80-M012PNB008SC-K619C41 MiniSKiiP®0 PIM 1200V/8A MiniSKiiP®0 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT's for low saturation losses ● Optional 2- and 3-leg rectifier Target Applications Schematic ● Industrial Drives ● Embedded Drives Types 80-M012PNB008SC-K619C41, 3-leg rectifier Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 25 25 A 220 A 240 A2s 46 70 W Tjmax 150 °C VCE 1200 V 12 12 A tp limited by Tjmax 24 A VCE ≤ 1200V, Tj ≤ Top max 24 A D7,D8,D9,D10,D11,D12 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 51 77 W ±20 V 10 800 µs V 175 °C Revision: 2.1 80-M012PNB008SC-K619C41 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 10 10 A D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax 16 Th=80°C Tc=80°C A 38 57 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2.1 80-M012PNB008SC-K619C41 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,43 1,44 0,92 0,79 20,29 26,11 1,64 D7,D8,D9,D10,D11,D12 Forward voltage VF 25 Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mΩ 0,05 Thermal grease thickness≤50um λ = 1 W/mK V 1,5 mA K/W T1,T2,T3,T4,T5,T6 VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Collector-emitter cut-off current incl. Diode Turn-on delay time Rise time Turn-off delay time Fall time 8 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,68 1,93 2,30 2,18 0,2 2 120 Rgoff=32 Ω Rgon=32 Ω 600 ±15 8 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,0003 61,2 60,8 29,2 29,8 170,8 240,2 59,8 119,6 0,46 0,75 0,41 0,73 ns mWs 490 f=1MHz 0 50 Tj=25°C 25 pF 30 Tj=25°C ±15 Thermal grease thickness≤50um λ = 1 W/mK 55 nC 1,8 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 8 IRRM trr Qrr Rgon=32 Ω ±15 600 di(rec)max /dt Erec RthJH 8 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,57 2,49 4,85 6,62 257,7 477,1 0,50 1,31 64 47 0,19 0,56 Thermal grease thickness≤50um λ = 1 W/mK V A ns µC A/µs mWs 2,5 K/W Thermistor Rated resistance Tr=25°C R Deviation of R ∆R/R R100 R100 R25=1000 Ω R100=1670 Ω Tr=25°C Tr=100°C Ω 1000 -3 -2 3 2 % Tr=25°C 1670,313 Ω 0,76 % /K A-value Temperature coefficient B(25/50) Tol. % Tr=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % Tr=25°C 1,731*10-5 1/K² Vincotech NTC Reference Copyright by Vincotech E 3 Revision: 2.1 80-M012PNB008SC-K619C41 T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 1 tp = Tj = VGE from 2 3 V CE (V) 4 5 0 tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 25 IF (A) IC (A) 9 4 Tj = 25°C 8 20 6 15 Tj = Tjmax-25°C 5 10 Tj = 25°C 3 5 2 Tj = Tjmax-25°C 0 0 0 tp = VCE = 2 4 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0,0 tp = 4 1,0 250 2,0 3,0 4,0 V F (V) 5,0 µs Revision: 2.1 80-M012PNB008SC-K619C41 T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 2,0 E (mWs) 2,0 Eon High T 1,6 1,6 Eon High T Eoff High T 1,2 1,2 Eon Low T Eon Low T 0,8 0,8 Eoff High T 0,4 Eoff Low T Eoff Low T 0,4 0,0 0,0 0 4 inductive load Tj = 25/150 VCE = 600 VGE = ±15 Rgon = 32 Rgoff = 32 8 12 I C (A) 16 0 32 inductive load Tj = 25/150 VCE = 600 VGE = ±15 IC = 8 °C V V Ω Ω Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD 64 96 RG( Ω ) 160 °C V V A D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,0 E (mWs) E (mWs) 1,0 128 0,8 0,8 Erec Tj = Tjmax -25°C 0,6 0,6 0,4 Erec 0,4 Erec Tj = Tjmax -25°C Tj = 25°C 0,2 Erec 0,2 Tj = 25°C 0,0 0,0 0 4 inductive load Tj = 25/150 VCE = 600 VGE = ±15 Rgon = 32 8 12 I C (A) 16 0 °C V V Ω Copyright by Vincotech 32 inductive load Tj = 25/150 VCE = 600 VGE = ±15 IC = 8 5 64 96 128 RG( Ω ) 160 °C V V A Revision: 2.1 80-M012PNB008SC-K619C41 T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1,00 t ( µs) 1,00 tdoff 0,10 tdoff tdon tf 0,10 tf tr tdon tr 0,01 0,01 0,00 0,00 0 4 inductive load Tj = 150 VCE = 600 VGE = ±15 Rgon = 32 Rgoff = 32 8 12 I C (A) 16 0 32 inductive load Tj = 150 VCE = 600 VGE = ±15 IC = 8 °C V V Ω Ω D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) 64 96 160 °C V V A D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 RG( Ω ) 128 0,8 trr t rr( µs) t rr( µs) trr 0,6 0,6 Tj = Tjmax -25°C Tj = Tjmax -25°C trr trr 0,4 0,4 0,2 0,2 Tj = 25°C Tj = 25°C 0,0 0,0 0 4 Tj = VCE = VGE = Rgon = 25/150 600 ±15 32 8 12 I C (A) 16 °C V V Ω Copyright by Vincotech 6 0 32 Tj = VR = IF = VGE = 25/150 600 8 ±15 64 96 128 R g on ( Ω ) 160 °C V A V Revision: 2.1 80-M012PNB008SC-K619C41 T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 2,0 Qrr( µC) 2,0 Qrr 1,6 1,6 Tj = Tjmax -25°C Qrr 1,2 1,2 Tj = Tjmax -25°C Qrr 0,8 0,8 Tj = 25°C Qrr 0,4 0,4 Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 4 25/150 600 ±15 32 8 12 I C (A) 16 0 Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6 FWD 32 25/150 600 8 ±15 64 96 128 R g on ( Ω) 160 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 12 IrrM (A) IrrM (A) 12 Tj = Tjmax - 25°C 9 9 Tj = Tjmax -25°C 6 6 Tj = 25°C IRRM IRRM Tj = 25°C IRRM 3 3 0 0 0 4 Tj = VCE = VGE = Rgon = 25/150 600 ±15 32 8 12 I C (A) 16 °C V V Ω Copyright by Vincotech 7 0 32 Tj = VR = IF = VGE = 25/150 600 8 ±15 64 96 128 R gon ( Ω ) 160 °C V A V Revision: 2.1 80-M012PNB008SC-K619C41 T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 400 1500 dI0/dt direc / dt (A/ µs) direc / dt (A/µ s) D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 320 dIrec/dt 1200 dIo/dtLow T 900 240 600 160 di0/dtHigh T 300 80 dIrec/dtLow T dIrec/dtHigh T 0 0 0 Tj = VCE = VGE = Rgon = 4 25/150 600 ±15 32 8 12 I C (A) 0 16 Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 32 25/150 600 8 ±15 64 96 R gon ( Ω ) 160 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 128 10 0 10 -1 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 10-5 D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) -2 10-5 10110 tp / T 1,8 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D= RthJH = K/W 10-4 10-2 10-1 100 t p (s) 10110 tp / T 2,5 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,05 0,15 0,66 0,45 0,29 0,13 R (C/W) 0,06 0,33 1,08 0,56 0,39 0,11 Tau (s) 4,8E+00 5,9E-01 1,2E-01 3,8E-02 8,5E-03 1,7E-03 Copyright by Vincotech 10-3 8 Tau (s) 6,5E+00 2,9E-01 5,6E-02 1,1E-02 1,2E-03 2,9E-04 Revision: 2.1 80-M012PNB008SC-K619C41 T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 14 IC (A) Ptot (W) 100 12 80 10 60 8 6 40 4 20 2 0 0 0 Tj = 50 175 100 150 T h ( o C) 200 0 Tj = VGE = °C D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 12 IF (A) Ptot (W) 80 150 10 60 8 40 6 4 20 2 0 0 0 Tj = 50 175 100 150 T h ( o C) 200 0 Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 80-M012PNB008SC-K619C41 T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 102 IC (A) VGE (V) 20 240V 10uS 16 101 960V 12 100uS 10 0 8 1mS 10mS 10-1 4 100mS DC 10-2 0 100 D= Th = VGE = 101 V CE (V) 102 103 0 IC = single pulse 80 ºC ±15 V Tjmax ºC Tj = T1,T2,T3,T4,T5,T6 IGBT Figure 27 10 20 8 30 40 60 Q g (nC) 70 A T1,T2,T3,T4,T5,T6 IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 50 Typical short circuit collector current as a function of gate-emitter voltage Isc = f(VGE) 250 IC(sc) tsc (µS) 17,5 15 200 12,5 150 10 7,5 100 5 50 2,5 0 0 12 14 16 18 V GE (V) 12 20 14 16 VCE = 1200 V VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 10 18 V GE (V) 20 Revision: 2.1 80-M012PNB008SC-K619C41 D7,D8,D9,D10,D11,D12 D7,D8,D9,D10,D11,D12 diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 75 1 ZthJC (K/W) IF (A) 10 D7,D8,D9,D10,D11,D12 diode Tj = 25°C 60 Tj = Tjmax-25°C 100 45 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 10-1 15 0 10-2 0,0 tp = 0,5 1,0 250 µs 1,5 2,0 2,5 V F (V) 3,0 10-5 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D7,D8,D9,D10,D11,D12 diode 10-4 10-3 10-2 100 t p (s) 101 10 tp / T 1,5 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D7,D8,D9,D10,D11,D12 diode 30 Ptot (W) IF (A) 120 10-1 25 90 20 60 15 10 30 5 0 0 0 Tj = 30 150 60 90 o 120 T h ( C) 150 0 Tj = ºC Copyright by Vincotech 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 2.1 80-M012PNB008SC-K619C41 Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) Thermistor Equation of PTC resistance temperature dependency PTC-typical temperature characteristic R(T) = 1000 Ω[1+ A*(T-25°C) +B*(T-25°C) 2] R/Ω 2000 [Ω] 1800 1600 1400 1200 1000 25 45 65 Copyright by Vincotech 85 105 T (°C) 125 12 Revision: 2.1 80-M012PNB008SC-K619C41 Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 32 Ω Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 140 % % 120 IC tdoff 200 VCE 100 VGE 90% VCE 90% 150 80 VCE IC 100 60 tEoff tdon 40 VGE 50 20 IC 1% IC10% VGE10% 0 VCE 3% 0 VGE tEon -50 -20 -0,2 -0,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,25 -15 15 600 8 0,24 0,63 V V V A µs µs 0,4 0,55 time (us) 2,8 0,7 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Output inverter IGBT Figure 3 3,1 -15 15 600 8 0,06 0,29 3,2 3,3 time(us) 3,4 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 140 200 fitted % 2,9 Ic % 120 VCE 150 100 IC IC 90% 80 100 60 IC90% VCE IC 60% tr 40 50 IC 40% 20 IC10% 0 IC10% 0 tf -20 0,05 -50 0,1 0,15 0,2 0,25 0,3 0,35 0,4 3 3,05 3,1 3,15 time (us) VC (100%) = IC (100%) = tf = 600 8 0,12 Copyright by Vincotech 3,2 3,25 time(us) VC (100%) = IC (100%) = tr = V A µs 13 600 8 0,03 V A µs Revision: 2.1 80-M012PNB008SC-K619C41 Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff Pon % Eoff 100 150 80 120 Eon 60 90 40 60 20 30 VGE 90% IC 1% 0 tEoff -20 -0,2 tEon -30 -0,05 0,1 0,25 0,4 0,55 0,7 2,9 time (us) Poff (100%) = Eoff (100%) = tEoff = VCE 3% VGE 10% 0 4,83 0,74 0,63 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3,1 4,83 0,75 0,29 3,2 3,3 time(us) 3,4 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 fitted Vd 0 IRRM10% -40 IRRM90% -80 -120 2,95 IRRM100% 3,1 3,25 3,4 3,55 3,7 3,85 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 14 600 8 -7 0,48 V A A µs Revision: 2.1 80-M012PNB008SC-K619C41 Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Id 100 Qrr 100 80 tErec tQrr 50 60 40 0 20 Prec -50 0 -100 -20 2,9 Id (100%) = Qrr (100%) = tQrr = 3,1 3,3 8 1,31 1,00 Copyright by Vincotech 3,5 3,7 3,9 4,1 time(us) 4,3 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 4,83 0,56 1,00 kW mJ µs Revision: 2.1 80-M012PNB008SC-K619C41 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as with 3-leg rectifier, std lid (black V23990-K02-T-PM) with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12 with 3-leg rectifier, thin lid (white V23990-K03-T-PM) with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12 80-M012PNB008SC-K619C41-/0A/ 80-M012PNB008SC-K619C41-/1A/ 80-M012PNB008SC-K619C41-/0B/ 80-M012PNB008SC-K619C41-/1B/ K619C41 K619C41 K619C41 K619C41 K619C41 K619C41 K619C41 K619C41 Outline Pinout Copyright by Vincotech 16 Revision: 2.1 80-M012PNB008SC-K619C41 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 2.1