V23990 P765 A D4 14

V23990-P765-A-PM
datasheet
flow PIM 2 3rd
600 V / 100 A
Features
flow 2 housing
● 3~rectifier,BRC,Inverter, NTC
● Very Compact housing, easy to route
● IGBT3/ EmCon3 technology for low saturation
losses and improved EMC behavior
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P765-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
100
100
A
1000
A
5000
A 2s
130
196
W
Tjmax
150
°C
VCE
600
V
100
120
A
200
A
189
287
W
±20
V
6
360
µs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
Forward current
IFAV
Surge forward current
IFSM
I2t-value
I2 t
Power dissipation
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
tSC
VCC
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
80
108
A
200
A
121
183
W
Tjmax
175
°C
VCE
600
V
75
80
A
225
A
137
208
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Brake IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Brake Inverse Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
20
20
A
40
A
52
79
W
Tjmax
175
°C
VRRM
600
V
Th=80°C
Tc=80°C
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
35
40
A
90
A
60
91
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+Tjmax-25
°C
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal properties
copyright Vincotech
2
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation properties
Insulation voltage
copyright Vincotech
Vis
t=1min
3
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,2
1,16
0,91
0,77
0,003
0,004
1,9
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
100
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
Ω
0,05
1,1
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
V
mA
0,54
K/W
0,36
Inverter IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0016
15
100
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Coupled thermal resistance transistor-transistor
RthJHT-T
Coupled thermal resistance diode-transistor
RthJHD-T
5
5,8
6,5
1,48
1,73
2,2
0,25
700
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=4 Ω
Rgon=4 Ω
±15
300
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
137
138
16
19
188
217
84
104
0,54
0,93
2,5
3,48
ns
mWs
6280
f=1MHz
0
25
Tj=25°C
400
pF
108
±15
480
100
Tj=25°C
nC
620
0,5
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
0,33
K/W
0,09
0,14
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Rgon=4 Ω
±15
300
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Coupled thermal resistance diode-diode
RthJHD-D
Coupled thermal resistance transistor-diode
RthJHT-D
copyright Vincotech
100
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,62
1,63
128
152
106
127
4,64
9,2
9459
5303
1,13
2,25
2,3
V
A
ns
µC
A/µs
mWs
0,78
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
0,52
K/W
0,11
4
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,45
1,69
2,1
Brake IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0012
15
75
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
0,66
700
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=4 Ω
Rgon=4 Ω
±15
300
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
111
113
12
15
173
202
53
74
0,3
0,46
1,52
2,14
ns
mWs
4620
f=1MHz
0
25
±15
480
pF
288
Tj=25°C
137
75
Tj=25°C
470
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
nC
0,69
K/W
0,46
Brake Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
10
Tj=25°C
Tj=150°C
1,2
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
1,78
1,76
2,1
V
1,83
K/W
1,20
K/W
Brake FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
30
Ir
±15
300
75
IRRM
trr
Qrr
Rgon=4 Ω
±15
300
di(rec)max
/dt
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,62
1,58
2,1
140
82
84
22,7
116
2,14
3,82
10578
6820
0,52
0,97
V
µA
A
ns
µC
A/µs
Reverse recovery energy
Erec
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
Rated resistance
R25
Tol. ±5%
Tj=25°C
Deviation of R100
DR/R
R100=1486.1Ω
Tc=100°C
2,9
%/K
Tj=25°C
210
mW
Tj=25°C
4000
K
mWs
1,59
K/W
1,05
Thermistor
Power dissipation given Epcos-Typ
B-value
copyright Vincotech
P
B(25/100)
Tol. ±3%
5
20,9
22
23,1
kΩ
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
Output inverter IGBT
250
250
200
200
150
150
100
100
50
50
0
0
0
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
300
IC (A)
IF (A)
100
Output inverter FWD
Tj = 25°C
250
80
200
60
150
Tj = Tjmax-25°C
40
100
20
Tj = Tjmax-25°C
50
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
6
0,5
1
250
µs
1,5
2
2,5
VF (V)
3
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
5
E (mWs)
6
Output inverter IGBT
Eoff
Eon
Eoff
5
4
Eon
4
Eoff
Eoff
3
3
2
2
Eon
1
1
Eon:
0
0
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
300
V
VGE =
±15
V
IC =
100
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
3
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
Output inverter IGBT
2,5
Erec
E (mWs)
E (mWs)
4
2,5
2
Erec
2
Erec
1,5
1,5
1
Erec
1
0,5
0,5
0
0
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
7
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Output Inverter
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
1
t ( µs)
Output inverter IGBT
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
tdoff
tdon
tdoff
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
40
80
120
160
I C (A) 200
0
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
Output inverter FWD
0,35
t rr( µs)
t rr( µs)
0,14
trr
trr
0,12
trr
0,3
trr
0,1
0,25
0,08
0,2
0,06
0,15
0,04
0,1
0,02
0,05
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
25/150
300
±15
4
copyright Vincotech
100
150
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
4
25/150
25/150
300
100
±15
8
12
16
R Gon ( Ω ) 20
°C
V
A
V
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr ( µC)
10
Qrr ( µC)
12
Output inverter FWD
Qrr
Qrr
8
9
Qrr
6
6
Qrr
4
3
2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
40
80
25/150
25/150
300
±15
4
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
Output inverter FWD
4
25/150
25/150
300
100
±15
8
12
R Gon ( Ω) 20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
Output inverter FWD
IrrM (A)
180
IrrM (A)
200
16
IRRM
150
160
IRRM
120
120
90
IRRM
80
60
IRRM
40
30
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
25/150
300
±15
4
copyright Vincotech
100
150
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
4
25/150
25/150
300
100
±15
8
12
16
R Gon ( Ω )
20
°C
V
A
V
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(R gon)
12000
direc / dt (A/ µs)
direc / dt (A/ µs)
10000
Output inverter FWD
8000
dI0/dt
dIrec/dt
10000
8000
6000
6000
4000
4000
2000
2000
dI0/dt
dIrec/dt
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
25/150
300
±15
4
80
120
I C (A) 200
160
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter IGBT
4
25/150
25/150
300
100
±15
8
12
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter FWD
100
ZthJH (K/W)
ZthJH (K/W)
100
R Gon ( Ω) 20
16
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-2
10-2
10-5
10-4
10-3
10-2
At
D=
RthJH =
10-1
tp / T
RthJH =
0,502
K/W
0,60
Single device heated
AlI devices heated
IGBT thermal model values
R (K/W)
0,01
0,07
0,11
0,19
0,06
0,02
0,03
Tau (s)
1,0E+01
1,7E+00
2,3E-01
4,9E-02
9,5E-03
1,0E-03
1,5E-04
copyright Vincotech
100
t p (s)
10110
10-5
10-4
10-3
10-2
At
D=
RthJH =
10-1
tp / T
RthJH =
0,79
K/W
0,79
Single device heated
AlI devices heated
FWD thermal model values
K/W
R (K/W)
0,11
0,07
0,11
0,19
0,06
0,02
0,03
R (K/W)
0,02
0,08
0,21
0,35
0,07
0,06
10
Tau (s)
7,9E+00
1,2E+00
1,3E-01
2,8E-02
4,4E-03
3,4E-04
100
t p (s)
10110
K/W
R (K/W)
0,02
0,08
0,21
0,35
0,07
0,06
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
Output inverter IGBT
160
IC (A)
Ptot (W)
350
140
300
120
250
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
0
200
At
Tj =
single heating
overall heating
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
VGE =
Output inverter FWD
50
100
Th ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
Output inverter FWD
120
Ptot (W)
IF (A)
250
150
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
Th ( o C)
200
°C
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Figure 26
Gate voltage vs Gate charge
18
VGE (V)
15
10uS
100uS
10
Output inverter IGBT
VGE = f(Qg)
3
IC (A)
10
Output inverter IGBT
120V
2
480V
12
100mS
10mS
1mS
DC
101
9
6
100
3
0
10-1
100
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
200
300
400
500
600
700
800
Qg (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
100
12
100
A
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Brake
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
120
IC (A)
120
Brake IGBT
100
100
80
80
60
60
40
40
20
20
0
0
0
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
1
2
3
4
V CE (V)
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
Brake IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
IC (A)
IF (A)
35
Brake FWD
30
60
25
45
20
15
30
Tj = Tjmax-25°C
10
Tj = Tjmax-25°C
15
Tj = 25°C
5
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
13
0,5
250
1
1,5
2
V F (V)
2,5
µs
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Brake
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,5
E (mWs)
E (mWs)
3,5
Brake IGBT
Eoff
3
Eoff
2
2,5
Eoff
Eoff
1,5
2
Eon
1,5
1
1
Eon
Eon
0,5
0,5
Eon
0
0
0
20
40
60
80
100
120
140 I C (A) 160
0
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
R G( Ω )
12
16
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,5
Brake IGBT
E (mWs)
E (mWs)
1,5
Erec
1,2
1,2
Erec
Erec
0,9
0,9
0,6
0,6
0,3
0,3
Erec
0
0
0
30
60
90
120
I C (A) 150
0
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/150
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
14
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
Brake IGBT
tdoff
tdon
tdoff
tf
0,1
0,1
tf
tdon
tr
tr
0,01
0,01
0,001
0,001
0
30
60
90
I C (A)
120
150
0
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
RG (Ω )
16
20
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
Brake IGBT
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,69
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
101 10
10-5
At
D=
RthJH =
K/W
15
10-4
tp / T
1,59
10-3
10-2
10-1
100
t p (s)
101 10
K/W
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
80
IC (A)
Ptot (W)
300
Brake IGBT
250
60
200
150
40
100
20
50
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
VGE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake FWD
40
IF (A)
Ptot (W)
120
Th ( o C)
100
30
80
60
20
40
10
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Brake Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
60
1
ZthJC (K/W)
IF (A)
10
Brake inverse diode
50
Tj = 25°C
40
100
Tj = Tjmax-25°C
30
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10
0
0
At
tp =
0,5
1
250
1,5
2
3
VF (V)
10-2
3,5
10-5
Brake inverse diode
10-3
tp / T
1,83
10-2
10-1
100
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake inverse diode
20
IF (A)
100
80
16
60
12
40
8
20
4
0
0
0
At
Tj =
10-4
At
D=
RthJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Ptot (W)
2,5
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
300
0
ZthJC (K/W)
IF (A)
10
Rectifier diode
250
Tj = 25°C
200
Tj = Tjmax-25°C
150
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
100
50
0
0
0,5
1
VF (V)
1,5
10-2
2
10-5
At
tp =
250
At
D=
RthJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Rectifier diode
10-3
tp / T
0,54
10-2
10-1
t p (s)
101 10
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
300
100
Rectifier diode
100
IF (A)
Ptot (W)
10-4
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
18
30
150
60
90
120
Th ( o C)
150
ºC
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Switching Definitions Output Inverter
General
Tj
Rgon
Rgoff
Figure 1
conditions
= 150 °C
= 4Ω
= 4Ω
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
140
280
%
120
%
240
tdoff
Uce
Ic
100
200
Uce 90%
Uge 90%
Output inverter IGBT
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
80
Ic
160
60
120
Uce
40
Uge
tEoff
80
20
Ic 1%
tdon
40
0
Uge
Uge10%
-20
-40
-0,2
-0,05
0,1
0,25
0,4
0,55
2,7
time (µs)
-15
15
300
100
0,22
0,58
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
tEon
-40
0,7
V
V
V
A
µs
µs
2,9
3,1
3,5
time(µs)
3,7
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of tr
140
280
%
%
120
100
3,3
-15
15
300
100
0,14
0,20
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
Uce3%
Ic10%
0
Ic
240
Uce
fitted
Ic
200
Ic 90%
80
160
Ic 60%
60
120
Uce
Ic90%
Ic 40%
40
80
20
tr
40
Ic10%
-20
0,15
Ic10%
tf
0
0
-40
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,25
0,3
300
100
0,10
V
A
µs
0,35
0,4
time (µs)
0,45
3
VC (100%) =
IC (100%) =
tr =
20
3,1
3,2
300
100
0,02
3,3
time(µs)
3,4
V
A
µs
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of tEon
140
120
%
%
110
Eon
100
Eoff
Poff
80
80
Pon
60
50
40
20
Uge90%
Ic 1%
20
-10
Uge10%
Uce3%
0
tEon
tEoff
-20
-40
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
0,4
30,01
3,48
0,58
0,6
0,8
time (µs)
2,8
1
3
3,2
3,4
3,6
time(µs)
kW
mJ
µs
Pon (100%) =
Eon (100%) =
tEon =
30,01
0,93
0,20
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
%
80
Id
trr
40
0
fitted
Ud
IRRM10%
-40
-80
-120
IRRM90%
IRRM100%
-160
3,05
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3,15
300
100
-152
0,13
3,25
time(µs)
3,35
V
A
A
µs
21
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
140
150
%
%
Qrr
Id
Erec
120
Prec
100
100
50
tQrr
80
tErec
60
0
40
-50
20
-100
0
-150
-20
2,8
3
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
3,2
100
9,20
0,25
3,4
3,6
time(µs)
3,8
2,8
A
µC
µs
Prec (100%) =
Erec (100%) =
tErec =
22
3
3,2
30,01
2,25
0,25
3,4
3,6
time(µs)
3,8
kW
mJ
µs
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P765-A-PM
in DataMatrix as
P765-A
in packaging barcode as
P765-A
Outline
Pin
X
Pin table
Y
Pin
X
Y
1
2
3
4
5
6
DCDCDCDCDC+
DC+
71,2
68,7
66,2
63,7
55,95
53,45
0
0
0
0
0
0
33
34
35
36
37
38
G
G
E
V
V
V
10,6
18,45
21,25
24,05
26,55
29,05
37,2
37,2
37,2
37,2
37,2
37,2
7
8
9
10
11
12
13
14
DC+
DC+
DC+
DC+
E
DCG
DC-
55,95
53,45
48,4
45,9
38,9
36,1
38,9
36,1
2,8
2,8
0
0
0
0
2,8
2,8
39
40
41
42
43
44
45
46
W
W
W
E
G
L1
L1
L1
36,1
38,6
41,1
43,9
46,7
53,7
56,2
58,7
37,2
37,2
37,2
37,2
37,2
37,2
37,2
37,2
15
16
17
18
19
20
DCE
DCG
R2
R1
31,3
28,5
31,3
28,5
19,3
19,3
0
0
2,8
2,8
0
2,8
47
48
49
50
51
52
L2
L2
L2
L3
L3
L3
71,2
71,2
71,2
71,2
71,2
71,2
37,2
34,7
32,2
25,2
22,7
20,2
21
22
23
24
DC+
DC+
DC+
DC+
12,3
9,8
12,3
9,8
0
0
2,8
2,8
53
54
55
56
BrC
BrC
BrG
BrE
71,2
68,7
71,2
71,2
12,8
12,8
5,6
2,8
25
26
27
28
29
E
DCG
DCU
2,8
0
2,8
0
0
0
0
2,8
2,8
37,2
2,5
5
7,8
37,2
37,2
37,2
30 U
31 U
32 E
Pinout
copyright Vincotech
23
23 Dec 2014 / Revision: 4
V23990-P765-A-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
24
23 Dec 2014 / Revision: 4