10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet fastPHASE0 1200V/100A Features flow0 housing ● Fast IGBT technology ● 2-clip housing in 12mm and 17mm height ● Compact and low inductance design 2 ● AlN substrate for improved performance Target Applications Schematic ● Power Generation ● UPS ● Welding Types ● 10-FZ122PA100FC01-P999F58 ● 10-F0122PA100FC01-P999F59 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 70 93 A 300 A 267 405 W ±20 V 10 800 μs V 150 °C 1200 V 75 101 A 200 A 119 181 W 150 °C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 4.5 5.5 6.5 2.5 3.47 4.21 4 Inverter Transistor VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0.0008 100 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 700 Rgoff=4 Ω Rgon=4 Ω ±15 600 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω 5 tr td(off) 0.035 V 202 211 36 38 265 300 12 27 7.07 9.96 2.48 3.81 ns mWs 6500 f=1MHz 0 Tj=25°C 25 1000 pF 500 Tj=25°C ±15 nC 1100 Thermal foil thickness=76um Kunze foil KU-ALF5 0.26 K/W 0.17 Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Rgoff=4 Ω 600 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 100 Thermal foil thickness=76um Kunze foil KU-ALF5 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1.8 1.78 108.4 128.4 274.8 313 9.71 16.39 2827 1148 3.61 6.19 2.3 V A ns μC A/μs mWs 0.59 K/W 0.39 3 Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 5 7 V CE (V) 8 6 0 At tp = Tj = VGE from 350 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 350 μs 125 °C 7 V to 17 V in steps of 1 V Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 7 V CE (V) 8 6 IC (A) IF (A) 300 Tj = 25°C Tj = Tjmax-25°C 250 80 200 60 150 40 100 Tj = Tjmax-25°C Tj = 25°C 20 50 0 0 0 At tp = VCE = 2 350 10 4 6 8 10 V GE (V) 12 0 At tp = μs V Copyright by Vincotech 4 0.8 350 1.6 2.4 3.2 V F (V) 4 μs Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 25 E (mWs) 25 Eon High T 20 20 Eon High T Eon Low T 15 15 10 10 Eon Low T Eoff High T Eoff High T 5 5 Eoff Low T Eoff Low T 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V IC = 100 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 10 E (mWs) 10 Erec 8 8 Tj = Tjmax -25°C 6 Tj = Tjmax -25°C 6 Erec Erec Tj = 25°C 4 4 Tj = 25°C Erec 2 2 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 100 A 5 Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdoff tdon tdon 0.1 0.1 tr tf tf tr 0.01 0.01 0.001 0.001 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω ) 20 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 100 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.8 t rr( μs) t rr( μs) 0.8 0.6 0.6 trr Tj = Tjmax -25°C trr Tj = Tjmax -25°C trr 0.4 0.4 trr Tj = 25°C Tj = 25°C 0.2 0.2 0 0 0 40 At Tj = VCE = VGE = Rgon = 25/125 600 ±15 4 80 120 160 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 4 25/125 600 100 ±15 8 12 16 R g on ( Ω ) 20 °C V A V Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Output Inverter Output inverter FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 30 Qrr( μC) Qrr( μC) 30 25 25 Qrr 20 20 Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C 15 15 Qrr Tj = 25°C 10 10 Qrr Tj = 25°C 5 5 0 0 At 0 At Tj = VCE = VGE = Rgon = 40 25/125 600 ±15 4 80 120 160 I C (A) 200 0 4 At Tj = VR = IF = VGE = °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 600 100 ±15 12 16 R g on ( Ω) 20 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 200 150 Tj = Tjmax -25°C IrrM (A) IrrM (A) IRRM IRRM 120 160 90 120 Tj = Tjmax - 25°C Tj = 25°C IRRM Tj = 25°C 80 60 IRRM 40 30 0 0 0 40 At Tj = VCE = VGE = Rgon = 25/125 600 ±15 4 80 120 160 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/125 600 100 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 7000 direc / dt (A/ μs) direc / dt (A/μ s) 6000 dI0/dt dIrec/dt 5000 Tj = 25°C dI0/dt dIrec/dt 6000 5000 4000 dIo/dtLow T di0/dtHigh T 4000 dIrec/dtLow T 3000 3000 2000 2000 1000 dIrec/dtHigh T Tj = Tjmax - 25°C 1000 dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/125 600 ±15 4 80 120 I C (A) 160 0 200 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 600 100 ±15 8 12 20 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) Zth-JH (K/W) 100 R gon ( Ω ) 16 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0.26 K/W 10-4 10-3 0.59 R (C/W) 0.01 0.06 0.10 0.07 0.02 0.00 R (C/W) 0.02 0.08 0.22 0.18 0.05 0.04 8 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 9.5E+00 1.4E+00 2.2E-01 5.9E-02 2.6E-03 4.6E-04 10-2 Tau (s) 9.9E+00 1.2E+00 1.4E-01 3.8E-02 3.4E-03 4.7E-04 Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 120 IC (A) Ptot (W) 600 500 100 400 80 300 60 200 40 100 20 0 0 0 At Tj = 50 150 100 °C 150 T h ( o C) 200 0 At Tj = VGE = single heating overall heating Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 T h ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 IF (A) Ptot (W) 300 150 250 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 150 100 °C Copyright by Vincotech 150 T h ( o C) 200 0 At Tj = single heating overall heating 9 50 150 100 150 T h ( o C) 200 °C Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Output Inverter Output inverter IGBT IC (A) Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) 100uS 10 3 DC 10 100mS 10mS 1mS 2 10 10 1 0 10-1 0 10 101 102 103 V CE (V) At D= Th = VGE = Tj = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 10 Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 250 % % 120 tdoff Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) VCE IC 210 100 VGE 90% VCE 90% 170 IC 130 80 60 VCE tEoff 40 90 VGE tdon 20 50 0 IC 1% VGE -40 -0.2 -0.05 0.1 0.25 0.4 0.55 -15 15 600 101 0.30 0.54 2.8 2.95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 VCE 3% tEon -30 0.7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = IC10% VGE10% 10 -20 3.1 3.25 -15 15 600 101 0.21 0.56 V V V A μs μs 3.4 3.7 time(us) Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3.55 Turn-on Switching Waveforms & definition of tr 140 250 % fitted % 120 IC 210 VCE 100 170 IC 90% 80 130 VCE IC 60% 60 IC90% 90 IC 40% 40 tr 50 20 IC10% 0 Ic tf -20 0.15 0.2 0.25 0.3 0.35 -30 2.95 0.4 time (us) VC (100%) = IC (100%) = tf = 600 101 0.03 Copyright by Vincotech IC10% 10 3.05 3.15 3.25 3.35 3.45 3.55 time(us) VC (100%) = IC (100%) = tr = V A μs 11 600 101 0.04 V A μs Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Pon % Eoff Poff 100 150 80 120 60 90 40 60 20 30 Eon VGE 10% VCE 3% VGE 90% 0 tEon 0 tEoff IC 1% -20 -0.2 -30 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 2.9 0.7 3 3.1 3.2 3.3 3.4 3.5 3.6 Poff (100%) = Eoff (100%) = tEoff = 60.58 3.87 0.54 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 3.7 time(us) time (us) 60.58 10.05 0.56 kW mJ μs Output inverter FRED Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 120 % 15 Id 80 trr 10 40 5 0 Vd 0 IRRM10% -40 -5 -80 -10 IRRM90% -120 -15 IRRM100% fitted -20 -250 -160 0 250 500 750 1000 3.1 1250 3.2 3.3 3.4 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 600 101 1032.03 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 12 600 101 -128 0.31 3.5 3.6 time(us) 3.7 V A A μs Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 % Erec % Qrr 100 100 Id 80 50 tQrr tErec 60 0 40 -50 20 Prec -100 0 -20 -150 3 Id (100%) = Qrr (100%) = tQrr = 3.2 3.4 3.6 101 16.09 0.61 A μC μs Copyright by Vincotech 3.8 4 time(us) 3 4.2 Prec (100%) = Erec (100%) = tErec = 13 3.2 3.4 3.6 60.58 5.99 0.61 kW mJ μs 3.8 4 4.2 time(us) Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste 12mm housing without thermal paste 17mm housing 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 P999F58 P999F59 P999F58 P999F59 Outline Pinout Copyright by Vincotech 14 Revision: 1 10-FZ122PA100FC01-P999F58 10-F0122PA100FC01-P999F59 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 1