70-W212NMC600SH01-M700P Maximum Ratings

70-W212NMC600SH01-M700P
flow MNPC 4w
1200V/600A
Features
flow SCREW 4w housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
Target Applications
● Solar inverter
● UPS
Schematic
● High speed motor drive
Types
● 70-W212NMC600SH01-M700P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
457
589
A
1800
A
1105
1674
W
±20
V
10
800
µs
V
1200
A
175
°C
600
V
half bridge IGBT ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
neutral point FWD ( D2 , D3 )
VRRM
Tj=25°C
IF
Tj=Tjmax
Tc=80°C
318
430
A
Repetitive peak forward current
IFRM
tP = 1 ms
Tvj < 150°C
1800
A
Power dissipation per FWD
Ptot
Tj=Tjmax
Tc=80°C
389
589
W
175
°C
Peak Repetitive Reverse Voltage
DC forward current
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Revision: 1.1
70-W212NMC600SH01-M700P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
neutral point IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Turn off safe operating area (RBSOA)
Maximum Junction Temperature
tSC
VCC
Icmax
Tc=80°C
420
550
1800
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
645
977
A
A
W
±20
V
6
360
µs
V
1200
A
175
°C
1200
V
239
316
A
1800
A
8100
A 2s
468
709
W
175
°C
half bridge FWD ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
IFSM
tp=10ms , sin 180°
I2t-value
I2t
Power dissipation per FWD
Ptot
Maximum Junction Temperature
copyright by Vincotech
Tc=80°C
Tj=Tjmax
Tjmax
2
Tj=150°C
Tc=80°C
Revision: 1.1
70-W212NMC600SH01-M700P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
630
V
DC link Capacitor
Max.DC voltage
VMAX
Tcmax=100°C
General Module Properties
Material of module baseplate
Cu
Material of internal isulation
Al2O3
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
Revision: 1.1
70-W212NMC600SH01-M700P
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
5
5,8
6,5
1,4
2,22
2,75
2,4
half bridge IGBT ( T1 , T4 )
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. FWD
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0208
600
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
V
V
0,08
mA
960
nA
Ω
1,25
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=0,5 Ω
Rgon=0,5 Ω
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
245
256
44
54
301
349
34
57
10
18
14
24
ns
mWs
35200
f=1MHz
0
25
Tj=25°C
pF
2250
1880
15
960
600
Tj=25°C
nC
2775
Phase-Change
Material
thickness≤100um
0,09
K/W
0,06
neutral point FWD ( D2 , D3 )
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
600
IRRM
trr
Qrr
Rgon=0,5 Ω
±15
350
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Phase-Change
Material
thickness≤100um
Gate emitter threshold voltage
VGE(th)
VCE=VGE
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
600
20
0
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,27
1,68
1,60
350
415
168
289
24
45
5978
3609
5
10
1,97
V
A
ns
µC
A/µs
mWs
0,24
K/W
0,16
neutral point IGBT ( T2 , T3 )
Collector-emitter cut-off incl FWD
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
600
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,05
1,54
1,80
1,85
Rgoff=1 Ω
Rgon=1 Ω
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,0304
2400
0,5
tr
td(off)
Turn-on energy loss per pulse
copyright by Vincotech
0,0096
270
274
41
45
351
374
39
70
6
8
17
23
mA
nA
Ω
ns
mWs
36960
f=1MHz
0
25
Tj=25°C
2304
pF
1096
15
Phase-Change
Material
thickness≤100um
4
480
600
Tj=25°C
3760
nC
0,15
K/W
0,10
Revision: 1.1
70-W212NMC600SH01-M700P
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
1
2,15
2,15
Unit
Max
half bridge FWD ( D1 , D4 )
FWD forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
600
Ir
1200
IRRM
trr
Qrr
Rgon=1 Ω
±15
350
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,7
720
477
599
67
91
19
33
21481
20331
4
7
Phase-Change
Material
thickness≤100um
V
µA
A
ns
µC
A/µs
mWs
0,20
K/W
0,13
DC link Capacitor
C value
C
2* 0,68
µF
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
Ω
22000
-12
+14
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
Tj=25°C
B
Module Properties
Module inductance (from chips to PCB)
LsCE
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
copyright by Vincotech
10
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
5
nH
2
2,2
Nm
4
6
Nm
2,5
5
Nm
1300
g
Revision: 1.1
70-W212NMC600SH01-M700P
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
flow SCREW 4w housing
IGBT
Figure 1
Typical output characteristics Vge=15V
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1200
IC (A)
IC (A)
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE=
1
2
3
4
V CE (V)
0
5
1
At
tp =
Tj =
VGE from
350
µs
25/125/150 °C
15
V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
350
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
1600
IC (A)
IF (A)
600
5
V CE (V)
1400
500
1200
400
1000
800
300
600
200
400
100
200
0
0
0
At
tp =
VCE =
Tj=
2
4
6
8
10
V GE (V)
0
12
At
tp =
350
µs
10
V
25/125/150 °C
copyright by Vincotech
Tj=
6
0,5
1
1,5
2
2,5
V F (V)
3
350
µs
25/125/150 °C
Revision: 1.1
70-W212NMC600SH01-M700P
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
125
E (mWs)
50
Eon High T
40
Eon High T
100
Eoff High T
Eon Low T
30
75
Eoff Low T
Eon Low T
20
50
10
25
Eoff High T
0
Eoff Low T
0
0
200
400
600
800
1000
1200
I C (A)
0
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
0,5
Ω
Rgoff =
0,5
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
600
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
10
E (mWs)
12
Erec High T
10
8
8
6
6
Erec High T
Erec Low T
4
4
2
2
Erec Low T
0
0
0
200
400
600
800
1000
I C (A)
1200
0
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
0,5
Ω
copyright by Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
600
A
7
Revision: 1.1
70-W212NMC600SH01-M700P
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10,00
1,00
t (ms)
t (ms)
tdoff
tr
tdon
1,00
tdoff
0,10
tdon
tf
0,10
tf
0,01
tr
0,01
0,00
0,00
0
200
400
600
800
1000
0
1200
I C (A)
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
0,5
Ω
Rgoff =
0,5
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,7
t rr(ms)
0,4
trr High T
trr High T
0,3
0,6
0,3
0,5
trr Low T
0,2
0,4
trr Low T
0,2
0,3
0,1
0,2
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
25/125/150 °C
350
V
±15
V
0,5
Ω
copyright by Vincotech
8
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
600
A
±15
V
Revision: 1.1
70-W212NMC600SH01-M700P
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
50
Qrr (mC)
60
Qrr High T
50
40
Qrr High T
40
30
30
Qrr Low T
20
20
Qrr Low T
10
10
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
800
1000
I C (A)
1200
0
2
At
Tj =
VR =
IF =
VGE =
25/125/150 °C
350
V
V
±15
0,5
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
6
8
10
25/125/150 °C
350
V
600
A
±15
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
500
IrrM (A)
500
R gon ( Ω)
IRRM High T
400
400
IRRM Low T
300
300
200
200
100
100
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
25/125/150 °C
350
V
±15
V
0,5
Ω
copyright by Vincotech
9
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
600
A
±15
V
Revision: 1.1
70-W212NMC600SH01-M700P
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
FWD
direc / dt (A/ms)
14000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIrec/dt T
dIo/dt T
12000
15000
dIrec/dt T
dI0/dt T
12000
10000
9000
8000
6000
6000
4000
3000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
25/125 °C
350
±15
0,5
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
4
25/125 °C
350
600
±15
6
8
R gon ( Ω)
10
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
101
t p (s)
10-5
At
D=
RthJH =
tp / T
0,086
K/W
10-4
10-3
10-2
R (C/W)
0,037
0,019
0,023
0,003
0,005
R (C/W)
0,046
0,048
0,046
0,074
0,018
10
101
t p (s)
K/W
FWD thermal model values
copyright by Vincotech
100
tp / T
0,244
IGBT thermal model values
Tau (s)
1,555
0,210
0,031
0,002
0,0003
10-1
Tau (s)
5,114
1,051
0,196
0,043
0,014
Revision: 1.1
70-W212NMC600SH01-M700P
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
700
Ptot (W)
IC (A)
2500
600
2000
500
1500
400
remove
1000
remove
300
200
500
100
0
0
50
100
150
0
200
T h ( o C)
At
Tj =
175
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
750
200
Ptot (W)
IF (A)
500
400
600
remove
450
300
200
150
100
0
0
0
At
Tj =
remove
300
50
175
copyright by Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
11
50
175
100
150
T h ( o C)
200
°C
Revision: 1.1
70-W212NMC600SH01-M700P
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
IGBT
Figure 25
Reverse bias safe operating area
IGBT
Figure 26
Gate voltage vs Gate charge
IC = f(VCE)
VGE = f(Qg)
VGE (V)
16
IC (A)
1400
IC MAX
1200
Vcc=240V
14
12
1000
MODULE
remove
600
Ic CHIP = Ic
800
Vcc=960V
10
8
6
400
4
200
2
0
0
0
200
400
600
800
1000
1200
1400
0
500
1000
At
Tj =
150
Uccminus=Uccplus=Ucc/2
VGE =
±15
Rgon =
0,5
Switching mode:
copyright by Vincotech
1500
2000
2500
3000
Q g (nC)
V CE (V)
At
IC =
ºC
600
A
V
Ω
3 level
12
Revision: 1.1
70-W212NMC600SH01-M700P
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
IGBT
Figure 1
Typical output characteristics Vge=15V
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1600
IC (A)
IC (A)
1600
1400
1400
1200
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE=
1
2
3
4
V CE (V)
0
At
tp =
Tj =
VGE from
350
µs
25/125/150 °C
15
V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
350
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
600
5
IF (A)
IC (A)
1200
500
1000
400
800
300
600
200
400
100
200
0
0
0
At
tp =
VCE =
Tj =
2
4
6
8
10
V GE (V)
12
0
At
tp =
Tj =
350
µs
10
V
25/125/150 °C
copyright by Vincotech
13
1
2
3
4
V F (V)
5
350
µs
25/125/150 °C
Revision: 1.1
70-W212NMC600SH01-M700P
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
100
E (mWs)
40
Eoff High T
80
30
Eon High T
Eoff Low T
Eon Low T
60
20
Eoff High T
40
Eoff Low T
Eon High T
10
20
Eon Low T
0
0
0
200
400
600
800
1000
1200
0
I C (A)
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
A
600
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
10
E (mWs)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
Erec High T
12
Erec High T
10
8
8
6
Erec Low T
6
4
4
2
2
Erec Low T
0
0
0
200
400
600
800
1000
1200
0
I C (A)
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125/150 °C
VCE =
350
V
VGE =
±15
V
IC =
600
A
14
Revision: 1.1
70-W212NMC600SH01-M700P
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
10
t ( µs)
1
tdoff
tdoff
tdon
tdon
1
tf
0,1
tr
0,1
tf
tr
0,01
0,01
0,001
0,001
0
200
400
600
800
1000
1200
0
I C (A)
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
10
RG(Ω )
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,2
t rr(ms)
t rr(ms)
0,12
0,10
trr High T
1
trr High T
0,08
0,8
trr Low T
0,06
0,6
0,04
0,4
0,02
0,2
0,00
0
trr Low T
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125/150
350
±15
1
copyright by Vincotech
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
2
25/125/150
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.1
70-W212NMC600SH01-M700P
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
60
Qrr (mC)
Qrr (mC)
50
Qrr High T
Qrr High T
50
40
40
30
30
Qrr Low T
20
20
Qrr Low T
10
10
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
25/125/150
350
±15
1
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125/150
350
600
±15
4
6
8
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
800
IrrM (A)
700
10
IRRM High T
600
IRRM Low T
600
500
400
400
300
200
200
IRRM High T
IRRM Low T
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125/150
350
±15
1
copyright by Vincotech
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
2
25/125/150
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.1
70-W212NMC600SH01-M700P
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
FWD
25000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIo/dt T
20000
30000
dIrec/dt T
dI0/dt T
25000
20000
15000
15000
10000
10000
5000
5000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
25/125/150
350
±15
1
600
800
1000 I (A)
C
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
4
25/125/150
350
600
±15
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
At
D=
RthJH =
10-4
tp / T
0,15
10-3
10-2
10-1
100
101
t p (s)
102
10-5
At
D=
RthJH =
K/W
10-4
tp / T
0,20
10-3
FWD thermal model values
R (C/W)
0,05
0,02
0,03
0,03
0,01
R (C/W)
0,02
0,03
0,05
0,07
0,03
copyright by Vincotech
17
10-1
100
101
t p (s)
102
K/W
IGBT thermal model values
Tau (s)
3,58
0,74
0,18
0,04
0,01
10-2
Tau (s)
4,55
0,92
0,19
0,05
0,02
Revision: 1.1
70-W212NMC600SH01-M700P
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
IGBT
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
1400
700
IC (A)
Ptot (W)
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
1200
600
1000
500
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
175
15
100
150
T h ( o C)
1000
400
IF (A)
200
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
Ptot (W)
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
800
300
600
200
400
100
200
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
Revision: 1.1
70-W212NMC600SH01-M700P
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
IGBT
Figure 25
Reverse bias safe operating area
IGBT
Figure 26
Gate voltage vs Gate charge
IC = f(VCE)
VGE = f(Qg)
IC
1200
VGE (V)
16
IC (A)
1400
14
MAX
Vcc=120V
12
1000
Vcc=480V
10
Ic CHIP
800
8
600
6
400
4
200
2
0
0
0
100
200
300
400
500
600
0
700
500
1000
1500
At
Tj =
25,150
Uccminus=Uccplus=Ucc/2
ºC
VGE =
Rgon =
V
Ω
±15
1
copyright by Vincotech
2000
2500
3000
3500
4000
Q g (nC)
V CE (V)
At
IC =
19
600
A
Revision: 1.1
70-W212NMC600SH01-M700P
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
20
Revision: 1.1
70-W212NMC600SH01-M700P
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
= 0,5 Ω
Rgon
Rgoff
= 0,5 Ω
Half Bridge IGBT
Figure 1
Half Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
VCE
%
IC
%
125
tdoff
100
150
VGE 90%
VCE
IC
75
100
VGE
VGE
tdon
50
VCE 90%
50
tEoff
25
VGE10%
IC 1%
VCE 3%
IC10%
0
tEon
0
-50
-25
0
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,4
0,6
0,8
time (us)
3,8
1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Half Bridge IGBT
Figure 3
4,4
-15
15
700
594
0,256
0,572
4,6
4,8
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
150
%
4,2
time(us)
V
V
V
A
µs
µs
-15
15
700
594
0,349
0,767
4
175
%
VCE
Ic
150
125
fitted
IC
125
100
VCE
IC 90%
100
IC90%
75
75
IC 60%
tr
50
IC 40%
50
25
25
IC10%
0
IC
10%
0
tf
-25
-25
0,3
0,4
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,5
700
594
0,057
0,6
0,7
time (us)
4,1
0,8
VC (100%) =
IC (100%) =
tr =
V
A
µs
21
4,2
4,3
700
594
0,054
4,4
4,5
time(us)
4,6
V
A
µs
Revision: 1.1
70-W212NMC600SH01-M700P
Switching Definitions Half Bridge
Half Bridge IGBT
Figure 5
Half Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
IC 1%
Poff
100
%
Eon
100
Eoff
75
75
50
50
25
25
VGE90%
VCE3%
VGE10%
0
Pon
0
tEoff
tEon
-25
-25
0
0,2
0,4
0,6
0,8
1
3,8
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
415,88
24,11
0,767
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
4
4,2
415,88
17,53
0,572
4,4
4,6
time(us)
4,8
kW
mJ
µs
Neutral Point FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
fitted
Vd
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
4,2
4,3
4,4
4,5
4,6
4,7
4,8
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
700
594
-415
0,289
V
A
A
µs
22
Revision: 1.1
70-W212NMC600SH01-M700P
Switching Definitions Half Bridge
Neutral Point FWD
Figure 8
Neutral Point FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Erec
Qrr
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-25
-100
4,1
4,3
Id (100%) =
Qrr (100%) =
tQrr =
copyright by Vincotech
4,5
594
45,49
0,67
4,7
4,9
time(us)
4,2
5,1
4,4
4,6
4,8
5
5,2
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
23
415,88
10,16
0,67
kW
mJ
µs
Revision: 1.1
70-W212NMC600SH01-M700P
Half Bridge switching measurement circuit
Figure 10
copyright by Vincotech
24
Revision: 1.1
70-W212NMC600SH01-M700P
Switching Definitions Neutral Point
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
Neutral Point IGBT
Figure 1
Neutral Point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
%
IC
%
125
tdoff
150
100
VGE 90%
VCE
VCE
90%
100
75
IC
VGE
tdon
50
50
tEoff
VGE
25
VGE 10%
IC 10%
0
IC 1%
VCE
VCE 3%
tEon
0
-50
-25
0
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,4
0,6
0,8
3,9
time (us) 1
4,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
350
583
0,23
0,58
4
Neutral Point IGBT
Figure 3
4,2
-15
15
350
583
0,274
0,38
4,3
4,5
time(us)
4,6
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4,4
Turn-on Switching Waveforms & definition of tr
200
150
%
VCE
IC
%
125
fitted
150
IC
100
Ic 90%
VCE
100
75
IC 90%
Ic 60%
tr
50
50
Ic 40%
25
Ic10%
0
IC 10%
0
tf
-25
-50
0,3
0,4
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,5
350
583
0,07
0,6
0,7
time (us)
0,8
4,1
VC (100%) =
IC (100%) =
tr =
V
A
µs
25
4,2
4,3
350
583
0,045
4,4
4,5
time(us)
4,6
V
A
µs
Revision: 1.1
70-W212NMC600SH01-M700P
Switching Definitions Neutral Point
Neutral Point IGBT
Figure 5
Neutral Point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
Poff
100
%
IC 1%
Eoff
Eon
100
75
75
50
50
25
Pon
25
Uge90%
Uge
0
Uce 3%
10%
0
tEoff
tEon
-25
-25
0
0,2
0,4
0,6
0,8
1
3,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
203,90
23,39
0,58
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
4
4,1
203,8995
13,39
0,38
4,2
4,3
4,4
4,5
time(us)
kW
mJ
µs
Half Bridge FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Ud
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
4,2
4,3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
4,4
350
583
-545
0,09
4,5
time(us)
4,6
V
A
A
µs
26
Revision: 1.1
70-W212NMC600SH01-M700P
Switching Definitions Neutral Point
Half Bridge FWD
Figure 8
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
Half Bridge FWD
150
150
%
%
Qrr
100
Erec
125
Id
100
tQint
50
tErec
75
50
0
25
Prec
-50
0
-100
-25
4,2
4,3
Id (100%) =
Qrr (100%) =
tQint =
copyright by Vincotech
4,4
4,5
583
31,59
0,33
A
µC
µs
4,6
4,7
time(us)
4,8
4,2
Prec (100%) =
Erec (100%) =
tErec =
27
4,3
4,4
4,5
203,90
7,18
0,33
kW
mJ
µs
4,6
4,7 time(us) 4,8
Revision: 1.1
70-W212NMC600SH01-M700P
Neutral Point switching measurement circuit
Figure 10
copyright by Vincotech
28
Revision: 1.1
70-W212NMC600SH01-M700P
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W212NMC600SH01-M700P
in DataMatrix as
M700P
in packaging barcode as
M700P
Outline
Pin
X1
Driver pins
Y1
Function
1.1
1.2
-0,2
2,8
81,55
81,55
G1-1
E1-1
T1
T1
M4
screw
3.1
X3
Y3
Function
-37,4
89,8
1.3
1.4
1.5
44,2
41,2
1,85
81,55
81,55
68,45
G1-2
E1-2
E2-1
T1
T1
T2
3.2
3.3
3.4
-37,4
-37,4
81,4
1.6
1.7
4,85
42,15
67,45
68,45
G2-1
E2-2
T2
T2
3.5
3.6
1.8
39,15
67,45
G2-2
T2
1.9
1.10
1.11
-5,4
-5,4
49,4
46,55
49,55
46,55
G3-1
E3-1
G3-2
T3
T3
T3
1.12
49,4
49,55
E3-2
1.13
1.14
1.15
-3,45
-0,45
47,45
30,65
30,65
30,65
E4-1
G4-1
E4-2
1.16
44,45
30,65
G4-2
1.17
1.18
1.19
19,45
24,55
19,45
16
Desat-DC+
16
Desat-DC+
50,75 Desat-GND
1.20
1.21
1.22
24,55
67,65
67,65
50,75 Desat-GND
86,7
NTC
89,8
NTC
copyright by Vincotech
Low current connections
Group
Power connections
X2
Y2
TR+
M6
screw
2.1
0
0
Phase
89,8
89,8
89,8
DC+
Neutral
TR+
2.2
2.3
2.4
22
44
0
0
0
110,4
Phase
Phase
DC+
81,4
81,4
89,8
89,8
Neutral
DC+
2.5
2.6
22
44
110,4
110,4
Neutral
DC-
3.7
-37,4
65,2
CE
3.8
3.9
3.10
-37,4
81,4
81,4
65,2
65,2
65,2
Neutral
CE
Neutral
T3
3.11
-37,4
45,2
Phase
T4
T4
T4
3.12
3.13
3.14
-37,4
81,4
81,4
45,2
45,2
45,2
Neutral
Phase
Neutral
T4
3.15
-37,4
20,6
DC-
3.16
3.17
3.18
-37,4
-37,4
81,4
20,6
20,6
20,6
TRNeutral
DC-
3.19
3.20
81,4
81,4
20,6
20,6
Neutral
TR-
Function
29
Revision: 1.1
70-W212NMC600SH01-M700P
Ordering Code and Marking - Outline - Pinout
Pinout
copyright by Vincotech
30
Revision: 1.1
70-W212NMC600SH01-M700P
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
31
Revision: 1.1