V23990-P765-A-PM datasheet flow PIM 2 3rd 600 V / 100 A Features flow 2 housing ● 3~rectifier,BRC,Inverter, NTC ● Very Compact housing, easy to route ● IGBT3/ EmCon3 technology for low saturation losses and improved EMC behavior Target Applications Schematic ● Motor Drives ● Power Generation Types ● V23990-P765-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 100 100 A 1000 A 5000 A 2s 130 196 W Tjmax 150 °C VCE 600 V 100 120 A 200 A 189 287 W ±20 V 6 360 µs V 175 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM Forward current IFAV Surge forward current IFSM I2t-value I2 t Power dissipation Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature copyright Vincotech tSC VCC Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 80 108 A 200 A 121 183 W Tjmax 175 °C VCE 600 V 75 80 A 225 A 137 208 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V Inverter FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Brake IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Brake Inverse Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 20 20 A 40 A 52 79 W Tjmax 175 °C VRRM 600 V Th=80°C Tc=80°C Brake FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Th=80°C Tc=80°C 35 40 A 90 A 60 91 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+Tjmax-25 °C Maximum Junction Temperature Th=80°C Tc=80°C Thermal properties copyright Vincotech 2 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 4000 VDC Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation properties Insulation voltage copyright Vincotech Vis t=1min 3 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,2 1,16 0,91 0,77 0,003 0,004 1,9 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 100 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V Ω 0,05 1,1 Thermal grease thickness≤50µm λ = 0,61 W/m·K V mA 0,54 K/W 0,36 Inverter IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,0016 15 100 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC Coupled thermal resistance transistor-transistor RthJHT-T Coupled thermal resistance diode-transistor RthJHD-T 5 5,8 6,5 1,48 1,73 2,2 0,25 700 none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=4 Ω Rgon=4 Ω ±15 300 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 137 138 16 19 188 217 84 104 0,54 0,93 2,5 3,48 ns mWs 6280 f=1MHz 0 25 Tj=25°C 400 pF 108 ±15 480 100 Tj=25°C nC 620 0,5 Thermal grease thickness≤50µm λ = 0,61 W/m·K 0,33 K/W 0,09 0,14 Inverter FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Rgon=4 Ω ±15 300 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC Coupled thermal resistance diode-diode RthJHD-D Coupled thermal resistance transistor-diode RthJHT-D copyright Vincotech 100 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,62 1,63 128 152 106 127 4,64 9,2 9459 5303 1,13 2,25 2,3 V A ns µC A/µs mWs 0,78 Thermal grease thickness≤50µm λ = 0,61 W/m·K 0,52 K/W 0,11 4 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,45 1,69 2,1 Brake IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,0012 15 75 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 0,66 700 none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=4 Ω Rgon=4 Ω ±15 300 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 111 113 12 15 173 202 53 74 0,3 0,46 1,52 2,14 ns mWs 4620 f=1MHz 0 25 ±15 480 pF 288 Tj=25°C 137 75 Tj=25°C 470 Thermal grease thickness≤50µm λ = 0,61 W/m·K nC 0,69 K/W 0,46 Brake Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 10 Tj=25°C Tj=150°C 1,2 Thermal grease thickness≤50µm λ = 0,61 W/m·K 1,78 1,76 2,1 V 1,83 K/W 1,20 K/W Brake FWD Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 30 Ir ±15 300 75 IRRM trr Qrr Rgon=4 Ω ±15 300 di(rec)max /dt 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,62 1,58 2,1 140 82 84 22,7 116 2,14 3,82 10578 6820 0,52 0,97 V µA A ns µC A/µs Reverse recovery energy Erec Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC Thermal grease thickness≤50µm λ = 0,61 W/m·K Rated resistance R25 Tol. ±5% Tj=25°C Deviation of R100 DR/R R100=1486.1Ω Tc=100°C 2,9 %/K Tj=25°C 210 mW Tj=25°C 4000 K mWs 1,59 K/W 1,05 Thermistor Power dissipation given Epcos-Typ B-value copyright Vincotech P B(25/100) Tol. ±3% 5 20,9 22 23,1 kΩ 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Output Inverter Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 Output inverter IGBT 250 250 200 200 150 150 100 100 50 50 0 0 0 1 2 3 4 VCE (V) 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics Ic = f(VGE) Output inverter IGBT Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 300 IC (A) IF (A) 100 Output inverter FWD Tj = 25°C 250 80 200 60 150 Tj = Tjmax-25°C 40 100 20 Tj = Tjmax-25°C 50 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 6 0,5 1 250 µs 1,5 2 2,5 VF (V) 3 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(Ic) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 5 E (mWs) 6 Output inverter IGBT Eoff Eon Eoff 5 4 Eon 4 Eoff Eoff 3 3 2 2 Eon 1 1 Eon: 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 25/150 °C 25/150 VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/150 °C 25/150 VCE = 300 V VGE = ±15 V IC = 100 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Output inverter IGBT 3 Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Output inverter IGBT 2,5 Erec E (mWs) E (mWs) 4 2,5 2 Erec 2 Erec 1,5 1,5 1 Erec 1 0,5 0,5 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 25/150 25/150 °C VCE = 300 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/150 25/150 °C VCE = 300 V VGE = ±15 V IC = 100 A 7 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Output Inverter Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 1 t ( µs) Output inverter IGBT t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT tdoff tdon tdoff tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V IC = 100 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) Output inverter FWD 0,35 t rr( µs) t rr( µs) 0,14 trr trr 0,12 trr 0,3 trr 0,1 0,25 0,08 0,2 0,06 0,15 0,04 0,1 0,02 0,05 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/150 25/150 300 ±15 4 copyright Vincotech 100 150 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 8 4 25/150 25/150 300 100 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(Ic) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr ( µC) 10 Qrr ( µC) 12 Output inverter FWD Qrr Qrr 8 9 Qrr 6 6 Qrr 4 3 2 0 0 0 At At Tj = VCE = VGE = Rgon = 40 80 25/150 25/150 300 ±15 4 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(Ic) Output inverter FWD 4 25/150 25/150 300 100 ±15 8 12 R Gon ( Ω) 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) Output inverter FWD IrrM (A) 180 IrrM (A) 200 16 IRRM 150 160 IRRM 120 120 90 IRRM 80 60 IRRM 40 30 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/150 25/150 300 ±15 4 copyright Vincotech 100 150 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 9 4 25/150 25/150 300 100 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(R gon) 12000 direc / dt (A/ µs) direc / dt (A/ µs) 10000 Output inverter FWD 8000 dI0/dt dIrec/dt 10000 8000 6000 6000 4000 4000 2000 2000 dI0/dt dIrec/dt 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/150 25/150 300 ±15 4 80 120 I C (A) 200 160 0 At Tj = VR = IF = VGE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Output inverter IGBT 4 25/150 25/150 300 100 ±15 8 12 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Output inverter FWD 100 ZthJH (K/W) ZthJH (K/W) 100 R Gon ( Ω) 20 16 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-2 10-2 10-5 10-4 10-3 10-2 At D= RthJH = 10-1 tp / T RthJH = 0,502 K/W 0,60 Single device heated AlI devices heated IGBT thermal model values R (K/W) 0,01 0,07 0,11 0,19 0,06 0,02 0,03 Tau (s) 1,0E+01 1,7E+00 2,3E-01 4,9E-02 9,5E-03 1,0E-03 1,5E-04 copyright Vincotech 100 t p (s) 10110 10-5 10-4 10-3 10-2 At D= RthJH = 10-1 tp / T RthJH = 0,79 K/W 0,79 Single device heated AlI devices heated FWD thermal model values K/W R (K/W) 0,11 0,07 0,11 0,19 0,06 0,02 0,03 R (K/W) 0,02 0,08 0,21 0,35 0,07 0,06 10 Tau (s) 7,9E+00 1,2E+00 1,3E-01 2,8E-02 4,4E-03 3,4E-04 100 t p (s) 10110 K/W R (K/W) 0,02 0,08 0,21 0,35 0,07 0,06 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) Output inverter IGBT 160 IC (A) Ptot (W) 350 140 300 120 250 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 °C 150 Th ( o C) 0 200 At Tj = single heating overall heating Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 VGE = Output inverter FWD 50 100 Th ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) Output inverter FWD 120 Ptot (W) IF (A) 250 150 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = °C 11 50 175 100 150 Th ( o C) 200 °C 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Figure 26 Gate voltage vs Gate charge 18 VGE (V) 15 10uS 100uS 10 Output inverter IGBT VGE = f(Qg) 3 IC (A) 10 Output inverter IGBT 120V 2 480V 12 100mS 10mS 1mS DC 101 9 6 100 3 0 10-1 100 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 200 300 400 500 600 700 800 Qg (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 100 12 100 A 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Brake Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 120 IC (A) 120 Brake IGBT 100 100 80 80 60 60 40 40 20 20 0 0 0 1 2 3 4 V CE (V) 5 0 At tp = Tj = 1 2 3 4 V CE (V) 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) Brake IGBT Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 IC (A) IF (A) 35 Brake FWD 30 60 25 45 20 15 30 Tj = Tjmax-25°C 10 Tj = Tjmax-25°C 15 Tj = 25°C 5 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 13 0,5 250 1 1,5 2 V F (V) 2,5 µs 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Brake Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,5 E (mWs) E (mWs) 3,5 Brake IGBT Eoff 3 Eoff 2 2,5 Eoff Eoff 1,5 2 Eon 1,5 1 1 Eon Eon 0,5 0,5 Eon 0 0 0 20 40 60 80 100 120 140 I C (A) 160 0 With an inductive load at Tj = 25/150 25/150 °C VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 R G( Ω ) 12 16 With an inductive load at Tj = 25/150 25/150 °C VCE = 300 V VGE = ±15 V IC = 75 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,5 Brake IGBT E (mWs) E (mWs) 1,5 Erec 1,2 1,2 Erec Erec 0,9 0,9 0,6 0,6 0,3 0,3 Erec 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 25/150 25/150 °C VCE = 300 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/150 25/150 °C VCE = 300 V VGE = ±15 V IC = 75 A 14 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Brake Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 Brake IGBT tdoff tdon tdoff tf 0,1 0,1 tf tdon tr tr 0,01 0,01 0,001 0,001 0 30 60 90 I C (A) 120 150 0 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 RG (Ω ) 16 20 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V IC = 75 A Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 Brake IGBT 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,69 copyright Vincotech 10-3 10-2 10-1 100 t p (s) 101 10 10-5 At D= RthJH = K/W 15 10-4 tp / T 1,59 10-3 10-2 10-1 100 t p (s) 101 10 K/W 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Brake Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 80 IC (A) Ptot (W) 300 Brake IGBT 250 60 200 150 40 100 20 50 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = VGE = ºC Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake FWD 50 175 15 100 150 200 ºC V Figure 16 Forward current as a function of heatsink temperature IF = f(Th) Brake FWD 40 IF (A) Ptot (W) 120 Th ( o C) 100 30 80 60 20 40 10 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 16 50 175 100 150 Th ( o C) 200 ºC 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Brake Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 60 1 ZthJC (K/W) IF (A) 10 Brake inverse diode 50 Tj = 25°C 40 100 Tj = Tjmax-25°C 30 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10 0 0 At tp = 0,5 1 250 1,5 2 3 VF (V) 10-2 3,5 10-5 Brake inverse diode 10-3 tp / T 1,83 10-2 10-1 100 t p (s) 10110 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) Brake inverse diode 20 IF (A) 100 80 16 60 12 40 8 20 4 0 0 0 At Tj = 10-4 At D= RthJH = µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Ptot (W) 2,5 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 300 0 ZthJC (K/W) IF (A) 10 Rectifier diode 250 Tj = 25°C 200 Tj = Tjmax-25°C 150 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 100 50 0 0 0,5 1 VF (V) 1,5 10-2 2 10-5 At tp = 250 At D= RthJH = µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Rectifier diode 10-3 tp / T 0,54 10-2 10-1 t p (s) 101 10 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 300 100 Rectifier diode 100 IF (A) Ptot (W) 10-4 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 18 30 150 60 90 120 Th ( o C) 150 ºC 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Switching Definitions Output Inverter General Tj Rgon Rgoff Figure 1 conditions = 150 °C = 4Ω = 4Ω Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 140 280 % 120 % 240 tdoff Uce Ic 100 200 Uce 90% Uge 90% Output inverter IGBT Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 80 Ic 160 60 120 Uce 40 Uge tEoff 80 20 Ic 1% tdon 40 0 Uge Uge10% -20 -40 -0,2 -0,05 0,1 0,25 0,4 0,55 2,7 time (µs) -15 15 300 100 0,22 0,58 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = tEon -40 0,7 V V V A µs µs 2,9 3,1 3,5 time(µs) 3,7 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of tr 140 280 % % 120 100 3,3 -15 15 300 100 0,14 0,20 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f Uce3% Ic10% 0 Ic 240 Uce fitted Ic 200 Ic 90% 80 160 Ic 60% 60 120 Uce Ic90% Ic 40% 40 80 20 tr 40 Ic10% -20 0,15 Ic10% tf 0 0 -40 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,25 0,3 300 100 0,10 V A µs 0,35 0,4 time (µs) 0,45 3 VC (100%) = IC (100%) = tr = 20 3,1 3,2 300 100 0,02 3,3 time(µs) 3,4 V A µs 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of tEon 140 120 % % 110 Eon 100 Eoff Poff 80 80 Pon 60 50 40 20 Uge90% Ic 1% 20 -10 Uge10% Uce3% 0 tEon tEoff -20 -40 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 0,4 30,01 3,48 0,58 0,6 0,8 time (µs) 2,8 1 3 3,2 3,4 3,6 time(µs) kW mJ µs Pon (100%) = Eon (100%) = tEon = 30,01 0,93 0,20 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 120 % 80 Id trr 40 0 fitted Ud IRRM10% -40 -80 -120 IRRM90% IRRM100% -160 3,05 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3,15 300 100 -152 0,13 3,25 time(µs) 3,35 V A A µs 21 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 140 150 % % Qrr Id Erec 120 Prec 100 100 50 tQrr 80 tErec 60 0 40 -50 20 -100 0 -150 -20 2,8 3 Id (100%) = Qrr (100%) = tQint = copyright Vincotech 3,2 100 9,20 0,25 3,4 3,6 time(µs) 3,8 2,8 A µC µs Prec (100%) = Erec (100%) = tErec = 22 3 3,2 30,01 2,25 0,25 3,4 3,6 time(µs) 3,8 kW mJ µs 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P765-A-PM in DataMatrix as P765-A in packaging barcode as P765-A Outline Pin X Pin table Y Pin X Y 1 2 3 4 5 6 DCDCDCDCDC+ DC+ 71,2 68,7 66,2 63,7 55,95 53,45 0 0 0 0 0 0 33 34 35 36 37 38 G G E V V V 10,6 18,45 21,25 24,05 26,55 29,05 37,2 37,2 37,2 37,2 37,2 37,2 7 8 9 10 11 12 13 14 DC+ DC+ DC+ DC+ E DCG DC- 55,95 53,45 48,4 45,9 38,9 36,1 38,9 36,1 2,8 2,8 0 0 0 0 2,8 2,8 39 40 41 42 43 44 45 46 W W W E G L1 L1 L1 36,1 38,6 41,1 43,9 46,7 53,7 56,2 58,7 37,2 37,2 37,2 37,2 37,2 37,2 37,2 37,2 15 16 17 18 19 20 DCE DCG R2 R1 31,3 28,5 31,3 28,5 19,3 19,3 0 0 2,8 2,8 0 2,8 47 48 49 50 51 52 L2 L2 L2 L3 L3 L3 71,2 71,2 71,2 71,2 71,2 71,2 37,2 34,7 32,2 25,2 22,7 20,2 21 22 23 24 DC+ DC+ DC+ DC+ 12,3 9,8 12,3 9,8 0 0 2,8 2,8 53 54 55 56 BrC BrC BrG BrE 71,2 68,7 71,2 71,2 12,8 12,8 5,6 2,8 25 26 27 28 29 E DCG DCU 2,8 0 2,8 0 0 0 0 2,8 2,8 37,2 2,5 5 7,8 37,2 37,2 37,2 30 U 31 U 32 E Pinout copyright Vincotech 23 23 Dec 2014 / Revision: 4 V23990-P765-A-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 24 23 Dec 2014 / Revision: 4