70-W212NMC600SH01-M700P flow MNPC 4w 1200V/600A Features flow SCREW 4w housing ● Mixed voltage NPC ● Low inductive ● High power screw interface Target Applications ● Solar inverter ● UPS Schematic ● High speed motor drive Types ● 70-W212NMC600SH01-M700P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 457 589 A 1800 A 1105 1674 W ±20 V 10 800 µs V 1200 A 175 °C 600 V half bridge IGBT ( T1 , T4 ) Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Tj=Tjmax Tc=80°C tp limited by Tjmax Tj=Tjmax Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax neutral point FWD ( D2 , D3 ) VRRM Tj=25°C IF Tj=Tjmax Tc=80°C 318 430 A Repetitive peak forward current IFRM tP = 1 ms Tvj < 150°C 1800 A Power dissipation per FWD Ptot Tj=Tjmax Tc=80°C 389 589 W 175 °C Peak Repetitive Reverse Voltage DC forward current Maximum Junction Temperature copyright by Vincotech Tjmax 1 Revision: 1.1 70-W212NMC600SH01-M700P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V neutral point IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Turn off safe operating area (RBSOA) Maximum Junction Temperature tSC VCC Icmax Tc=80°C 420 550 1800 Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax 645 977 A A W ±20 V 6 360 µs V 1200 A 175 °C 1200 V 239 316 A 1800 A 8100 A 2s 468 709 W 175 °C half bridge FWD ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current VRRM Tj=25°C IF Tj=Tjmax IFSM tp=10ms , sin 180° I2t-value I2t Power dissipation per FWD Ptot Maximum Junction Temperature copyright by Vincotech Tc=80°C Tj=Tjmax Tjmax 2 Tj=150°C Tc=80°C Revision: 1.1 70-W212NMC600SH01-M700P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 630 V DC link Capacitor Max.DC voltage VMAX Tcmax=100°C General Module Properties Material of module baseplate Cu Material of internal isulation Al2O3 Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 3 Revision: 1.1 70-W212NMC600SH01-M700P Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 5 5,8 6,5 1,4 2,22 2,75 2,4 half bridge IGBT ( T1 , T4 ) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. FWD ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0208 600 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC V V 0,08 mA 960 nA Ω 1,25 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=0,5 Ω Rgon=0,5 Ω ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 245 256 44 54 301 349 34 57 10 18 14 24 ns mWs 35200 f=1MHz 0 25 Tj=25°C pF 2250 1880 15 960 600 Tj=25°C nC 2775 Phase-Change Material thickness≤100um 0,09 K/W 0,06 neutral point FWD ( D2 , D3 ) FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 600 IRRM trr Qrr Rgon=0,5 Ω ±15 350 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Phase-Change Material thickness≤100um Gate emitter threshold voltage VGE(th) VCE=VGE Collector-emitter saturation voltage VCE(sat) 15 ICES 0 600 20 0 Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,27 1,68 1,60 350 415 168 289 24 45 5978 3609 5 10 1,97 V A ns µC A/µs mWs 0,24 K/W 0,16 neutral point IGBT ( T2 , T3 ) Collector-emitter cut-off incl FWD Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 600 tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,05 1,54 1,80 1,85 Rgoff=1 Ω Rgon=1 Ω ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,0304 2400 0,5 tr td(off) Turn-on energy loss per pulse copyright by Vincotech 0,0096 270 274 41 45 351 374 39 70 6 8 17 23 mA nA Ω ns mWs 36960 f=1MHz 0 25 Tj=25°C 2304 pF 1096 15 Phase-Change Material thickness≤100um 4 480 600 Tj=25°C 3760 nC 0,15 K/W 0,10 Revision: 1.1 70-W212NMC600SH01-M700P Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ 1 2,15 2,15 Unit Max half bridge FWD ( D1 , D4 ) FWD forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 600 Ir 1200 IRRM trr Qrr Rgon=1 Ω ±15 350 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,7 720 477 599 67 91 19 33 21481 20331 4 7 Phase-Change Material thickness≤100um V µA A ns µC A/µs mWs 0,20 K/W 0,13 DC link Capacitor C value C 2* 0,68 µF Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant Ω 22000 -12 +14 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference Tj=25°C B Module Properties Module inductance (from chips to PCB) LsCE Mounting torque M Mounting torque M Terminal connection torque M Weight G copyright by Vincotech 10 Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 5 nH 2 2,2 Nm 4 6 Nm 2,5 5 Nm 1300 g Revision: 1.1 70-W212NMC600SH01-M700P Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) flow SCREW 4w housing IGBT Figure 1 Typical output characteristics Vge=15V IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 1200 IC (A) IC (A) 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE= 1 2 3 4 V CE (V) 0 5 1 At tp = Tj = VGE from 350 µs 25/125/150 °C 15 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 350 µs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 1600 IC (A) IF (A) 600 5 V CE (V) 1400 500 1200 400 1000 800 300 600 200 400 100 200 0 0 0 At tp = VCE = Tj= 2 4 6 8 10 V GE (V) 0 12 At tp = 350 µs 10 V 25/125/150 °C copyright by Vincotech Tj= 6 0,5 1 1,5 2 2,5 V F (V) 3 350 µs 25/125/150 °C Revision: 1.1 70-W212NMC600SH01-M700P Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 125 E (mWs) 50 Eon High T 40 Eon High T 100 Eoff High T Eon Low T 30 75 Eoff Low T Eon Low T 20 50 10 25 Eoff High T 0 Eoff Low T 0 0 200 400 600 800 1000 1200 I C (A) 0 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = 0,5 Ω Rgoff = 0,5 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = 600 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 10 E (mWs) 12 Erec High T 10 8 8 6 6 Erec High T Erec Low T 4 4 2 2 Erec Low T 0 0 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = 0,5 Ω copyright by Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = 600 A 7 Revision: 1.1 70-W212NMC600SH01-M700P Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10,00 1,00 t (ms) t (ms) tdoff tr tdon 1,00 tdoff 0,10 tdon tf 0,10 tf 0,01 tr 0,01 0,00 0,00 0 200 400 600 800 1000 0 1200 I C (A) With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 0,5 Ω Rgoff = 0,5 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 600 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,7 t rr(ms) 0,4 trr High T trr High T 0,3 0,6 0,3 0,5 trr Low T 0,2 0,4 trr Low T 0,2 0,3 0,1 0,2 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 200 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = 25/125/150 °C 350 V ±15 V 0,5 Ω copyright by Vincotech 8 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 600 A ±15 V Revision: 1.1 70-W212NMC600SH01-M700P Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) 50 Qrr (mC) 60 Qrr High T 50 40 Qrr High T 40 30 30 Qrr Low T 20 20 Qrr Low T 10 10 0 0 0 At At Tj = VCE = VGE = Rgon = 200 400 600 800 1000 I C (A) 1200 0 2 At Tj = VR = IF = VGE = 25/125/150 °C 350 V V ±15 0,5 Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 6 8 10 25/125/150 °C 350 V 600 A ±15 V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 500 IrrM (A) 500 R gon ( Ω) IRRM High T 400 400 IRRM Low T 300 300 200 200 100 100 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = 25/125/150 °C 350 V ±15 V 0,5 Ω copyright by Vincotech 9 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 600 A ±15 V Revision: 1.1 70-W212NMC600SH01-M700P Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) FWD direc / dt (A/ms) 14000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dt T dIo/dt T 12000 15000 dIrec/dt T dI0/dt T 12000 10000 9000 8000 6000 6000 4000 3000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 25/125 °C 350 ±15 0,5 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 4 25/125 °C 350 600 ±15 6 8 R gon ( Ω) 10 V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 101 t p (s) 10-5 At D= RthJH = tp / T 0,086 K/W 10-4 10-3 10-2 R (C/W) 0,037 0,019 0,023 0,003 0,005 R (C/W) 0,046 0,048 0,046 0,074 0,018 10 101 t p (s) K/W FWD thermal model values copyright by Vincotech 100 tp / T 0,244 IGBT thermal model values Tau (s) 1,555 0,210 0,031 0,002 0,0003 10-1 Tau (s) 5,114 1,051 0,196 0,043 0,014 Revision: 1.1 70-W212NMC600SH01-M700P Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 700 Ptot (W) IC (A) 2500 600 2000 500 1500 400 remove 1000 remove 300 200 500 100 0 0 50 100 150 0 200 T h ( o C) At Tj = 175 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 750 200 Ptot (W) IF (A) 500 400 600 remove 450 300 200 150 100 0 0 0 At Tj = remove 300 50 175 copyright by Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 11 50 175 100 150 T h ( o C) 200 °C Revision: 1.1 70-W212NMC600SH01-M700P Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) IGBT Figure 25 Reverse bias safe operating area IGBT Figure 26 Gate voltage vs Gate charge IC = f(VCE) VGE = f(Qg) VGE (V) 16 IC (A) 1400 IC MAX 1200 Vcc=240V 14 12 1000 MODULE remove 600 Ic CHIP = Ic 800 Vcc=960V 10 8 6 400 4 200 2 0 0 0 200 400 600 800 1000 1200 1400 0 500 1000 At Tj = 150 Uccminus=Uccplus=Ucc/2 VGE = ±15 Rgon = 0,5 Switching mode: copyright by Vincotech 1500 2000 2500 3000 Q g (nC) V CE (V) At IC = ºC 600 A V Ω 3 level 12 Revision: 1.1 70-W212NMC600SH01-M700P Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) IGBT Figure 1 Typical output characteristics Vge=15V IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 1600 IC (A) IC (A) 1600 1400 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE= 1 2 3 4 V CE (V) 0 At tp = Tj = VGE from 350 µs 25/125/150 °C 15 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 350 µs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 600 5 IF (A) IC (A) 1200 500 1000 400 800 300 600 200 400 100 200 0 0 0 At tp = VCE = Tj = 2 4 6 8 10 V GE (V) 12 0 At tp = Tj = 350 µs 10 V 25/125/150 °C copyright by Vincotech 13 1 2 3 4 V F (V) 5 350 µs 25/125/150 °C Revision: 1.1 70-W212NMC600SH01-M700P Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 100 E (mWs) 40 Eoff High T 80 30 Eon High T Eoff Low T Eon Low T 60 20 Eoff High T 40 Eoff Low T Eon High T 10 20 Eon Low T 0 0 0 200 400 600 800 1000 1200 0 I C (A) With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = A 600 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) 10 E (mWs) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Erec High T 12 Erec High T 10 8 8 6 Erec Low T 6 4 4 2 2 Erec Low T 0 0 0 200 400 600 800 1000 1200 0 I C (A) With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125/150 °C VCE = 350 V VGE = ±15 V IC = 600 A 14 Revision: 1.1 70-W212NMC600SH01-M700P Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 10 t ( µs) 1 tdoff tdoff tdon tdon 1 tf 0,1 tr 0,1 tf tr 0,01 0,01 0,001 0,001 0 200 400 600 800 1000 1200 0 I C (A) With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 10 RG(Ω ) With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 600 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,2 t rr(ms) t rr(ms) 0,12 0,10 trr High T 1 trr High T 0,08 0,8 trr Low T 0,06 0,6 0,04 0,4 0,02 0,2 0,00 0 trr Low T 0 At Tj = VCE = VGE = Rgon = 200 25/125/150 350 ±15 1 copyright by Vincotech 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω 15 2 25/125/150 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.1 70-W212NMC600SH01-M700P Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 60 Qrr (mC) Qrr (mC) 50 Qrr High T Qrr High T 50 40 40 30 30 Qrr Low T 20 20 Qrr Low T 10 10 0 0 0 At At Tj = VCE = VGE = Rgon = 200 25/125/150 350 ±15 1 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125/150 350 600 ±15 4 6 8 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 800 IrrM (A) 700 10 IRRM High T 600 IRRM Low T 600 500 400 400 300 200 200 IRRM High T IRRM Low T 100 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125/150 350 ±15 1 copyright by Vincotech 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω 16 2 25/125/150 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.1 70-W212NMC600SH01-M700P Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) FWD 25000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIo/dt T 20000 30000 dIrec/dt T dI0/dt T 25000 20000 15000 15000 10000 10000 5000 5000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 25/125/150 350 ±15 1 600 800 1000 I (A) C 1200 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 4 25/125/150 350 600 ±15 6 8 R gon ( Ω) 10 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 At D= RthJH = 10-4 tp / T 0,15 10-3 10-2 10-1 100 101 t p (s) 102 10-5 At D= RthJH = K/W 10-4 tp / T 0,20 10-3 FWD thermal model values R (C/W) 0,05 0,02 0,03 0,03 0,01 R (C/W) 0,02 0,03 0,05 0,07 0,03 copyright by Vincotech 17 10-1 100 101 t p (s) 102 K/W IGBT thermal model values Tau (s) 3,58 0,74 0,18 0,04 0,01 10-2 Tau (s) 4,55 0,92 0,19 0,05 0,02 Revision: 1.1 70-W212NMC600SH01-M700P Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) IGBT IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 1400 700 IC (A) Ptot (W) Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) 1200 600 1000 500 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD 175 15 100 150 T h ( o C) 1000 400 IF (A) 200 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) Ptot (W) Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 800 300 600 200 400 100 200 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC Revision: 1.1 70-W212NMC600SH01-M700P Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) IGBT Figure 25 Reverse bias safe operating area IGBT Figure 26 Gate voltage vs Gate charge IC = f(VCE) VGE = f(Qg) IC 1200 VGE (V) 16 IC (A) 1400 14 MAX Vcc=120V 12 1000 Vcc=480V 10 Ic CHIP 800 8 600 6 400 4 200 2 0 0 0 100 200 300 400 500 600 0 700 500 1000 1500 At Tj = 25,150 Uccminus=Uccplus=Ucc/2 ºC VGE = Rgon = V Ω ±15 1 copyright by Vincotech 2000 2500 3000 3500 4000 Q g (nC) V CE (V) At IC = 19 600 A Revision: 1.1 70-W212NMC600SH01-M700P Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 20 Revision: 1.1 70-W212NMC600SH01-M700P Switching Definitions Half Bridge General conditions = 125 °C Tj = 0,5 Ω Rgon Rgoff = 0,5 Ω Half Bridge IGBT Figure 1 Half Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 VCE % IC % 125 tdoff 100 150 VGE 90% VCE IC 75 100 VGE VGE tdon 50 VCE 90% 50 tEoff 25 VGE10% IC 1% VCE 3% IC10% 0 tEon 0 -50 -25 0 0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,4 0,6 0,8 time (us) 3,8 1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Half Bridge IGBT Figure 3 4,4 -15 15 700 594 0,256 0,572 4,6 4,8 V V V A µs µs Half Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 150 % 4,2 time(us) V V V A µs µs -15 15 700 594 0,349 0,767 4 175 % VCE Ic 150 125 fitted IC 125 100 VCE IC 90% 100 IC90% 75 75 IC 60% tr 50 IC 40% 50 25 25 IC10% 0 IC 10% 0 tf -25 -25 0,3 0,4 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,5 700 594 0,057 0,6 0,7 time (us) 4,1 0,8 VC (100%) = IC (100%) = tr = V A µs 21 4,2 4,3 700 594 0,054 4,4 4,5 time(us) 4,6 V A µs Revision: 1.1 70-W212NMC600SH01-M700P Switching Definitions Half Bridge Half Bridge IGBT Figure 5 Half Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % IC 1% Poff 100 % Eon 100 Eoff 75 75 50 50 25 25 VGE90% VCE3% VGE10% 0 Pon 0 tEoff tEon -25 -25 0 0,2 0,4 0,6 0,8 1 3,8 time (us) Poff (100%) = Eoff (100%) = tEoff = 415,88 24,11 0,767 Pon (100%) = Eon (100%) = tEon = kW mJ µs 4 4,2 415,88 17,53 0,572 4,4 4,6 time(us) 4,8 kW mJ µs Neutral Point FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 fitted Vd 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 4,2 4,3 4,4 4,5 4,6 4,7 4,8 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 700 594 -415 0,289 V A A µs 22 Revision: 1.1 70-W212NMC600SH01-M700P Switching Definitions Half Bridge Neutral Point FWD Figure 8 Neutral Point FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Erec Qrr 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -25 -100 4,1 4,3 Id (100%) = Qrr (100%) = tQrr = copyright by Vincotech 4,5 594 45,49 0,67 4,7 4,9 time(us) 4,2 5,1 4,4 4,6 4,8 5 5,2 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 23 415,88 10,16 0,67 kW mJ µs Revision: 1.1 70-W212NMC600SH01-M700P Half Bridge switching measurement circuit Figure 10 copyright by Vincotech 24 Revision: 1.1 70-W212NMC600SH01-M700P Switching Definitions Neutral Point General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω Neutral Point IGBT Figure 1 Neutral Point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 % IC % 125 tdoff 150 100 VGE 90% VCE VCE 90% 100 75 IC VGE tdon 50 50 tEoff VGE 25 VGE 10% IC 10% 0 IC 1% VCE VCE 3% tEon 0 -50 -25 0 0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,4 0,6 0,8 3,9 time (us) 1 4,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 350 583 0,23 0,58 4 Neutral Point IGBT Figure 3 4,2 -15 15 350 583 0,274 0,38 4,3 4,5 time(us) 4,6 V V V A µs µs Neutral Point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4,4 Turn-on Switching Waveforms & definition of tr 200 150 % VCE IC % 125 fitted 150 IC 100 Ic 90% VCE 100 75 IC 90% Ic 60% tr 50 50 Ic 40% 25 Ic10% 0 IC 10% 0 tf -25 -50 0,3 0,4 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,5 350 583 0,07 0,6 0,7 time (us) 0,8 4,1 VC (100%) = IC (100%) = tr = V A µs 25 4,2 4,3 350 583 0,045 4,4 4,5 time(us) 4,6 V A µs Revision: 1.1 70-W212NMC600SH01-M700P Switching Definitions Neutral Point Neutral Point IGBT Figure 5 Neutral Point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % Poff 100 % IC 1% Eoff Eon 100 75 75 50 50 25 Pon 25 Uge90% Uge 0 Uce 3% 10% 0 tEoff tEon -25 -25 0 0,2 0,4 0,6 0,8 1 3,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 203,90 23,39 0,58 Pon (100%) = Eon (100%) = tEon = kW mJ µs 4 4,1 203,8995 13,39 0,38 4,2 4,3 4,4 4,5 time(us) kW mJ µs Half Bridge FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Ud fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 4,2 4,3 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 4,4 350 583 -545 0,09 4,5 time(us) 4,6 V A A µs 26 Revision: 1.1 70-W212NMC600SH01-M700P Switching Definitions Neutral Point Half Bridge FWD Figure 8 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) Half Bridge FWD 150 150 % % Qrr 100 Erec 125 Id 100 tQint 50 tErec 75 50 0 25 Prec -50 0 -100 -25 4,2 4,3 Id (100%) = Qrr (100%) = tQint = copyright by Vincotech 4,4 4,5 583 31,59 0,33 A µC µs 4,6 4,7 time(us) 4,8 4,2 Prec (100%) = Erec (100%) = tErec = 27 4,3 4,4 4,5 203,90 7,18 0,33 kW mJ µs 4,6 4,7 time(us) 4,8 Revision: 1.1 70-W212NMC600SH01-M700P Neutral Point switching measurement circuit Figure 10 copyright by Vincotech 28 Revision: 1.1 70-W212NMC600SH01-M700P Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W212NMC600SH01-M700P in DataMatrix as M700P in packaging barcode as M700P Outline Pin X1 Driver pins Y1 Function 1.1 1.2 -0,2 2,8 81,55 81,55 G1-1 E1-1 T1 T1 M4 screw 3.1 X3 Y3 Function -37,4 89,8 1.3 1.4 1.5 44,2 41,2 1,85 81,55 81,55 68,45 G1-2 E1-2 E2-1 T1 T1 T2 3.2 3.3 3.4 -37,4 -37,4 81,4 1.6 1.7 4,85 42,15 67,45 68,45 G2-1 E2-2 T2 T2 3.5 3.6 1.8 39,15 67,45 G2-2 T2 1.9 1.10 1.11 -5,4 -5,4 49,4 46,55 49,55 46,55 G3-1 E3-1 G3-2 T3 T3 T3 1.12 49,4 49,55 E3-2 1.13 1.14 1.15 -3,45 -0,45 47,45 30,65 30,65 30,65 E4-1 G4-1 E4-2 1.16 44,45 30,65 G4-2 1.17 1.18 1.19 19,45 24,55 19,45 16 Desat-DC+ 16 Desat-DC+ 50,75 Desat-GND 1.20 1.21 1.22 24,55 67,65 67,65 50,75 Desat-GND 86,7 NTC 89,8 NTC copyright by Vincotech Low current connections Group Power connections X2 Y2 TR+ M6 screw 2.1 0 0 Phase 89,8 89,8 89,8 DC+ Neutral TR+ 2.2 2.3 2.4 22 44 0 0 0 110,4 Phase Phase DC+ 81,4 81,4 89,8 89,8 Neutral DC+ 2.5 2.6 22 44 110,4 110,4 Neutral DC- 3.7 -37,4 65,2 CE 3.8 3.9 3.10 -37,4 81,4 81,4 65,2 65,2 65,2 Neutral CE Neutral T3 3.11 -37,4 45,2 Phase T4 T4 T4 3.12 3.13 3.14 -37,4 81,4 81,4 45,2 45,2 45,2 Neutral Phase Neutral T4 3.15 -37,4 20,6 DC- 3.16 3.17 3.18 -37,4 -37,4 81,4 20,6 20,6 20,6 TRNeutral DC- 3.19 3.20 81,4 81,4 20,6 20,6 Neutral TR- Function 29 Revision: 1.1 70-W212NMC600SH01-M700P Ordering Code and Marking - Outline - Pinout Pinout copyright by Vincotech 30 Revision: 1.1 70-W212NMC600SH01-M700P DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 31 Revision: 1.1