V23990 P768 A60 D4 14

V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
flow PIM 2
1200 V / 50 A
Features
flow 2 17mm housing
● 3~rectifier, BRC, Inverter, NTC
● Very Compact housing, easy to route
● Mitsubishi IGBT and FWD
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P768-A60-PM
● V23990-P768-A60Y-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1800
V
75
A
490
A
1200
A2s
106
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
T j=Tjmax
T h=80°C
t p=10ms
T j=150°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
60
A
t p limited by T jmax
100
A
VCE ≤ 1200V, Tj ≤ Top max
100
A
144
W
±20
V
10
850
µs
V
175
°C
T j=Tjmax
T h=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
t SC
V CC
T j=Tjmax
T j=Tjmax
T j≤150°C
V GE=15V
T jmax
1
T h=80°C
T h=80°C
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
100
A
100
A
115
W
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
T j=25°C
T j=Tjmax
T h=80°C
Repetitive peak forward current
I FRM
t p limited by T jmax
Power dissipation
P tot
T j=Tjmax
Maximum Junction Temperature
T jmax
175
°C
V CE
1200
V
48
A
135
A
70
A
151
W
±20
V
10
800
µs
V
T jmax
175
°C
V RRM
1200
V
16
A
20
A
69
W
T h=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
T h=80°C
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=Tjmax
T j=Tjmax
T h=80°C
T j≤150°C
V GE=15V
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
T j=Tjmax
T h=80°C
Repetitive peak forward current
I FRM
t p limited by T jmax
Brake Inverse Diode
P tot
T j=Tjmax
Maximum Junction Temperature
T jmax
175
°C
V RRM
1200
V
21
A
50
A
69
W
175
°C
T h=80°C
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
T j=Tjmax
Repetitive peak forward current
I FRM
t p limited by T jmax
Power dissipation
P tot
T j=Tjmax
Maximum Junction Temperature
T jmax
copyright Vincotech
2
T h=80°C
T h=80°C
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
min 12,7
mm
11,96 / 12,03
mm
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
Comparative tracking index
copyright Vincotech
with Press-fit pins / with Solder pins
CTI
>200
3
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Unit
Min
Typ
Max
1
1,19
1,12
0,9
0,76
7
9
1,5
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
V to
40
Slope resistance (for power loss calc. only)
rt
40
Reverse current
Ir
Thermal resistance chip to heatsink
40
1600
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
V GE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mΩ
0,1
mA
K/W
0,66
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
V CEsat
I GES
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,005
50
0
1200
20
0
tr
t d(off)
tf
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
R th(j-s)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5,4
6
6,6
1,2
1,73
2,00
2,2
150
500
none
t d(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink
15
I CES
Gate-emitter leakage current
10
Rgoff=16 Ω
Rgon=16 Ω
±15
600
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
nA
Ω
106
106
28
46
157
200
58
89
2,61
5,10
2,49
4,08
ns
mWs
3100
f=1MHz
0
Tj=25°C
10
pF
340
37
600
15
50
Tj=25°C
Phase-Change
Material
ʎ=3,4W/mK
105
nC
0,66
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
50
Rgon=16 Ω
±15
600
( di rf/dt )max
E rec
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,73
2,18
33
45
388
727
4,01
10,81
1018
295
1,842
5,141
0,83
4
3,3
V
A
ns
µC
A/µs
mWs
K/W
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,5
1,92
2,37
2,3
Brake Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,0012
15
35
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
250
120
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=16 Ω
Rgon=16 Ω
±15
600
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
nA
Ω
83
89
27
27
191
269
54
125
2,00
2,92
1,74
3,18
ns
mWs
1950
f=1MHz
0
25
15
960
Tj=25°C
155
pF
Tj=25°C
160
nC
0,63
K/W
115
35
Phase-Change
Material
ʎ=3,4W/mK
Brake Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
10
Tj=25°C
Tj=150°C
1,2
Phase-Change
Material
ʎ=3,4W/mK
1,80
1,76
2,2
1,38
V
K/W
Brake Diode
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink
copyright Vincotech
1200
I RRM
t rr
Peak rate of fall of recovery current
25
Rgon=16 Ω
Rgon=16 Ω
±15
600
( di rf/dt )max
E rec
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
35
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
2,40
3,16
60
31
39
146
423
2,32
4,84
1749
917
0,909
1,982
1,37
5
2,9
V
µA
A
ns
µC
A/µs
mWs
K/W
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Value
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
T=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486 Ω
T=100°C
Power dissipation constant
21,5
-4,5
kΩ
+4,5
%
T=25°C
210
mW
mW/K
T=25°C
3,5
B-value
B (25/50)
T=25°C
3884
K
B-value
B (25/100)
T=25°C
3964
K
Vincotech NTC Reference
copyright Vincotech
F
6
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
150
IC (A)
IC (A)
150
Output inverter IGBT
125
125
100
100
75
75
50
50
25
25
0
P768-A60
P768-A60Y
0
0
1
At
tp =
Tj =
V GE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
150
IC (A)
IF (A)
50
4
125
40
100
30
75
20
50
10
25
0
0
0
At
Tj =
tp =
V CE =
2
4
6
8
10
V GE (V)
12
0
1
2
3
4
V F (V)
5
At
25/150
250
10
copyright Vincotech
°C
µs
V
tp =
7
250
µs
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
15
E (mWs)
E (mWs)
15
Output inverter IGBT
12
12
Eon High T
9
Eon High T
9
Eon Low T
6
Eon Low T
6
Eoff High T
Eoff Low T
Eoff High T
3
3
Eoff Low T
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
8
E (mWs)
8
Output inverter FWD
Erec
6
6
Erec
4
4
Erec
2
2
Erec
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
IC =
50
A
8
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Output Inverter
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
t ( µs)
t ( µs)
1,00
Output inverter IGBT
tdon
tdoff
tdoff
tdon
tf
0,10
tr
tf
0,10
tr
0,01
0,01
0,00
0,00
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
Output inverter FWD
1,2
1,2
trr
t rr( µs)
t rr( µs)
trr
1
1
0,8
0,8
trr
0,6
trr
0,6
0,4
0,4
0,2
0,2
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/150
600
±15
16
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
9
15
25/150
600
50
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
16
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Output inverter FWD
16
Qrr( µC)
Qrr( µC)
Qrr
12
12
Qrr
8
8
Qrr
4
4
Qrr
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
25/150
600
±15
16
40
60
80
I C (A)
0
100
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
15
25/150
600
50
±15
30
45
60
R gon ( Ω)
75
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
Output inverter FWD
100
IrrM (A)
IrrM (A)
100
80
80
60
60
40
40
IRRM
IRRM
20
20
IRRM
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/150
600
±15
16
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
10
15
25/150
600
50
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
direc / dt (A/ µs)
direc / dt (A/µ s)
2000
dI0/dt
dIrec/dt
Output inverter FWD
10000
dI0/dt
dIrec/dt
8000
1500
6000
1000
4000
500
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/150
600
±15
16
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
15
25/150
600
50
±15
30
45
R gon ( Ω )
75
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter FWD
100
ZthJH (K/W)
Zth-JH (K/W)
100
60
10-1
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
0,66
K/W
K/W
10-5
10-4
At
D =
R thJH =
tp/T
0,83
10-3
K/W
IGBT thermal model values
FWD thermal model values
R (K/W)
0,05
0,08
0,20
0,25
0,04
0,03
R (K/W)
0,03
0,06
0,15
0,35
0,12
0,08
0,03
Tau (s)
4,1E+00
6,8E-01
1,1E-01
3,2E-02
4,9E-03
4,9E-04
copyright Vincotech
11
10-2
10-1
100
t p (s)
10110
K/W
Tau (s)
6,5E+00
1,1E+00
1,6E-01
3,9E-02
1,1E-02
1,8E-03
4,4E-04
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
90
IC (A)
Ptot (W)
300
Output inverter IGBT
250
75
200
60
150
45
100
30
50
15
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
80
IF (A)
Ptot (W)
250
150
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
12
50
175
100
150
T h ( o C)
200
°C
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Figure 26
Reverse bias safe operating area
IGBT
I C = f(V CE)
3
120
IC (A)
IC (A)
10
Output inverter IGBT
IC MAX
100
10
Ic
80
1
100uS
Ic CHIP
10uS
MODULE
10
2
60
1mS
100
VCE MAX
40
10mS
100mS
20
DC
10-1
0
0
100
101
102
103
V GE =
Tj =
At
Tj =
R gon =
R goff =
single pulse
80
ºC
±15
V
T jmax
ºC
copyright Vincotech
400
600
800
1000
1200
1400
V CE (V)
At
D =
Th =
200
V CE (V)
13
150 °C
16 Ω
16 Ω
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Brake
Figure 2
Typical output characteristics
I C = f(V CE)
100
100
IC (A)
Brake IGBT
IC (A)
Figure 1
Typical output characteristics
I C = f(V CE)
80
80
60
60
40
40
20
20
Brake IGBT
0
0
0
At
tp =
Tj =
V GE from
1
2
3
V CE (V)
4
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Brake IGBT
1
2
3
4
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake FWD
75
IF (A)
IC (A)
35
V CE (V)
30
60
25
45
20
15
30
10
15
5
0
0
0
At
Tj =
tp =
V CE =
2
4
6
8
10
0
V GE (V) 12
1
2
3
4
V F (V)
5
At
25/150
250
10
copyright Vincotech
°C
µs
V
tp =
14
250
µs
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Brake
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
9
Brake IGBT
10
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Eon
7,5
Eon
8
6
6
Eoff
Eon
Eon
4,5
Eoff
4
3
Eoff
2
Eoff
1,5
0
0
0
10
20
30
40
50
60
I C (A)
0
70
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
16
32
48
64
RG (Ω )
80
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
5
Brake FWD
E (mWs)
E (mWs)
5
4
4
3
3
Erec
2
2
Erec
1
1
Erec
0
0
0
10
20
30
40
50
60
I C (A) 70
0
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
15
30
45
60
RG (Ω )
75
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
15
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
t ( µs)
1
t ( µs)
1
Brake IGBT
tdoff
tdoff
tdon
tf
0,1
tr
0,1
tdon
tf
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
I C (A)
70
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
32
48
RG (Ω )
64
80
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake FWD
ZthJH (K/W)
101
ZthJH (K/W)
101
10
16
100
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10-2
10-5
At
Psx7p
R thJH =
10-4
10-3
D =
0,63
copyright Vincotech
10-2
10-1
100
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10110
10-5
tp/T
At
Psx7p
R thJH =
K/W
16
10-4
10-3
D =
1,37
10-2
10-1
100
t p (s)
101 10
tp/T
K/W
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T h)
70
IC (A)
Ptot (W)
300
Brake IGBT
60
250
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
V GE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake FWD
50
175
15
100
150
T h ( o C)
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T h)
Brake FWD
40
IF (A)
Ptot (W)
150
125
30
100
75
20
50
10
25
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Brake Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake inverse diode
IF (A)
ZthJC (K/W)
30
25
20
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
5
0
0
At
Tj =
tp =
1
25/150
250
2
3
V F (V)
4
t p (s)
At
Psx7p
R thJH =
°C
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake inverse diode
D =
1,38
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Brake inverse diode
20
IF (A)
Ptot (W)
140
10
tp/T
120
15
100
80
10
60
40
5
20
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
18
50
150
100
150
T h ( o C)
200
ºC
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Rectifier diode
100
IF (A)
ZthJC (K/W)
150
125
100
10-1
75
50
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
25
0
0
At
Tj =
tp =
0,5
25/125
250
1
1,5
V F (V)
10-3
2
°C
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Rectifier diode
10-5
10-4
At
D =
R thJH =
tp/T
10-3
0,66
10-2
10-1
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Rectifier diode
90
Ptot (W)
IF (A)
240
100
80
200
70
160
60
50
120
40
80
30
20
40
10
0
0
0
At
Tj =
25
150
copyright Vincotech
50
75
100
125 T ( o C)
h
150
0
At
Tj =
ºC
19
30
150
60
90
120
T h ( o C) 150
ºC
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
Thermistor
R (Ω)
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Switching Definitions Output Inverter
General
Tj
R gon
R goff
conditions
= 150 °C
= 16 Ω
= 16 Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
200
%
tdoff
%
IC
VCE
100
VGE 90%
150
VCE 90%
75
VCE
100
IC
VGE
50
tdon
tEoff
50
25
VGE10%
IC 1%
tEon
VGE
-25
-0,2
VCE 3%
IC10%
0
0
-50
0
0,2
0,4
0,6
0,8
2,9
3,1
3,3
3,5
time(us)
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
600
50
0,21
0,70
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
600
50
0,10
0,38
3,7
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
125
200
fitted
%
VCE
Ic
%
IC
100
150
IC 90%
75
VCE
100
IC 60%
IC 90%
50
tr
IC 40%
50
25
IC10%
IC 10%
0
0
tf
-25
0
0,1
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,2
600
50
0,09
0,3
time (us)
-50
3,05
0,4
V
A
µs
V C (100%) =
I C (100%) =
tr =
21
3,1
3,15
600
50
0,03
3,2
3,25
time(us)
3,3
V
A
µs
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
200
125
%
%
Pon
100
Poff
150
Eoff
75
Eon
100
50
50
25
IC 1%
VCE 3%
VGE 10%
VGE 90%
0
tEon
0
tEoff
-25
-0,2
0
0,2
0,4
0,6
-50
2,95
0,8
3,05
3,15
3,25
time (us)
P off (100%) =
E off (100%) =
t E off =
30,14
4,09
0,70
3,35
3,45
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
30,14
4,39
0,38
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
fitted
Vd
0
IRRM10%
-50
IRRM90%
IRRM100%
-100
-150
-200
2,9
3,1
3,3
3,5
3,7
3,9
4,1
4,3
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
600
50
-45
0,73
V
A
A
µs
22
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Id
Qrr
100
Erec
100
tQrr
50
75
0
50
-50
25
tErec
Prec
-100
0
-150
-25
2,9
3,1
3,3
3,5
3,7
3,9
4,1
4,3
4,5
2,9
3,1
3,3
3,5
3,7
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
50
10,81
2,00
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
23
30,14
5,14
2,00
3,9
4,1
4,3
time(us)
4,5
kW
mJ
µs
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Switching Definitions Brake
General
Tj
R gon
R goff
conditions
= 150 °C
= 16 Ω
= 16 Ω
Figure 1
IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
250
tdoff
%
%
200
100
VGE 90%
IC
VCE 90%
150
75
IC
VCE
100
50
VGE
tEoff
tdon
50
25
VGE
IC 1%
VCE
VGE10%
VCE3%
IC10%
0
0
tEon
-50
-25
-0,2
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,4
-15
15
600
35
0,27
0,61
0,6
time (us)
2,9
0,8
3
3,1
3,3
3,4
3,5
time(us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Turn-off Switching Waveforms & definition of t f
3,2
IGBT
-15
15
600
35
0,09
0,33
V
V
V
A
µs
µs
Figure 4
Turn-on Switching Waveforms & definition of t r
125
IGBT
250
%
VCE
fitted
IC
%
100
200
Ic
Ic 90%
75
150
Ic 60%
VCE
50
100
Ic 40%
IC90%
tr
25
50
Ic10%
0
IC10%
0
tf
-25
-50
0
0,1
0,2
0,3
0,4
0,5
0,6
3
time (us)
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
600
35
0,13
3,1
3,2
3,3
3,4
time(us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
24
600
35
0,03
V
A
µs
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Switching Definitions Brake
Figure 5
Turn-off Switching Waveforms & definition of t Eoff
IGBT
Figure 6
Turn-on Switching Waveforms & definition of t Eon
120
IGBT
200
%
Poff
Pon
%
Eoff
100
150
80
Eon
100
60
40
50
Ic 1%
20
Uce 3%
U ge10%
U ge90%
0
tEon
0
tEoff
-20
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
20,96
3,18
0,61
0,4
0,6
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Turn-off Switching Waveforms & definition of t rr
150
%
-50
2,95
0,8
3,05
3,15
20,9586
2,92
0,33
3,25
3,35
time(us)
3,45
kW
mJ
µs
FWD
Id
100
trr
50
Ud
fitted
0
IRRM10%
-50
IRRM90%
-100
IRRM100%
-150
3
3,1
3,2
3,3
3,4
3,5
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
600
35
-39
0,42
V
A
A
µs
25
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Switching Definitions Brake
Figure 8
Turn-on Switching Waveforms & definition of t Qrr
(t Qrr= integrating time for Q rr)
FWD
Figure 9
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
FWD
125
%
%
Id
Qrr
100
tErec
tQint
50
Erec
100
75
0
50
-50
25
Prec
-100
0
-150
-25
2,8
3
3,2
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,4
35
4,84
1,00
3,6
3,8
4
4,2
4,4
time(us)
2,8
A
µC
µs
3
P rec (100%) =
E rec (100%) =
t E rec =
26
3,2
3,4
20,96
1,98
1,00
3,6
3,8
4
4,2
4,4
time(us)
kW
mJ
µs
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
V23990-P768-A60-PM
V23990-P768-A60Y-PM
V23990-P768-A60-/3/-PM
V23990-P768-A60Y-/3/-PM
without thermal paste with Solder pins
without thermal paste with Press-fit pins
with thermal paste and Solder pins
with thermal paste and Press-fit pins
in DataMatrix as
P768-A60
P768-A60Y
P768-A60
P768-A60Y
in packaging barcode as
P768-A60
P768-A60Y
P768-A60-/3/
P768-A60Y-/3/
Outline
Pin
1
2
Pin table
X
Y
71,2
0
68,7
0
DCDC-
Pin
29
30
Pin table
X
Y
0
37,2
2,5
37,2
U
U
3
4
5
6
7
8
9
10
66,2
63,7
55,95
53,45
55,95
53,45
48,4
45,9
0
0
0
0
2,8
2,8
0
0
DCDC+
DC+
DC+
DC+
DC+
DC+
DC+
31
32
33
34
35
36
37
38
5
7,8
10,6
18,45
21,25
24,05
26,55
29,05
37,2
37,2
37,2
37,2
37,2
37,2
37,2
37,2
U
E
G
G
E
V
V
V
11
12
13
14
38,9
36,1
38,9
36,1
0
0
2,8
2,8
E
DCG
DC-
39
40
41
42
36,1
38,6
41,1
43,9
37,2
37,2
37,2
37,2
W
W
W
E
15
31,3
0
DC-
43
46,7
37,2
G
16
17
18
19
28,5
31,3
28,5
19,3
0
2,8
2,8
0
E
DCG
R2
44
45
46
47
53,7
56,2
58,7
71,2
37,2
37,2
37,2
37,2
L1
L1
L1
L2
20
21
22
23
19,3
12,3
9,8
12,3
2,8
0
0
2,8
R1
DC+
DC+
DC+
48
49
50
51
71,2
71,2
71,2
71,2
34,7
32,2
25,2
22,7
L2
L2
L3
L3
24
25
26
27
9,8
2,8
0
2,8
2,8
0
0
2,8
DC+
E
DCG
52
53
54
55
71,2
71,2
68,7
71,2
20,2
12,8
12,8
5,6
L3
BrC
BrC
BrG
28
0
2,8
DC-
56
71,2
2,8
BrE
Pinout
Identification
ID
T1, T3, T5, T7, T9, T11
D9-D14
T13
D7
D8
D1-D6
T
copyright Vincotech
Component
Voltage
Current
IGBT
FWD
IGBT
FWD
FWD
1200V
1200V
1200V
1200V
1200V
50A
50A
35A
25A
10A
Function
Inverter Switch
Inverter Diode
Brake Switch
Brake Diode
Brake Inverse Diode
Rectifier
NTC
1800V
-
40A
-
Rectifier Diode
Thermistor
27
Comment
23 Jun. 2015 / Revision 4
V23990-P768-A60-PM
V23990-P768-A60Y-PM
datasheet
Package data
Package data for flow 2 packages see vincotech.com website.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
28
23 Jun. 2015 / Revision 4