V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet flow PIM 2 1200 V / 50 A Features flow 2 17mm housing ● 3~rectifier, BRC, Inverter, NTC ● Very Compact housing, easy to route ● Mitsubishi IGBT and FWD Target Applications Schematic ● Motor Drives ● Power Generation Types ● V23990-P768-A60-PM ● V23990-P768-A60Y-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1800 V 75 A 490 A 1200 A2s 106 W Input Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM T j=Tjmax T h=80°C t p=10ms T j=150°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V 60 A t p limited by T jmax 100 A VCE ≤ 1200V, Tj ≤ Top max 100 A 144 W ±20 V 10 850 µs V 175 °C T j=Tjmax T h=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings Maximum Junction Temperature copyright Vincotech t SC V CC T j=Tjmax T j=Tjmax T j≤150°C V GE=15V T jmax 1 T h=80°C T h=80°C 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 100 A 100 A 115 W Inverter Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF T j=25°C T j=Tjmax T h=80°C Repetitive peak forward current I FRM t p limited by T jmax Power dissipation P tot T j=Tjmax Maximum Junction Temperature T jmax 175 °C V CE 1200 V 48 A 135 A 70 A 151 W ±20 V 10 800 µs V T jmax 175 °C V RRM 1200 V 16 A 20 A 69 W T h=80°C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM T h=80°C t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=Tjmax T j=Tjmax T h=80°C T j≤150°C V GE=15V Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF T j=Tjmax T h=80°C Repetitive peak forward current I FRM t p limited by T jmax Brake Inverse Diode P tot T j=Tjmax Maximum Junction Temperature T jmax 175 °C V RRM 1200 V 21 A 50 A 69 W 175 °C T h=80°C Brake Diode Peak Repetitive Reverse Voltage DC forward current IF T j=Tjmax Repetitive peak forward current I FRM t p limited by T jmax Power dissipation P tot T j=Tjmax Maximum Junction Temperature T jmax copyright Vincotech 2 T h=80°C T h=80°C 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V min 12,7 mm 11,96 / 12,03 mm Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance Comparative tracking index copyright Vincotech with Press-fit pins / with Solder pins CTI >200 3 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 1 1,19 1,12 0,9 0,76 7 9 1,5 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) V to 40 Slope resistance (for power loss calc. only) rt 40 Reverse current Ir Thermal resistance chip to heatsink 40 1600 R th(j-s) Phase-Change Material ʎ=3,4W/mK V GE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mΩ 0,1 mA K/W 0,66 Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode V CEsat I GES Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time 0,005 50 0 1200 20 0 tr t d(off) tf E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG R th(j-s) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5,4 6 6,6 1,2 1,73 2,00 2,2 150 500 none t d(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink 15 I CES Gate-emitter leakage current 10 Rgoff=16 Ω Rgon=16 Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA nA Ω 106 106 28 46 157 200 58 89 2,61 5,10 2,49 4,08 ns mWs 3100 f=1MHz 0 Tj=25°C 10 pF 340 37 600 15 50 Tj=25°C Phase-Change Material ʎ=3,4W/mK 105 nC 0,66 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech 50 Rgon=16 Ω ±15 600 ( di rf/dt )max E rec R th(j-s) Phase-Change Material ʎ=3,4W/mK 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,73 2,18 33 45 388 727 4,01 10,81 1018 295 1,842 5,141 0,83 4 3,3 V A ns µC A/µs mWs K/W 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 5 5,8 6,5 1,5 1,92 2,37 2,3 Brake Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,0012 15 35 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 250 120 none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=16 Ω Rgon=16 Ω ±15 600 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA nA Ω 83 89 27 27 191 269 54 125 2,00 2,92 1,74 3,18 ns mWs 1950 f=1MHz 0 25 15 960 Tj=25°C 155 pF Tj=25°C 160 nC 0,63 K/W 115 35 Phase-Change Material ʎ=3,4W/mK Brake Inverse Diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 10 Tj=25°C Tj=150°C 1,2 Phase-Change Material ʎ=3,4W/mK 1,80 1,76 2,2 1,38 V K/W Brake Diode Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink copyright Vincotech 1200 I RRM t rr Peak rate of fall of recovery current 25 Rgon=16 Ω Rgon=16 Ω ±15 600 ( di rf/dt )max E rec R th(j-s) Phase-Change Material ʎ=3,4W/mK 35 Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 2,40 3,16 60 31 39 146 423 2,32 4,84 1749 917 0,909 1,982 1,37 5 2,9 V µA A ns µC A/µs mWs K/W 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Characteristic Values Parameter Conditions Symbol V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Value Tj Min Typ Unit Max Thermistor Rated resistance T=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486 Ω T=100°C Power dissipation constant 21,5 -4,5 kΩ +4,5 % T=25°C 210 mW mW/K T=25°C 3,5 B-value B (25/50) T=25°C 3884 K B-value B (25/100) T=25°C 3964 K Vincotech NTC Reference copyright Vincotech F 6 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) 150 IC (A) IC (A) 150 Output inverter IGBT 125 125 100 100 75 75 50 50 25 25 0 P768-A60 P768-A60Y 0 0 1 At tp = Tj = V GE from 2 3 V CE (V) 4 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD 150 IC (A) IF (A) 50 4 125 40 100 30 75 20 50 10 25 0 0 0 At Tj = tp = V CE = 2 4 6 8 10 V GE (V) 12 0 1 2 3 4 V F (V) 5 At 25/150 250 10 copyright Vincotech °C µs V tp = 7 250 µs 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 15 E (mWs) E (mWs) 15 Output inverter IGBT 12 12 Eon High T 9 Eon High T 9 Eon Low T 6 Eon Low T 6 Eoff High T Eoff Low T Eoff High T 3 3 Eoff Low T 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 8 E (mWs) 8 Output inverter FWD Erec 6 6 Erec 4 4 Erec 2 2 Erec 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V IC = 50 A 8 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Output Inverter Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 t ( µs) t ( µs) 1,00 Output inverter IGBT tdon tdoff tdoff tdon tf 0,10 tr tf 0,10 tr 0,01 0,01 0,00 0,00 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 50 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) Output inverter FWD 1,2 1,2 trr t rr( µs) t rr( µs) trr 1 1 0,8 0,8 trr 0,6 trr 0,6 0,4 0,4 0,2 0,2 0 0 0 At Tj = V CE = V GE = R gon = 20 25/150 600 ±15 16 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR= IF= V GE = °C V V Ω 9 15 25/150 600 50 ±15 30 45 60 R gon ( Ω ) 75 °C V A V 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Output inverter FWD 16 Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Output inverter FWD 16 Qrr( µC) Qrr( µC) Qrr 12 12 Qrr 8 8 Qrr 4 4 Qrr 0 0 0 At At Tj = V CE = V GE = R gon = 20 25/150 600 ±15 16 40 60 80 I C (A) 0 100 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Output inverter FWD 15 25/150 600 50 ±15 30 45 60 R gon ( Ω) 75 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) Output inverter FWD 100 IrrM (A) IrrM (A) 100 80 80 60 60 40 40 IRRM IRRM 20 20 IRRM 0 0 0 At Tj = V CE = V GE = R gon = 20 25/150 600 ±15 16 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR= IF= V GE = °C V V Ω 10 15 25/150 600 50 ±15 30 45 60 R gon ( Ω ) 75 °C V A V 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) direc / dt (A/ µs) direc / dt (A/µ s) 2000 dI0/dt dIrec/dt Output inverter FWD 10000 dI0/dt dIrec/dt 8000 1500 6000 1000 4000 500 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 25/150 600 ±15 16 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 15 25/150 600 50 ±15 30 45 R gon ( Ω ) 75 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter FWD 100 ZthJH (K/W) Zth-JH (K/W) 100 60 10-1 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 0,66 K/W K/W 10-5 10-4 At D = R thJH = tp/T 0,83 10-3 K/W IGBT thermal model values FWD thermal model values R (K/W) 0,05 0,08 0,20 0,25 0,04 0,03 R (K/W) 0,03 0,06 0,15 0,35 0,12 0,08 0,03 Tau (s) 4,1E+00 6,8E-01 1,1E-01 3,2E-02 4,9E-03 4,9E-04 copyright Vincotech 11 10-2 10-1 100 t p (s) 10110 K/W Tau (s) 6,5E+00 1,1E+00 1,6E-01 3,9E-02 1,1E-02 1,8E-03 4,4E-04 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 90 IC (A) Ptot (W) 300 Output inverter IGBT 250 75 200 60 150 45 100 30 50 15 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 80 IF (A) Ptot (W) 250 150 200 60 150 40 100 20 50 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 12 50 175 100 150 T h ( o C) 200 °C 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Figure 26 Reverse bias safe operating area IGBT I C = f(V CE) 3 120 IC (A) IC (A) 10 Output inverter IGBT IC MAX 100 10 Ic 80 1 100uS Ic CHIP 10uS MODULE 10 2 60 1mS 100 VCE MAX 40 10mS 100mS 20 DC 10-1 0 0 100 101 102 103 V GE = Tj = At Tj = R gon = R goff = single pulse 80 ºC ±15 V T jmax ºC copyright Vincotech 400 600 800 1000 1200 1400 V CE (V) At D = Th = 200 V CE (V) 13 150 °C 16 Ω 16 Ω 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Brake Figure 2 Typical output characteristics I C = f(V CE) 100 100 IC (A) Brake IGBT IC (A) Figure 1 Typical output characteristics I C = f(V CE) 80 80 60 60 40 40 20 20 Brake IGBT 0 0 0 At tp = Tj = V GE from 1 2 3 V CE (V) 4 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Brake IGBT 1 2 3 4 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Brake FWD 75 IF (A) IC (A) 35 V CE (V) 30 60 25 45 20 15 30 10 15 5 0 0 0 At Tj = tp = V CE = 2 4 6 8 10 0 V GE (V) 12 1 2 3 4 V F (V) 5 At 25/150 250 10 copyright Vincotech °C µs V tp = 14 250 µs 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Brake Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 9 Brake IGBT 10 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Eon 7,5 Eon 8 6 6 Eoff Eon Eon 4,5 Eoff 4 3 Eoff 2 Eoff 1,5 0 0 0 10 20 30 40 50 60 I C (A) 0 70 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 16 32 48 64 RG (Ω ) 80 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 5 Brake FWD E (mWs) E (mWs) 5 4 4 3 3 Erec 2 2 Erec 1 1 Erec 0 0 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 15 30 45 60 RG (Ω ) 75 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 50 A 15 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Brake Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) t ( µs) 1 t ( µs) 1 Brake IGBT tdoff tdoff tdon tf 0,1 tr 0,1 tdon tf tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 32 48 RG (Ω ) 64 80 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 50 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake FWD ZthJH (K/W) 101 ZthJH (K/W) 101 10 16 100 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10-2 10-5 At Psx7p R thJH = 10-4 10-3 D = 0,63 copyright Vincotech 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10110 10-5 tp/T At Psx7p R thJH = K/W 16 10-4 10-3 D = 1,37 10-2 10-1 100 t p (s) 101 10 tp/T K/W 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Brake Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake IGBT Figure 14 Collector current as a function of heatsink temperature I C = f(T h) 70 IC (A) Ptot (W) 300 Brake IGBT 60 250 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = V GE = ºC Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake FWD 50 175 15 100 150 T h ( o C) 200 ºC V Figure 16 Forward current as a function of heatsink temperature I F = f(T h) Brake FWD 40 IF (A) Ptot (W) 150 125 30 100 75 20 50 10 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Brake Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage I F = f(V F) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake inverse diode IF (A) ZthJC (K/W) 30 25 20 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 5 0 0 At Tj = tp = 1 25/150 250 2 3 V F (V) 4 t p (s) At Psx7p R thJH = °C µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake inverse diode D = 1,38 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Brake inverse diode 20 IF (A) Ptot (W) 140 10 tp/T 120 15 100 80 10 60 40 5 20 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 18 50 150 100 150 T h ( o C) 200 ºC 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) Rectifier diode 100 IF (A) ZthJC (K/W) 150 125 100 10-1 75 50 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 25 0 0 At Tj = tp = 0,5 25/125 250 1 1,5 V F (V) 10-3 2 °C µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Rectifier diode 10-5 10-4 At D = R thJH = tp/T 10-3 0,66 10-2 10-1 t p (s) 10110 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Rectifier diode 90 Ptot (W) IF (A) 240 100 80 200 70 160 60 50 120 40 80 30 20 40 10 0 0 0 At Tj = 25 150 copyright Vincotech 50 75 100 125 T ( o C) h 150 0 At Tj = ºC 19 30 150 60 90 120 T h ( o C) 150 ºC 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 Thermistor R (Ω) R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Switching Definitions Output Inverter General Tj R gon R goff conditions = 150 °C = 16 Ω = 16 Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 200 % tdoff % IC VCE 100 VGE 90% 150 VCE 90% 75 VCE 100 IC VGE 50 tdon tEoff 50 25 VGE10% IC 1% tEon VGE -25 -0,2 VCE 3% IC10% 0 0 -50 0 0,2 0,4 0,6 0,8 2,9 3,1 3,3 3,5 time(us) time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 600 50 0,21 0,70 V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 50 0,10 0,38 3,7 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 125 200 fitted % VCE Ic % IC 100 150 IC 90% 75 VCE 100 IC 60% IC 90% 50 tr IC 40% 50 25 IC10% IC 10% 0 0 tf -25 0 0,1 V C (100%) = I C (100%) = tf = copyright Vincotech 0,2 600 50 0,09 0,3 time (us) -50 3,05 0,4 V A µs V C (100%) = I C (100%) = tr = 21 3,1 3,15 600 50 0,03 3,2 3,25 time(us) 3,3 V A µs 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 200 125 % % Pon 100 Poff 150 Eoff 75 Eon 100 50 50 25 IC 1% VCE 3% VGE 10% VGE 90% 0 tEon 0 tEoff -25 -0,2 0 0,2 0,4 0,6 -50 2,95 0,8 3,05 3,15 3,25 time (us) P off (100%) = E off (100%) = t E off = 30,14 4,09 0,70 3,35 3,45 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = 30,14 4,39 0,38 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 fitted Vd 0 IRRM10% -50 IRRM90% IRRM100% -100 -150 -200 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 600 50 -45 0,73 V A A µs 22 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Id Qrr 100 Erec 100 tQrr 50 75 0 50 -50 25 tErec Prec -100 0 -150 -25 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 4,5 2,9 3,1 3,3 3,5 3,7 time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 50 10,81 2,00 A µC µs P rec (100%) = E rec (100%) = t E rec = 23 30,14 5,14 2,00 3,9 4,1 4,3 time(us) 4,5 kW mJ µs 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Switching Definitions Brake General Tj R gon R goff conditions = 150 °C = 16 Ω = 16 Ω Figure 1 IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 250 tdoff % % 200 100 VGE 90% IC VCE 90% 150 75 IC VCE 100 50 VGE tEoff tdon 50 25 VGE IC 1% VCE VGE10% VCE3% IC10% 0 0 tEon -50 -25 -0,2 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,4 -15 15 600 35 0,27 0,61 0,6 time (us) 2,9 0,8 3 3,1 3,3 3,4 3,5 time(us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Turn-off Switching Waveforms & definition of t f 3,2 IGBT -15 15 600 35 0,09 0,33 V V V A µs µs Figure 4 Turn-on Switching Waveforms & definition of t r 125 IGBT 250 % VCE fitted IC % 100 200 Ic Ic 90% 75 150 Ic 60% VCE 50 100 Ic 40% IC90% tr 25 50 Ic10% 0 IC10% 0 tf -25 -50 0 0,1 0,2 0,3 0,4 0,5 0,6 3 time (us) V C (100%) = I C (100%) = tf = copyright Vincotech 600 35 0,13 3,1 3,2 3,3 3,4 time(us) V A µs V C (100%) = I C (100%) = tr = 24 600 35 0,03 V A µs 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Switching Definitions Brake Figure 5 Turn-off Switching Waveforms & definition of t Eoff IGBT Figure 6 Turn-on Switching Waveforms & definition of t Eon 120 IGBT 200 % Poff Pon % Eoff 100 150 80 Eon 100 60 40 50 Ic 1% 20 Uce 3% U ge10% U ge90% 0 tEon 0 tEoff -20 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 20,96 3,18 0,61 0,4 0,6 time (us) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Turn-off Switching Waveforms & definition of t rr 150 % -50 2,95 0,8 3,05 3,15 20,9586 2,92 0,33 3,25 3,35 time(us) 3,45 kW mJ µs FWD Id 100 trr 50 Ud fitted 0 IRRM10% -50 IRRM90% -100 IRRM100% -150 3 3,1 3,2 3,3 3,4 3,5 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 600 35 -39 0,42 V A A µs 25 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Switching Definitions Brake Figure 8 Turn-on Switching Waveforms & definition of t Qrr (t Qrr= integrating time for Q rr) FWD Figure 9 Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 FWD 125 % % Id Qrr 100 tErec tQint 50 Erec 100 75 0 50 -50 25 Prec -100 0 -150 -25 2,8 3 3,2 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,4 35 4,84 1,00 3,6 3,8 4 4,2 4,4 time(us) 2,8 A µC µs 3 P rec (100%) = E rec (100%) = t E rec = 26 3,2 3,4 20,96 1,98 1,00 3,6 3,8 4 4,2 4,4 time(us) kW mJ µs 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code V23990-P768-A60-PM V23990-P768-A60Y-PM V23990-P768-A60-/3/-PM V23990-P768-A60Y-/3/-PM without thermal paste with Solder pins without thermal paste with Press-fit pins with thermal paste and Solder pins with thermal paste and Press-fit pins in DataMatrix as P768-A60 P768-A60Y P768-A60 P768-A60Y in packaging barcode as P768-A60 P768-A60Y P768-A60-/3/ P768-A60Y-/3/ Outline Pin 1 2 Pin table X Y 71,2 0 68,7 0 DCDC- Pin 29 30 Pin table X Y 0 37,2 2,5 37,2 U U 3 4 5 6 7 8 9 10 66,2 63,7 55,95 53,45 55,95 53,45 48,4 45,9 0 0 0 0 2,8 2,8 0 0 DCDC+ DC+ DC+ DC+ DC+ DC+ DC+ 31 32 33 34 35 36 37 38 5 7,8 10,6 18,45 21,25 24,05 26,55 29,05 37,2 37,2 37,2 37,2 37,2 37,2 37,2 37,2 U E G G E V V V 11 12 13 14 38,9 36,1 38,9 36,1 0 0 2,8 2,8 E DCG DC- 39 40 41 42 36,1 38,6 41,1 43,9 37,2 37,2 37,2 37,2 W W W E 15 31,3 0 DC- 43 46,7 37,2 G 16 17 18 19 28,5 31,3 28,5 19,3 0 2,8 2,8 0 E DCG R2 44 45 46 47 53,7 56,2 58,7 71,2 37,2 37,2 37,2 37,2 L1 L1 L1 L2 20 21 22 23 19,3 12,3 9,8 12,3 2,8 0 0 2,8 R1 DC+ DC+ DC+ 48 49 50 51 71,2 71,2 71,2 71,2 34,7 32,2 25,2 22,7 L2 L2 L3 L3 24 25 26 27 9,8 2,8 0 2,8 2,8 0 0 2,8 DC+ E DCG 52 53 54 55 71,2 71,2 68,7 71,2 20,2 12,8 12,8 5,6 L3 BrC BrC BrG 28 0 2,8 DC- 56 71,2 2,8 BrE Pinout Identification ID T1, T3, T5, T7, T9, T11 D9-D14 T13 D7 D8 D1-D6 T copyright Vincotech Component Voltage Current IGBT FWD IGBT FWD FWD 1200V 1200V 1200V 1200V 1200V 50A 50A 35A 25A 10A Function Inverter Switch Inverter Diode Brake Switch Brake Diode Brake Inverse Diode Rectifier NTC 1800V - 40A - Rectifier Diode Thermistor 27 Comment 23 Jun. 2015 / Revision 4 V23990-P768-A60-PM V23990-P768-A60Y-PM datasheet Package data Package data for flow 2 packages see vincotech.com website. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 28 23 Jun. 2015 / Revision 4