10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet flowMNPC 1 1200V/160A Features flow1 12mm housing ● mixed voltage NPC topology ● reactive power capability ● low inductance layout ● Split output ● enhanced LVRT capability Target Applications Schematic ● solar inverter ● UPS ● Active frontend Types ● 10-FY12NMA160SH01-M820F18 ● 10-PY12NMA160SH01-M820F18Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Halfbridge IGBT Inverse Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV DC current Th=80°C Tc=80°C 14 19 A Repetitive peak forward current IFSM tp=10ms Tj=25°C 14 A Tj=Tjmax Th=80°C Tc=80°C 31 47 W Tjmax 150 °C VCES 1200 V 117 151 A tp limited by Tjmax 480 A Tj≤150°C VCE<=VCES 480 A 260 394 W ±20 V 10 800 µs V 175 °C Power dissipation per Diode Maximum Junction Temperature Ptot Halfbridge IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 700 V NP Diode Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature VRRM Tj=25°C IF Tj=Tjmax Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 53 72 63 96 A W Tjmax 150 °C VCES 650 V 76 101 A tp limited by Tjmax 450 A Tj≤150°C VCE<=VCES 450 A NP IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 96 145 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 650 V 15 21 A 30 A 28 42 W Tjmax 175 °C VRRM 1200 V 31 46 A 140 A 61 92 W 150 °C Tj≤150°C VGE=15V NP Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Halfbridge Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 630 V DC link Capacitor Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 8,06 mm Insulation Properties Insulation voltage copyright by Vincotech Vis t=2s DC voltage 3 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,97 1,65 2,7 Halfbridge IGBT Inverse Diode Forward voltage VF Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 7 1200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,25 Thermal grease thickness≤50um λ = 1 W/mK 2,24 V mA K/W Halfbridge IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,006 160 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 5,80 6,5 1 2,02 2,37 2,70 0,25 480 Rgoff=4 Ω Rgon=4 Ω ±15 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 127 129 26 30 219 274 45 59 1,52 2,60 2,69 4,19 ns mWs 9200 f=1MHz 25 0 Tj=25°C pF 600 540 ±15 960 160 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 740 nC 0,37 K/W NP Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF Ir 700 IRRM trr Qrr Rgon=4 Ω ±15 350 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright by Vincotech 150 Thermal grease thickness≤50um λ = 1 W/mK 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 2,00 1,88 50 86 113 57 109 2,93 7,16 3683 1519 0,53 1,38 1,11 4 2,6 V µA A ns µC A/µs mWs K/W Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,48 1,62 1,85 NP IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,008 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss RthJH 0,05 700 Rgoff=4 Ω Rgon=4 Ω 700 ±15 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 150 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 170 171 29 31 235 265 54 71 1,29 1,70 2,88 3,95 ns mWs 9240 f=1MHz 25 0 276 Tj=25°C pF 274 Thermal grease thickness≤50um λ = 1 W/mK 0,99 K/W NP Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 15 Tj=25°C Tj=125°C 1,23 Thermal grease thickness≤50um λ = 1 W/mK 1,89 1,79 2,20 3,43 V K/W Halfbridge Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 150 Ir 1200 IRRM trr Qrr Rgon=4 Ω ±15 700 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,46 2,07 3,5 200 83 116 113 136 6,17 12,86 2952 3586 1,66 3,63 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,15 K/W DC link Capacitor C value C 80 100 120 nF Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant Ω 21511 -4,5 +4,5 % T=25°C 210 mW T=25°C 3,5 mW/K B-value B(25/50) T=25°C 3884 K B-value B(25/100) T=25°C 3964 K Vincotech NTC Reference copyright by Vincotech F 5 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 1 2 3 4 5 0 1 2 3 4 VCE (V) At tp = Tj = VGE from At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 5 VCE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IC (A) IF (A) 100 450 375 80 300 60 225 Tj = Tjmax-25°C 40 150 Tj = Tjmax-25°C 20 75 Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 10 VGE (V) 12 0 1 2 3 4 VF (V) At tp = µs V 6 250 µs Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 8 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 7 7 Eon High T Eoff High T 6 6 Eon High T 5 Eon Low T 5 Eon Low T Eoff High T 4 4 Eoff Low T 3 3 2 2 1 1 0 0 20 40 60 80 100 120 140 160 180 Eoff Low T 0 200 0 4 8 12 16 IC(A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 20 RG(Ω) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = A 100 FWD Figure 7 Typical reverse recovery energy loss FWD Figure 8 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) as a function of gate resistor Erec = f(RG) E (mWs) 2 E (mWs) 2,5 Erec High T 2 1,5 1,5 1 1 Erec Low T Erec High T 0,5 0,5 Erec Low T 0 0 0 20 40 60 80 100 120 140 160 180 IC(A) 0 200 8 12 16 20 RG(Ω) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 100 A 7 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdon tdoff tdon 0,10 tr 0,10 tf tf tr 0,01 0,01 0,00 0,00 0 20 40 60 80 100 120 140 160 180 IC(A) 200 0 4 8 12 16 20 RG(Ω) With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = A 100 FWD Figure 11 Typical reverse recovery time as a FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,15 t rr(ms) trr High T 0,25 trr High T 0,20 0,12 trr Low T 0,15 0,09 trr Low T 0,06 0,10 0,03 0,05 0,00 0 0 At Tj = VCE = VGE = Rgon = 20 40 25/125 350 ±15 4 copyright by Vincotech 60 80 100 120 140 160 180 IC(A) 0 200 4 8 12 16 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω 8 25/125 350 100 ±15 °C V A V Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD FWD FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 12 10 Qrr (µC) Qrr (µC) Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr High T 10 8 8 6 Qrr High T 6 4 Qrr Low T 4 2 Qrr Low T 2 0 0 0 20 At Tj = VCE = VGE = Rgon = 40 60 80 100 120 140 160 180 IC(A) 0 200 At Tj = VR = IF = VGE = FWD Figure 15 Typical reverse recovery current as a 8 12 16 20 Rgon(Ω) °C V V Ω 25/125 350 ±15 4 4 25/125 350 100 ±15 °C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 150 IrrM (A) 150 IRRM High T 120 120 IRRM Low T 90 90 60 60 IRRM High T IRRM Low T 30 30 0 0 0 At Tj = VCE = VGE = Rgon = 20 40 25/125 350 ±15 4 copyright by Vincotech 60 80 100 120 140 160 180 IC(A) 200 0 4 8 12 16 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω 9 25/125 350 100 ±15 °C V A V Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 7500 6000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIo/dt T 5000 dIrec/dt T dI0/dt T 6000 4000 4500 3000 3000 2000 1500 1000 0 0 0 At Tj = VCE = VGE = Rgon = 20 40 25/125 350 ±15 4 60 80 100 120 140 160 180 IC(A) 0 200 8 12 16 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance 4 25/125 350 100 ±15 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 tp (s) 1012 10 10-5 At D= RthJH = tp / T 0,37 K/W 10-4 10-3 R (C/W) 0,06 0,15 0,12 0,03 0,01 R (C/W) 0,07 0,25 0,57 0,12 0,06 0,03 10 100 tp (s) 1012 10 K/W FWD thermal model values copyright by Vincotech 10-1 tp / T 1,11 IGBT thermal model values Tau (s) 2,4E+00 4,0E-01 1,0E-01 1,3E-02 8,4E-04 10-2 Tau (s) 6,8E+00 1,2E+00 2,8E-01 6,0E-02 1,3E-02 1,1E-03 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 200 Ptot (W) IC (A) 500 400 160 300 120 200 80 100 40 0 0 0 At Tj = 50 100 150 Th (oC) 0 200 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 Th (oC) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 150 200 125 80 100 60 75 40 50 20 25 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 Th (oC) 0 200 50 100 150 200 Th (oC) At Tj = °C 11 150 °C Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) IC (A) VGE (V) 103 100mS 102 10mS IGBT Figure 26 Gate voltage vs Gate charge 1mS 16 14 240V 100uS 12 960V 10 DC 101 8 6 100 4 10-1 2 0 0 100 At D= Th = VGE = Tj = 101 102 VCE(V) 200 300 400 500 600 700 800 Qg (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright by Vincotech 100 103 12 160 A Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 400 IC (A) 400 350 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 VCE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 VCE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 140 5 IC (A) IF (A) 180 120 150 100 120 80 90 60 60 Tj = 25°C 40 Tj = Tjmax-25°C Tj = Tjmax-25°C 30 20 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 10 VGE (V) 0 12 At tp = µs V 13 1 250 2 3 VF (V) 4 µs Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) 7 E (mWs) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 6 7 Eon High T 6 Eon Low T 5 5 Eoff Low T Eoff High T 4 4 Eoff Low T 3 3 Eon High T 2 2 Eon Low T 1 1 0 0 0 20 40 60 80 100 120 140 160 180 IC(A) 0 200 With an inductive load at Tj = °C 25/126 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 RG(Ω ) With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V IC = 99 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 4 E (mWs) 5 Erec High T Erec High T 4 3 3 Erec Low T 2 2 Erec Low T 1 1 0 0 0 20 40 60 80 100 120 140 160 180 IC (A) 0 200 With an inductive load at Tj = °C 25/126 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V IC = 99 A 14 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 1 t (µs) t (µs) tdoff tdon tdoff tdon 0,1 0,1 tf tr tf tr 0,01 0,01 0,001 0,001 0 20 40 60 80 100 120 140 160 IC180 (A) 200 0 With an inductive load at Tj = °C 126 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 RG(Ω ) With an inductive load at Tj = 126 °C VCE = 350 V VGE = ±15 V IC = 100 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,20 0,8 t rr(ms) t rr(ms) trr High T trr High T 0,15 0,6 trr Low T trr Low T 0,10 0,4 0,05 0,2 0,00 0,0 0 At Tj = VCE = VGE = Rgon = 20 40 25/126 350 ±15 4 copyright by Vincotech 60 80 100 120 140 160 180 IC(A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 15 4 25/126 350 100 ±15 8 12 16 Rgon(Ω) 20 °C V A V Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (µC) 20 Qrr (µC) 20 Qrr High T 15 15 Qrr High T 10 10 Qrr Low T Qrr Low T 5 5 0 0 0 At At Tj = VCE = VGE = Rgon = 20 40 25/126 350 ±15 4 60 80 100 120 140 160 180 IC(A) 0 200 8 12 16 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a 4 25/126 350 100 ±15 °C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) function of IGBT turn on gate resistor IRRM = f(Rgon) 150 150 IrrM (A) IrrM (A) IRRM High T 125 125 IRRM Low T 100 100 75 75 50 50 IRRM High T IRRM Low T 25 25 0 0 0 At Tj = VCE = VGE = Rgon = 20 40 25/126 350 ±15 4 copyright by Vincotech 60 80 100 120 140 160 180 IC(A) 200 0 4 8 12 16 20 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ω 16 25/126 350 100 ±15 °C V A V Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) 6000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt T di0/dt T 5000 9000 dIrec/dt T dI0/dt T 7500 4000 6000 3000 4500 2000 3000 1000 1500 0 0 0 At Tj = VCE = VGE = Rgon = 20 40 25/126 350 ±15 4 60 80 100 120 140 160 180 IC(A) 200 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/126 350 100 ±15 8 12 16 20 Rgon(Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,99 10-3 10-2 10-1 100 tp (s) 10-5 101 At D= RthJH = K/W 10-4 tp / T 1,15 10-3 FWD thermal model values R (C/W) 0,08 0,24 0,52 0,09 0,05 0,02 R (C/W) 0,05 0,13 0,59 0,22 0,10 0,07 copyright by Vincotech 17 10-1 100 102 tp (s) 101 K/W IGBT thermal model values Tau (s) 6,3E+00 1,1E+00 2,8E-01 6,6E-02 1,3E-02 1,2E-03 10-2 Tau (s) 4,9E+00 8,2E-01 1,8E-01 4,7E-02 7,8E-03 9,8E-04 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 120 IC (A) Ptot (W) 200 100 150 80 100 60 40 50 20 0 0 0 50 100 150 200 0 50 100 150 Th(oC) At Tj = At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 200 Th(oC) 175 15 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 75 IF (A) Ptot (W) 150 125 60 100 45 75 30 50 15 25 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 Th (oC) 200 0 At Tj = ºC 18 50 150 100 150 Th (oC) 200 ºC Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet NP IGBT Inverse Diode NP IGBT Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) NP IGBT Inverse Diode 101 50 ZthJC (K/W) IF (A) 60 40 100 30 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 1 2 3 VF (V) 10-2 4 µs 250 NP IGBT Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = tp / T 3,43 10-3 10-2 100 102tp (s) 101 K/W NP IGBT Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 25 Ptot (W) IF (A) 60 10-1 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th (oC) 200 0 50 100 150 200 Th (oC) At Tj = ºC 19 175 ºC Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Inverse Diode Half Bridge Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Half Bridge Inverse Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 25 20 100 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 Tj = Tjmax-25°C 10-1 Tj = 25°C 5 0 0 0,5 1 1,5 2 2,5 3 3,5 10-2 VF (V) At tp = At D= RthJH = µs 250 10-4 10-5 Half Bridge Inverse Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 101 tp (s) 102 tp / T 2,24 K/W Half Bridge Inverse Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 80 100 Ptot (W) IF (A) 25 20 60 15 40 10 20 5 0 0 At Tj = 50 150 copyright by Vincotech 100 150 Th (oC) 0 200 0 At Tj = ºC 20 50 150 100 150 Th (oC) 200 ºC Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 21 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Switching Definitions Half Bridge General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Half Bridge IGBT Figure 1 Half Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 % % tdoff IC 100 200 VGE 90% IC 75 150 VGE VCE 50 100 VCE 90% VGE tEoff 25 tdon VCE 50 IC 1% 0 -25 -0,2 0 0,2 0,4 0,6 VCE 3% IC 10% VGE 10% 0 tEon -50 0,8 2,9 3 3,1 3,2 3,3 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 700 100 0,27 0,64 Half Bridge IGBT Figure 3 -15 15 700 100 0,13 0,28 V V V A µs µs Half Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 250 fitted % % IC 100 IC 200 IC 90% 150 75 IC 60% 50 VCE 100 IC 90% IC 40% VCE 50 25 IC10% 0 -25 0,15 IC 10% 0 tf tr -50 0,2 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,25 700 100 0,06 0,3 0,35 time (us) 3,1 0,4 3,15 3,2 3,25 3,3 time(us) VC (100%) = IC (100%) = tr = V A µs 22 700 100 0,03 V A µs Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Switching Definitions Half Bridge Half Bridge IGBT Figure 5 Half Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % IC 1% % Eoff 100 Eon 100 75 75 50 50 Poff Pon 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEoff -25 -0,2 tEon -25 0 0,2 0,4 0,6 2,9 0,8 3 3,1 3,2 3,3 Poff (100%) = Eoff (100%) = tEoff = 70,11 4,19 0,64 3,4 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 70,11 2,60 0,28 kW mJ µs Half Bridge FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 fitted Vd 0 IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 3,1 3,15 3,2 3,25 3,3 3,35 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 23 700 100 -113 0,11 V A A µs Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Switching Definitions Half Bridge 0 Figure 8 0 Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Qrr Id 100 Erec 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -25 -150 3,1 3,2 3,3 3,4 3,1 3,5 3,2 3,3 time(us) Id (100%) = Qrr (100%) = tQrr = 100 7,16 0,22 Prec (100%) = Erec (100%) = tErec = A µC µs 70,11 1,38 0,22 3,4 3,5 time(us) kW mJ µs Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright by Vincotech 24 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 12mm housing with PressFiT Ordering Code in DataMatrix as 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y M820F M820FY in packaging barcode as M820-F M820-FY Outline Pinout copyright by Vincotech 25 Revision: 1 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 26 Revision: 1