125
125
100
100
75
75
50
50
25
25
0
0
0
1
2
3
VCE (V)
4
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IC (A)
IF (A)
75
Output inverter FWD
125
60
100
45
Tj = Tjmax-25°C
75
30
50
Tj = 25°C
Tj = Tjmax-25°C
15
Tj = 25°C
25
0
0
0
At
tp =
VCE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
6
0,5
250
1
1,5
2
VF (V)
2,5
µs
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
E (mWs)
3,5
Eoff
3
Output inverter IGBT
3
Eon
2,5
Eoff
2,5
Eon
2
Eoff
2
Eoff
1,5
1,5
Eon
1
1
0,5
0,5
Eon:
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
300
V
VGE =
±15
V
IC =
75
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
2,5
Erec
Output inverter IGBT
2
2
1,5
Erec
1,5
Erec
1
1
Erec
0,5
0,5
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
7
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Output Inverter
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
1
t ( µs)
Output inverter IGBT
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
tdon
tdoff
tdoff
tdon
0,1
0,1
tf
tf
tr
tr
0,01
0,01
0,001
0,001
0
25
50
75
100
125
IC (A) 150
0
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
Output inverter FWD
0,35
t rr( µs)
t rr( µs)
0,16
trr
0,14
trr
0,3
0,12
trr
trr
0,25
0,1
0,2
0,08
0,15
0,06
0,1
0,04
0,05
0,02
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
300
±15
4
copyright Vincotech
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
4
25/150
25/150
300
75
±15
8
12
16
R Gon ( Ω ) 20
°C
V
A
V
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr ( µC)
8
Qrr ( µC)
10
Output inverter FWD
Qrr
7
Qrr
8
6
5
6
Qrr
4
Qrr
4
3
2
2
1
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
300
±15
4
50
75
100
125
I C (A)
150
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
Output inverter FWD
8
25/150
25/150
300
75
±15
12
R Gon ( Ω) 20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
Output inverter FWD
IrrM (A)
160
IrrM (A)
160
16
IRRM
140
140
120
120
IRRM
100
100
80
80
60
60
40
40
20
20
IRRM
0
IRRM
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
300
±15
4
copyright Vincotech
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
4
25/150
25/150
300
75
±15
8
12
16
R Gon ( Ω )
20
°C
V
A
V
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(R Gon)
9000
direc / dt (A/ µs)
direc / dt (A/ µs)
8000
Output inverter FWD
7000
6000
dIrec/dt
8000
dI0/dt
7000
6000
5000
5000
4000
4000
3000
3000
2000
2000
dIrec/dt
1000
1000
dI0/dt
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
300
±15
4
50
75
100
I C (A) 150
125
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter IGBT
4
25/150
25/150
300
75
±15
8
12
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter FWD
100
ZthJH (K/W)
ZthJH (K/W)
100
R Gon ( Ω) 20
16
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
10-4
10-3
10-2
At
D=
RthJH =
10-1
tp / T
RthJH =
0,658
K/W
0,76
Single device heated
AlI devices heated
IGBT thermal model values
100
t p (s)
10-5
10110
10-4
10-3
10-2
At
D=
RthJH =
tp / T
RthJH =
0,90
K/W
0,90
Single device heated
AlI devices heated
FWD thermal model values
K/W
R (K/W)
Tau (s)
R (K/W)
R (K/W)
Tau (s)
R (K/W)
0,02
0,09
0,16
0,28
0,07
0,04
1,1E+01
1,5E+00
1,8E-01
3,6E-02
7,9E-03
5,2E-04
0,12
0,09
0,16
0,28
0,07
0,04
0,04
0,09
0,18
0,40
0,12
0,07
5,6E+00
1,1E+00
1,5E-01
2,7E-02
6,0E-03
4,3E-04
0,04
0,09
0,18
0,40
0,12
0,07
copyright Vincotech
10-1
10
100
t p (s)
10110
K/W
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
300
Output inverter IGBT
250
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
VGE =
Output inverter FWD
50
100
Th ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
Output inverter FWD
105
IF (A)
Ptot (W)
200
150
90
150
75
60
100
45
30
50
15
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
Th ( o C)
200
°C
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
IC (A)
VGE (V)
18
16
120V
100uS
10
Output inverter IGBT
10uS
14
2
480V
12
100mS
10
1mS
10mS
101
8
6
DC
100
4
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
101
102
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
12
100
75
200
300
400
500
Qg (nC)
600
A
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Brake
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
150
IC (A)
150
Brake IGBT
125
125
100
100
75
75
50
50
25
25
0
0
0
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
1
2
3
V CE (V)
4
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
Brake IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IF (A)
60
IC (A)
60
Brake FWD
Tj = Tjmax-25°C
50
50
40
40
Tj = 25°C
30
30
20
20
10
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
13
0,5
1
250
µs
1,5
2
2,5
V F (V)
3
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Brake
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,5
E (mWs)
E (mWs)
3,5
Brake IGBT
Eoff
3
Eoff
2
2,5
Eoff
1,5
2
Eoff
1,5
1
Eon
1
Eon
Eon
Eon
0,5
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
R G( Ω )
40
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,8
0,8
E (mWs)
Erec
E (mWs)
Brake IGBT
0,6
0,6
Erec
Erec
0,4
0,4
0,2
0,2
Erec
0
0
0
20
40
60
80
I C (A) 100
0
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
10
20
30
RG (Ω )
40
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
14
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
Brake IGBT
tdoff
tdon
tdoff
tf
tf
0,1
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
IC (A)
100
0
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake IGBT
16
24
RG (Ω )
32
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
Brake IGBT
ZthJH (K/W)
101
ZthJH (K/W)
101
10
8
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,80
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
101 10
10-5
At
D=
RthJH =
K/W
15
10-4
tp / T
1,85
10-3
10-2
10-1
100
t p (s)
101 10
K/W
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
240
Brake IGBT
200
40
160
30
120
20
80
10
40
0
0
0
50
At
Tj =
175
100
150
Th ( o C)
200
0
At
Tj =
VGE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake FWD
40
IF (A)
Ptot (W)
100
Th ( o C)
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Brake Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
60
Brake inverse diode
50
ZthJC (K/W)
IF (A)
101
40
100
Tj = 25°C
30
Tj = Tjmax-25°C
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
0
0
At
tp =
0,5
1
250
1,5
2,5
VF (V)
10-2
3
10-5
Brake inverse diode
10-3
tp / T
1,81
10-2
10-1
100
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake inverse diode
20
IF (A)
100
80
16
60
12
40
8
20
4
0
0
0
At
Tj =
10-4
At
D=
RthJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Ptot (W)
2
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
300
Rectifier diode
IF (A)
100
ZthJC (K/W)
Tj = 25°C
250
200
Tj = Tjmax-25°C
150
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
50
0
0
0,5
1
VF (V)
1,5
10
2
-2
10-5
At
tp =
250
At
D=
RthJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Rectifier diode
10-3
tp / T
0,57
10-2
10-1
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
300
100
Rectifier diode
100
IF (A)
Ptot (W)
10-4
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
18
30
150
60
90
120
Th ( o C) 150
ºC
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R (Ω)
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Switching Definitions Output Inverter
General
Tj
Rgon
Rgoff
Figure 1
conditions
= 150 °C
= 4Ω
= 4Ω
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Output inverter IGBT
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
280
%
120
%
tdoff
Ic
240
Uce
100
Uge 90%
200
Uce 90%
80
Uge
160
Ic
60
120
Uce
40
tEoff
80
20
Uge
tdon
Ic 1%
0
40
-20
0
Ic10%
Uge10%
-40
-0,05
tEon
Uce3%
-40
0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,25
-15
15
300
75
0,18
0,43
0,4
time (µs)
0,55
2,8
V
V
V
A
µs
µs
2,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3
3,1
-15
15
300
75
0,10
0,15
V
V
V
A
µs
µs
3,2
3,3 time(µs) 3,4
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of tr
140
%
280
%
120
Ic
Ic
240
Uce
fitted
100
200
Ic 90%
80
160
Ic 60%
60
120
Uce
Ic90%
40
Ic 40%
80
20
tr
40
Ic10%
tf
0
-20
0,15
Ic10%
0
-40
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,25
0,3
300
75
0,09
V
A
µs
0,35
0,4
time (µs)
0,45
3
VC (100%) =
IC (100%) =
tr =
20
3,05
3,1
300
75
0,02
3,15
3,2
time(µs)
3,25
V
A
µs
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of tEon
130
120
%
%
Eoff
Poff
Eon
100
100
Pon
80
70
60
40
40
20
Uge10%
Uce3%
10
0
tEoff
-20
-0,1
0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
22,48
2,09
0,43
tEon
Ic 1%
Uge90%
0,35
0,5
0,65
time (µs)
-20
2,95
0,8
kW
mJ
µs
3
3,05
Pon (100%) =
Eon (100%) =
tEon =
22,48
0,69
0,15
3,1
3,15
time(µs)
3,2
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
%
Id
80
trr
40
Ud
fitted
0
IRRM10%
-40
-80
-120
IRRM90%
-160
IRRM100%
-200
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
21
3,1
3,2
300
75
-126
0,13
3,3
time(µs)
3,4
V
A
A
µs
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
140
160
%
%
120
Qrr
120
Id
Erec
80
100
tQrr
40
80
tErec
0
60
-40
40
-80
20
-120
Prec
0
-160
-20
-200
3
3,1
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
3,2
75
6,53
0,28
3,3
3,4
2,9
time(µs) 3,5
A
µC
µs
3
Prec (100%) =
Erec (100%) =
tErec =
22
3,1
22,48
1,60
0,28
3,2
3,3
3,4
3,5
3,6
time(µs)
kW
mJ
µs
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P764-A-PM
in DataMatrix as
P764-A
in packaging barcode as
P764-A
Outline
Pin
X
Pin table
Y
Pin
X
Y
1
2
3
4
5
6
DCDCDCDCDC+
DC+
71,2
68,7
66,2
63,7
55,95
53,45
0
0
0
0
0
0
33
34
35
36
37
38
G
G
E
V
V
V
10,6
18,45
21,25
24,05
26,55
29,05
37,2
37,2
37,2
37,2
37,2
37,2
7
8
9
10
11
12
13
14
DC+
DC+
DC+
DC+
E
DCG
DC-
55,95
53,45
48,4
45,9
38,9
36,1
38,9
36,1
2,8
2,8
0
0
0
0
2,8
2,8
39
40
41
42
43
44
45
46
W
W
W
E
G
L1
L1
L1
36,1
38,6
41,1
43,9
46,7
53,7
56,2
58,7
37,2
37,2
37,2
37,2
37,2
37,2
37,2
37,2
15
16
17
18
19
20
DCE
DCG
R2
R1
31,3
28,5
31,3
28,5
19,3
19,3
0
0
2,8
2,8
0
2,8
47
48
49
50
51
52
L2
L2
L2
L3
L3
L3
71,2
71,2
71,2
71,2
71,2
71,2
37,2
34,7
32,2
25,2
22,7
20,2
21
22
23
24
DC+
DC+
DC+
DC+
12,3
9,8
12,3
9,8
0
0
2,8
2,8
53
54
55
56
BrC
BrC
BrG
BrE
71,2
68,7
71,2
71,2
12,8
12,8
5,6
2,8
25
26
27
28
29
E
DCG
DCU
2,8
0
2,8
0
0
0
0
2,8
2,8
37,2
2,5
5
7,8
37,2
37,2
37,2
30 U
31 U
32 E
Pinout
copyright Vincotech
23
23 Dec 2014 / Revision: 4
V23990-P764-A-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
24
23 Dec 2014 / Revision: 4