10-FY12NMA160SH01-M820F18 10

10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
flowMNPC 1
1200V/160A
Features
flow1 12mm housing
● mixed voltage NPC topology
● reactive power capability
● low inductance layout
● Split output
● enhanced LVRT capability
Target Applications
Schematic
● solar inverter
● UPS
● Active frontend
Types
● 10-FY12NMA160SH01-M820F18
● 10-PY12NMA160SH01-M820F18Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Halfbridge IGBT Inverse Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
DC current
Th=80°C
Tc=80°C
14
19
A
Repetitive peak forward current
IFSM
tp=10ms
Tj=25°C
14
A
Tj=Tjmax
Th=80°C
Tc=80°C
31
47
W
Tjmax
150
°C
VCES
1200
V
117
151
A
tp limited by Tjmax
480
A
Tj≤150°C
VCE<=VCES
480
A
260
394
W
±20
V
10
800
µs
V
175
°C
Power dissipation per Diode
Maximum Junction Temperature
Ptot
Halfbridge IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
700
V
NP Diode
Peak Repetitive Reverse Voltage
DC forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
Tj=25°C
IF
Tj=Tjmax
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
53
72
63
96
A
W
Tjmax
150
°C
VCES
650
V
76
101
A
tp limited by Tjmax
450
A
Tj≤150°C
VCE<=VCES
450
A
NP IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
96
145
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
650
V
15
21
A
30
A
28
42
W
Tjmax
175
°C
VRRM
1200
V
31
46
A
140
A
61
92
W
150
°C
Tj≤150°C
VGE=15V
NP Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Halfbridge Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
630
V
DC link Capacitor
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 8,06
mm
Insulation Properties
Insulation voltage
copyright by Vincotech
Vis
t=2s
DC voltage
3
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,97
1,65
2,7
Halfbridge IGBT Inverse Diode
Forward voltage
VF
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
7
1200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,25
Thermal grease
thickness≤50um
λ = 1 W/mK
2,24
V
mA
K/W
Halfbridge IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,006
160
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
5,80
6,5
1
2,02
2,37
2,70
0,25
480
Rgoff=4 Ω
Rgon=4 Ω
±15
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
127
129
26
30
219
274
45
59
1,52
2,60
2,69
4,19
ns
mWs
9200
f=1MHz
25
0
Tj=25°C
pF
600
540
±15
960
160
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
740
nC
0,37
K/W
NP Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
Ir
700
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright by Vincotech
150
Thermal grease
thickness≤50um
λ = 1 W/mK
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
2,00
1,88
50
86
113
57
109
2,93
7,16
3683
1519
0,53
1,38
1,11
4
2,6
V
µA
A
ns
µC
A/µs
mWs
K/W
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,48
1,62
1,85
NP IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,008
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
RthJH
0,05
700
Rgoff=4 Ω
Rgon=4 Ω
700
±15
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
150
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
170
171
29
31
235
265
54
71
1,29
1,70
2,88
3,95
ns
mWs
9240
f=1MHz
25
0
276
Tj=25°C
pF
274
Thermal grease
thickness≤50um
λ = 1 W/mK
0,99
K/W
NP Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
15
Tj=25°C
Tj=125°C
1,23
Thermal grease
thickness≤50um
λ = 1 W/mK
1,89
1,79
2,20
3,43
V
K/W
Halfbridge Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
150
Ir
1200
IRRM
trr
Qrr
Rgon=4 Ω
±15
700
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,46
2,07
3,5
200
83
116
113
136
6,17
12,86
2952
3586
1,66
3,63
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,15
K/W
DC link Capacitor
C value
C
80
100
120
nF
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
Ω
21511
-4,5
+4,5
%
T=25°C
210
mW
T=25°C
3,5
mW/K
B-value
B(25/50)
T=25°C
3884
K
B-value
B(25/100)
T=25°C
3964
K
Vincotech NTC Reference
copyright by Vincotech
F
5
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
1
2
3
4
5
0
1
2
3
4
VCE (V)
At
tp =
Tj =
VGE from
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
5
VCE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IC (A)
IF (A)
100
450
375
80
300
60
225
Tj = Tjmax-25°C
40
150
Tj = Tjmax-25°C
20
75
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
10
VGE (V)
12
0
1
2
3
4
VF (V)
At
tp =
µs
V
6
250
µs
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
8
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
7
7
Eon High T
Eoff High T
6
6
Eon High T
5
Eon Low T
5
Eon Low T
Eoff High T
4
4
Eoff Low T
3
3
2
2
1
1
0
0
20
40
60
80
100
120
140
160
180
Eoff Low T
0
200
0
4
8
12
16
IC(A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
20
RG(Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
A
100
FWD
Figure 7
Typical reverse recovery energy loss
FWD
Figure 8
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
as a function of gate resistor
Erec = f(RG)
E (mWs)
2
E (mWs)
2,5
Erec High T
2
1,5
1,5
1
1
Erec Low T
Erec High T
0,5
0,5
Erec Low T
0
0
0
20
40
60
80
100
120
140
160
180
IC(A)
0
200
8
12
16
20
RG(Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
7
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdon
tdoff
tdon
0,10
tr
0,10
tf
tf
tr
0,01
0,01
0,00
0,00
0
20
40
60
80
100
120
140
160
180
IC(A)
200
0
4
8
12
16
20
RG(Ω)
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
100
FWD
Figure 11
Typical reverse recovery time as a
FWD
Figure 12
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,15
t rr(ms)
trr High T
0,25
trr High T
0,20
0,12
trr Low T
0,15
0,09
trr Low T
0,06
0,10
0,03
0,05
0,00
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/125
350
±15
4
copyright by Vincotech
60
80
100
120
140
160
180
IC(A)
0
200
4
8
12
16
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
25/125
350
100
±15
°C
V
A
V
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
FWD
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
12
10
Qrr (µC)
Qrr (µC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr High T
10
8
8
6
Qrr High T
6
4
Qrr Low T
4
2
Qrr Low T
2
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
40
60
80
100
120
140
160
180
IC(A)
0
200
At
Tj =
VR =
IF =
VGE =
FWD
Figure 15
Typical reverse recovery current as a
8
12
16
20
Rgon(Ω)
°C
V
V
Ω
25/125
350
±15
4
4
25/125
350
100
±15
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
150
IrrM (A)
150
IRRM High T
120
120
IRRM Low T
90
90
60
60
IRRM High T
IRRM Low T
30
30
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/125
350
±15
4
copyright by Vincotech
60
80
100
120
140
160
180
IC(A)
200
0
4
8
12
16
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
25/125
350
100
±15
°C
V
A
V
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
7500
6000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIo/dt T
5000
dIrec/dt T
dI0/dt T
6000
4000
4500
3000
3000
2000
1500
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/125
350
±15
4
60
80
100
120
140
160
180
IC(A)
0
200
8
12
16
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
4
25/125
350
100
±15
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
tp (s)
1012
10
10-5
At
D=
RthJH =
tp / T
0,37
K/W
10-4
10-3
R (C/W)
0,06
0,15
0,12
0,03
0,01
R (C/W)
0,07
0,25
0,57
0,12
0,06
0,03
10
100
tp (s)
1012
10
K/W
FWD thermal model values
copyright by Vincotech
10-1
tp / T
1,11
IGBT thermal model values
Tau (s)
2,4E+00
4,0E-01
1,0E-01
1,3E-02
8,4E-04
10-2
Tau (s)
6,8E+00
1,2E+00
2,8E-01
6,0E-02
1,3E-02
1,1E-03
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
200
Ptot (W)
IC (A)
500
400
160
300
120
200
80
100
40
0
0
0
At
Tj =
50
100
150
Th (oC)
0
200
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
Th (oC)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
150
200
125
80
100
60
75
40
50
20
25
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
Th (oC)
0
200
50
100
150
200
Th (oC)
At
Tj =
°C
11
150
°C
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
IC (A)
VGE (V)
103
100mS
102
10mS
IGBT
Figure 26
Gate voltage vs Gate charge
1mS
16
14
240V
100uS
12
960V
10
DC
101
8
6
100
4
10-1
2
0
0
100
At
D=
Th =
VGE =
Tj =
101
102
VCE(V)
200
300
400
500
600
700
800
Qg (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright by Vincotech
100
103
12
160
A
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
400
IC (A)
400
350
350
300
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
VCE (V)
0
5
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
VCE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
140
5
IC (A)
IF (A)
180
120
150
100
120
80
90
60
60
Tj = 25°C
40
Tj = Tjmax-25°C
Tj = Tjmax-25°C
30
20
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
10
VGE (V)
0
12
At
tp =
µs
V
13
1
250
2
3
VF (V)
4
µs
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
E (mWs)
7
E (mWs)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
6
7
Eon High T
6
Eon Low T
5
5
Eoff Low T
Eoff High T
4
4
Eoff Low T
3
3
Eon High T
2
2
Eon Low T
1
1
0
0
0
20
40
60
80
100
120
140
160
180
IC(A)
0
200
With an inductive load at
Tj =
°C
25/126
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
RG(Ω )
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
IC =
99
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
4
E (mWs)
5
Erec High T
Erec High T
4
3
3
Erec Low T
2
2
Erec Low T
1
1
0
0
0
20
40
60
80
100
120
140
160
180
IC (A)
0
200
With an inductive load at
Tj =
°C
25/126
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
IC =
99
A
14
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
1
t (µs)
t (µs)
tdoff
tdon
tdoff
tdon
0,1
0,1
tf
tr
tf
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
100
120
140
160
IC180
(A)
200
0
With an inductive load at
Tj =
°C
126
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
RG(Ω )
With an inductive load at
Tj =
126
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,20
0,8
t rr(ms)
t rr(ms)
trr High T
trr High T
0,15
0,6
trr Low T
trr Low T
0,10
0,4
0,05
0,2
0,00
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/126
350
±15
4
copyright by Vincotech
60
80
100
120
140
160
180
IC(A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
4
25/126
350
100
±15
8
12
16
Rgon(Ω)
20
°C
V
A
V
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (µC)
20
Qrr (µC)
20
Qrr High T
15
15
Qrr High T
10
10
Qrr Low T
Qrr Low T
5
5
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/126
350
±15
4
60
80
100
120
140
160
180
IC(A)
0
200
8
12
16
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
4
25/126
350
100
±15
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
150
IrrM (A)
IrrM (A)
IRRM High T
125
125
IRRM Low T
100
100
75
75
50
50
IRRM High T
IRRM Low T
25
25
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/126
350
±15
4
copyright by Vincotech
60
80
100
120
140
160
180
IC(A)
200
0
4
8
12
16
20
Rgon(Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
25/126
350
100
±15
°C
V
A
V
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
6000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt T
di0/dt T
5000
9000
dIrec/dt T
dI0/dt T
7500
4000
6000
3000
4500
2000
3000
1000
1500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/126
350
±15
4
60
80
100
120
140
160
180
IC(A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/126
350
100
±15
8
12
16
20
Rgon(Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,99
10-3
10-2
10-1
100
tp (s)
10-5
101
At
D=
RthJH =
K/W
10-4
tp / T
1,15
10-3
FWD thermal model values
R (C/W)
0,08
0,24
0,52
0,09
0,05
0,02
R (C/W)
0,05
0,13
0,59
0,22
0,10
0,07
copyright by Vincotech
17
10-1
100 102 tp (s)
101
K/W
IGBT thermal model values
Tau (s)
6,3E+00
1,1E+00
2,8E-01
6,6E-02
1,3E-02
1,2E-03
10-2
Tau (s)
4,9E+00
8,2E-01
1,8E-01
4,7E-02
7,8E-03
9,8E-04
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
200
100
150
80
100
60
40
50
20
0
0
0
50
100
150
200
0
50
100
150
Th(oC)
At
Tj =
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
200
Th(oC)
175
15
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
75
IF (A)
Ptot (W)
150
125
60
100
45
75
30
50
15
25
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
Th (oC)
200
0
At
Tj =
ºC
18
50
150
100
150
Th (oC)
200
ºC
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
NP IGBT Inverse Diode
NP IGBT Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
NP IGBT Inverse Diode
101
50
ZthJC (K/W)
IF (A)
60
40
100
30
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
1
2
3
VF (V)
10-2
4
µs
250
NP IGBT Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
tp / T
3,43
10-3
10-2
100
102tp (s)
101
K/W
NP IGBT Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
25
Ptot (W)
IF (A)
60
10-1
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th (oC)
200
0
50
100
150
200
Th (oC)
At
Tj =
ºC
19
175
ºC
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge Inverse Diode
Half Bridge Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Half Bridge Inverse Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
25
20
100
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
Tj = Tjmax-25°C
10-1
Tj = 25°C
5
0
0
0,5
1
1,5
2
2,5
3
3,5
10-2
VF (V)
At
tp =
At
D=
RthJH =
µs
250
10-4
10-5
Half Bridge Inverse Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
101
tp (s)
102
tp / T
2,24
K/W
Half Bridge Inverse Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
80
100
Ptot (W)
IF (A)
25
20
60
15
40
10
20
5
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
Th (oC)
0
200
0
At
Tj =
ºC
20
50
150
100
150
Th (oC)
200
ºC
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
21
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Half Bridge IGBT
Figure 1
Half Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
%
%
tdoff
IC
100
200
VGE 90%
IC
75
150
VGE
VCE
50
100
VCE 90%
VGE
tEoff
25
tdon
VCE
50
IC 1%
0
-25
-0,2
0
0,2
0,4
0,6
VCE 3%
IC 10%
VGE 10%
0
tEon
-50
0,8
2,9
3
3,1
3,2
3,3
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
700
100
0,27
0,64
Half Bridge IGBT
Figure 3
-15
15
700
100
0,13
0,28
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
%
IC
100
IC
200
IC 90%
150
75
IC 60%
50
VCE
100
IC 90%
IC 40%
VCE
50
25
IC10%
0
-25
0,15
IC 10%
0
tf
tr
-50
0,2
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,25
700
100
0,06
0,3
0,35
time (us)
3,1
0,4
3,15
3,2
3,25
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
22
700
100
0,03
V
A
µs
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Switching Definitions Half Bridge
Half Bridge IGBT
Figure 5
Half Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
IC 1%
%
Eoff
100
Eon
100
75
75
50
50
Poff
Pon
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-25
-0,2
tEon
-25
0
0,2
0,4
0,6
2,9
0,8
3
3,1
3,2
3,3
Poff (100%) =
Eoff (100%) =
tEoff =
70,11
4,19
0,64
3,4
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
70,11
2,60
0,28
kW
mJ
µs
Half Bridge FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
fitted
Vd
0
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
3,1
3,15
3,2
3,25
3,3
3,35
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
23
700
100
-113
0,11
V
A
A
µs
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Switching Definitions Half Bridge
0
Figure 8
0
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Qrr
Id
100
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-25
-150
3,1
3,2
3,3
3,4
3,1
3,5
3,2
3,3
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
100
7,16
0,22
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
70,11
1,38
0,22
3,4
3,5
time(us)
kW
mJ
µs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright by Vincotech
24
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 12mm housing with PressFiT
Ordering Code
in DataMatrix as
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
M820F
M820FY
in packaging barcode as
M820-F
M820-FY
Outline
Pinout
copyright by Vincotech
25
Revision: 1
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
26
Revision: 1