FZ06 / F0062PA200SA01 preliminary datasheet flow PHASE0 600V/200A Features flow0 housing ● Trench Fieldstop IGBT technology ● 2-clip housing in 12mm and 17mm height ● Compact and low inductance design 3 ● AlN substrate for improved performance Target Applications Schematic ● Motor Drive ● UPS Types ● FZ062PA200SA01 ● F0062PA200SA01 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 159 A 600 A 288 436 W ±20 V 5 360 μs V 175 °C 600 V 141 A 400 A 203 308 W 175 °C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Th=80°C Tc=80°C Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+150 °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,68 1,99 2,3 Inverter Transistor VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 200 tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,25 0 1000 Rgoff=4 Ω Rgon=4 Ω ±15 300 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 2 tr td(off) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,0032 209 222 32 38 267 301 82 98 1,57 2,56 5,8 7,66 ns mWs 12335 f=1MHz 0 Tj=25°C 25 769 pF 366 ±15 480 200 Tj=25°C Thermal foil thickness=76um Kunze foil KUALF5 1240 nC 0,33 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip Copyright by Vincotech 200 Rgoff=4 Ω 0 300 di(rec)max /dt Erec RthJH Thermal foil thickness=76um Kunze foil KUALF5 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,73 1,7 160,7 209,6 117 142,4 9,51 17,79 5385 4096 2,32 4,34 0,47 3 2,3 V A ns μC A/μs mWs K/W Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 600 IC (A) 600 500 500 400 400 300 300 200 200 100 100 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 350 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 350 μs 150 °C 7 V to 17 V in steps of 1 V Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 200 V CE (V) IC (A) IF (A) 600 Tj = 25°C 500 160 400 120 Tj = Tjmax-25°C 300 Tj = Tjmax-25°C 80 200 Tj = 25°C 40 100 0 0 0 At tp = VCE = 1 350 10 2 3 4 5 6 7 8 V GE 9 (V) 10 0 At tp = μs V Copyright by Vincotech 4 0,5 350 1 1,5 2 2,5 V F (V) 3 μs Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 15 E (mWs) E (mWs) 15 Eoff High T 12 Eon High T Eon Low T 12 Eoff High T Eoff Low T Eoff Low T 9 9 6 6 Eon High T 3 3 Eon Low T 0 0 0 100 200 300 I C (A) 0 400 With an inductive load at Tj = °C 25/150 VCE = 300 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 300 V VGE = ±15 V IC = 200 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter IGBT Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 8 E (mWs) 8 Erec 6 6 Tj = Tjmax -25°C Tj = Tjmax -25°C 4 4 Tj = 25°C Erec Erec Tj = 25°C 2 2 Erec 0 0 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 25/150 °C VCE = 300 V VGE = ±15 V Rgon = 2 Ω Copyright by Vincotech 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = 25/150 °C VCE = 300 V VGE = ±15 V IC = 200 A 5 Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdon tdoff tdon tf 0,1 tr 0,1 tf tr 0,01 0,01 0,001 0,001 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 4 8 12 16 RG(Ω ) 20 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V IC = 200 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,2 t rr( μs) t rr( μs) 0,6 trr Tj = Tjmax -25°C 0,5 trr 0,16 0,4 trr 0,12 Tj = Tjmax -25°C Tj = 25°C 0,3 0,08 trr 0,2 Tj = 25°C 0,04 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/150 300 ±15 2 200 300 I C (A) 0 400 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 4 25/150 300 200 ±15 8 12 16 R g on ( Ω ) 20 °C V A V Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FRED Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 30 Qrr( μC) Qrr( μC) 30 Qrr 25 25 20 20 Qrr Tj = Tjmax -25°C Tj = Tjmax -25°C 15 15 Qrr Tj = 25°C 10 10 Qrr Tj = 25°C 5 5 0 0 At 0 At Tj = VCE = VGE = Rgon = 100 25/150 300 ±15 2 200 300 I C (A) 400 0 4 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) Output inverter FRED 8 25/150 300 200 ±15 12 16 R g on ( Ω) 20 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 300 IrrM (A) IrrM (A) 300 IRRM 240 240 Tj = Tjmax -25°C Tj = Tjmax - 25°C IRRM 180 180 Tj = 25°C IRRM 120 120 Tj = 25°C IRRM 60 60 0 0 0 100 At Tj = VCE = VGE = Rgon = 25/150 300 ±15 2 200 300 I C (A) 0 400 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/150 300 200 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 10000 dI0/dt direc / dt (A/ μs) 10000 direc / dt (A/μ s) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) di0/dtHigh T dIrec/dt 8000 dIo/dtLow T dI0/dt dIrec/dt 8000 Tj = 25°C Tj = Tjmax - 25°C dIrec/dtLow T 6000 6000 4000 4000 dIrec/dtHigh T 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/150 300 ±15 2 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 300 200 ±15 8 12 20 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) Zth-JH (K/W) 100 R gon ( Ω ) 16 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,33 K/W 10-4 10-3 0,47 R (C/W) 0,01 0,07 0,12 0,09 0,02 0,02 R (C/W) 0,02 0,08 0,15 0,15 0,03 0,03 8 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 9,3E+00 1,4E+00 1,9E-01 4,7E-02 2,5E-03 2,9E-04 10-2 Tau (s) 9,4E+00 1,2E+00 1,5E-01 4,0E-02 3,0E-03 3,3E-04 Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 600 500 200 400 150 300 100 200 50 100 0 0 0 At Tj = 50 175 100 °C 150 T h ( o C) 0 200 At Tj = VGE = single heating overall heating Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 250 Ptot (W) IF (A) 400 150 320 200 240 150 160 100 80 50 0 0 0 At Tj = 50 175 100 °C Copyright by Vincotech 150 T h ( o C) 200 0 At Tj = single heating overall heating 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) VGE (V) IC (A) 22 10uS 20 100uS 18 3 10 DC 1mS 16 10mS 14 120V 100mS 480V 2 10 12 10 1 10 8 6 4 100 2 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 400 600 800 1000 1200 1400 1600 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 200 10 200 A Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 2Ω Rgon Rgoff = 2Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 210 % % 120 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC tdoff VCE 170 100 VGE 90% VCE 90% 80 130 VCE 60 IC 90 tEoff 40 VGE tdon 20 50 0 IC 1% VGE IC10% VGE10% 10 VCE 3% -20 tEon -40 -0,2 -0,05 0,1 0,25 0,4 0,55 -30 0,7 2,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 203 0,30 0,70 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3,1 3,25 -15 15 300 203 0,22 0,41 V V V A μs μs 3,4 3,7 time(us) Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,55 Turn-on Switching Waveforms & definition of tr 140 210 % fitted % 120 IC VCE 170 100 IC 90% 130 80 VCE IC 60% 60 IC90% 90 IC 40% 40 tr 50 20 IC10% 0 10 tf -20 0,15 0,2 0,25 0,3 0,35 0,4 -30 2,95 0,45 time (us) VC (100%) = IC (100%) = tf = 300 203 0,10 Copyright by Vincotech Ic IC10% 3,1 3,25 3,4 3,55 3,7 time(us) VC (100%) = IC (100%) = tr = V A μs 11 300 203 0,04 V A μs Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 % Poff % Eoff 100 100 80 80 60 60 Eon Pon 40 40 20 20 VGE 10% VCE 3% VGE 90% 0 0 tEoff tEon IC 1% -20 -0,2 -20 -0,05 0,1 0,25 0,4 0,55 0,7 2,9 0,85 3 3,1 3,2 3,3 3,4 3,5 Poff (100%) = Eoff (100%) = tEoff = 60,82 7,80 0,70 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 3,6 time(us) time (us) 60,82 2,63 0,41 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 120 % 15 Id 80 trr 10 fitted 40 5 Vd 0 0 IRRM10% -5 -40 -10 -80 IRRM90% -15 IRRM100% -20 -500 -120 0 500 1000 1500 2000 3,1 2500 3,2 3,3 3,4 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 300 203 9547,24 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 12 300 203 -211 0,14 3,5 3,6 time(us) 3,7 V A A μs Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 % Erec % Qrr 100 100 Id 80 50 tQrr tErec 60 0 40 -50 20 Prec -100 0 -20 -150 3,1 3,25 3,4 3,55 3,7 3,85 3,1 4 3,25 3,4 3,55 60,82 3,89 0,55 kW mJ μs time(us) Id (100%) = Qrr (100%) = tQrr = 203 16,33 0,55 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A μC μs 13 3,7 3,85 time(us) 4 Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste 12mm housing without thermal paste 17mm housing 10-FZ062PA200SA01-P996F18 10-F0062PA200SA01-P996F19 P996F18 P996F19 P996F18 P996F19 Outline Pinout Copyright by Vincotech 14 Revision: 1 FZ06 / F0062PA200SA01 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 1