10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y flow NPC 0 600V/75A & 99mΩ PS* Features flow 0 12mm housing ● *PS: 75A parallel switch (75A and 99mΩ MOSFET) ● neutral point clamped inverter ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ06NRA084FP03-P969F78 ● 10-PZ06NRA084FP03-P969F78Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Boost Inv. Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Maximum repetitive forward current IFRM Th=80°C Tc=80°C tp=10ms Tj=25°C 7 11 A 20 A 9,5 A2s 44 66 W Tjmax 175 °C VCE 600 V 61 80 A 225 A 225 A 108 163 W I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Tj=Tjmax Th=80°C Tc=80°C Buck IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Turn off safe operating area Ptot Gate-emitter peak voltage VGE ±20 V Tjmax 175 °C Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C Power dissipation per IGBT 1 Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 25 34 A 300 A 40 61 W Tjmax 150 °C VDS 600 V 17 21 A 112 A Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Non-repetitive Peak Surge Current IFSM 60Hz Single Half-Sine Wave Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C 60 Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 58 75 A 225 A 225 A 93 141 W ±20 V 6 360 µs V 175 °C 1200 V 22 29 A 70 A 51 77 W 175 °C Maximum Junction Temperature Tj=Tjmax 91 W Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax, 20 kHz Square Wave Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 3 Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Boost Inv. Diode Forward voltage VF 10 Threshold voltage (for power loss calc. only) Vto 10 Slope resistance (for power loss calc. only) rt 10 Reverse current Ir 600 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 9,44 7,24 8,32 6,62 0,11 0,06 V V Ω 0,027 mA 2,17 K/W 1,43 Buck IGBT * Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,00025 15 75 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Input capacitance ** Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge** QGate f=1MHz 0 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C 3,5 4,5 6 1,69 1,87 2,5 250 ±400 V V mA nA none Ω 4+4,7 nF 400 pF Thermal resistance chip to heatsink per chip RthJH 115 15 480 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 248+70 nC 0,88 K/W * see dinamic characteristic at Buck MosFET **additional value stands for built-in capacitor Buck Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF Ir 600 IRRM trr Qrr Rgon=4 Ω ±15 350 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright Vincotech 30 Thermal grease thickness≤50um λ = 1 W/mK 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,67 1,86 100 80 90 13 22 0,59 1,18 22422 14099 0,13 0,19 1,73 4 2,7 V µA A ns µC A/µs mWs K/W Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 2,4 108 214 3 3,6 Buck MOSFET Static drain to source ON resistance Gate threshold voltage Rds(on) 10 16 VDS=VGS V(GS)th Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time 0,00121 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Rgoff=4 Ω Rgon=4 Ω ±15 350 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C mΩ 100 5 36 37 3 3 399 414 3 4 0,06 0,28 0,06 0,23 V nA uA ns mWs 119 10 480 18,1 14 Tj=25°C nC 61 Input capacitance Ciss Output capacitance Coss Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE 2660 f=1MHz 0 100 pF Tj=25°C 154 1,16 K/W ** see schematic of the Gate-complex at characteristic figures Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) Collector-emitter cut-off incl diode ICES Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 30 600 0 0 20 td(off) tf Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5 5,8 6,5 1,05 1,12 1,13 1,85 0,0038 600 none tr Eon copyright Vincotech 15 td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,0012 Rgoff=4 Ω Rgon=4 Ω ±15 350 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 85 87 11 13 177 209 78 102 0,39 0,66 1,56 2,18 V V mA nA Ω ns mWs 4620 f=1MHz 25 0 Tj=25°C 288 pF 137 15 480 Thermal grease thickness≤50um λ = 1 W/mK 5 75 Tj=25°C 470 nC 1,02 K/W Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 2,23 2,04 3,3 Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 18 Ir 1200 IRRM trr Qrr Rgon=4 Ω ±15 350 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 100 79 104 26 105 3,00 6,55 11365 7906 0,87 1,86 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,87 K/W 21511 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 Tj=25°C R100=1486 Ω Tc=100°C P Power dissipation constant -4,5 +4,5 Tj=25°C 210 mW Tj=25°C 3,5 mW/K K A-value B(25/50) Tj=25°C 3884 B-value B(25/100) Tj=25°C 3964 Vincotech NTC Reference copyright Vincotech Tj=25°C 6 % K F Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Buck MOSFET+IGBT Figure 1 Typical output characteristics IC = f(VCE) MOSFET+IGBT Figure 2 Typical output characteristics IC = f(VCE) 160 IC (A) IC (A) 160 140 140 120 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V MOSFET+IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 125 IF (A) IC (A) 70 5 60 100 50 75 40 30 50 Tj = Tjmax-25°C 20 25 10 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 V GE (V) 8 0 At tp = µs V 7 1 250 2 3 4 V F (V) 5 µs Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Buck MOSFET+IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET+IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,6 E (mWs) 0,8 E (mWs) Eon High T Eoff High T Eon High T 0,5 0,6 0,4 Eon Low T 0,4 0,3 Eoff High T 0,2 Eoff Low T Eoff Low T 0,2 Eon Low T 0,1 0,0 0,0 0 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 40 60 80 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 40 A Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) 20 40 60 RG( Ω ) Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,25 80 0,20 E (mWs) E (mWs) Erec High T 0,20 0,15 Erec High T Erec Low T 0,15 0,10 0,10 0,05 0,05 Erec Low T 0,00 0,00 0 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 40 60 I C (A) 80 0 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 40 A Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS 8 40 60 RG( Ω ) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Buck MOSFET+IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET+IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 1,00 tdoff t (ms) t (ms) tdoff tdon 0,10 0,10 tdon tr tf 0,01 0,01 tf tr 0,00 0,00 0 20 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 60 0 80 I C (A) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 40 A Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) 20 60 RG( Ω ) Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,030 t rr(ms) t rr(ms) 0,05 80 trr High T trr High T 0,025 0,04 0,020 0,03 trr Low T 0,015 0,02 trr Low T 0,010 0,01 0,005 0,000 0,00 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 4 copyright Vincotech 40 °C V V Ω 60 I C (A) 0 80 At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS 9 20 25/125 350 40 ±15 40 °C V A V 60 R gon ( Ω ) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 2,0 Qrr (uC) Qrr (uC) 1,2 Qrr High T Qrr High T 1,0 1,5 0,8 0,6 1,0 Qrr Low T 0,4 Qrr Low T 0,5 0,2 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 20 40 °C V V Ω 25/125 350 ±15 4 60 0 80 I C (A) At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 20 25/125 350 40 ±15 40 °C V A V 60 R gon ( Ω) Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 100 IrrM (A) 100 80 IRRM Low T 80 80 IRRM High T 60 60 40 40 20 20 0 IRRM Low T 0 0 At Tj = VCE = VGE = Rgon = IRRM High T 20 25/125 350 ±15 4 copyright Vincotech 40 °C V V Ω 60 I C (A) 80 0 At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS 10 20 25/125 350 40 ±15 40 °C V A V 60 R gon ( Ω) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Buck FWD 32000 dIrec/dt T 28000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIo/dt T 25000 dIrec/dt T dI0/dt T 20000 24000 20000 15000 16000 10000 12000 8000 5000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 4 40 °C V V Ω 60 I C (A) 0 80 At Tj = VR = IF = VGE = Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 40 ±15 40 °C V A V 60 R gon ( Ω) 80 Gate on/off resistor of IGBT is fix 4Ω MOSFET turn off delayed with 350 nS FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 20 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10-5 1 10 102 At D= RthJH = tp / T 0,88 K/W IGBT thermal model values R (C/W) Tau (s) 0,14 1,8E+00 0,36 2,1E-01 0,28 7,5E-02 0,08 1,2E-02 0,02 1,1E-03 copyright Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 101 tp / T 1,73 K/W FWD thermal model values R (C/W) Tau (s) 0,08 4,5E+00 0,17 9,6E-01 0,63 1,6E-01 0,53 5,6E-02 0,20 1,2E-02 0,12 2,3E-03 11 Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 Ptot (W) IC (A) 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 Ptot (W) IF (A) 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 25 150 copyright Vincotech 50 75 100 125 T h ( o C) 150 0 At Tj = °C 12 25 150 50 75 100 125 T h ( o C) 150 °C Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Buck IGBT Figure 25 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) Safe operating area as a function of collector-emitter voltage IC = f(VCE) 15 IC (A) VGE (V) 103 100uS 200V 1 102 12 400V 100mS 10mS 1mS DC 9 101 10 6 0 3 10-1 0 10 At D= 0 101 0 V CE (V) 102 At IC= single pulse 80 ºC ±15 V Tjmax ºC Th = VGE = Tj = 50 100 150 200 Q g (nC) 250 1 MOSFET Figure 27 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 75 MOSFET Figure 28 Gate voltage vs Gate charge VGE = f(Qg) 101 VGE (V) ZthJH (K/W) 10 120V 8 480V 10 0 6 4 10-1 2 0 10-2 At 10 -5 D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 0 tp / T At IC = 1,16 K/W MOSFET thermal model values R (C/W) Tau (s) 0,11 4,7E+00 0,22 9,0E-01 0,39 1,7E-01 0,25 4,8E-02 0,10 1,3E-02 0,05 2,5E-03 copyright Vincotech 20 40 1012 10 13 38 60 80 100 Q g (nC) 120 A Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 80 IF (A) IC (A) 80 5 60 60 40 40 20 20 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C Tj = Tjmax-25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 14 1 250 2 3 V F (V) 4 µs Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,5 E (mWs) E (mWs) 4 Eoff High T Eoff High T Eon High T 2,0 3 Eoff Low T Eon Low T Eoff Low T 1,5 2 1,0 Eon High T 1 Eon Low T 0,5 0 0,0 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3 E (mWs) E (mWs) 2,5 Erec High T 2,5 2 Erec High T 2 1,5 1,5 Erec Low T 1 1 Erec Low T 0,5 0,5 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 5 10 15 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A 15 Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( µs) t ( µs) 1 tdon tdoff tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 R G ( Ω) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 50 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 trr High T t rr(ms) t rr(ms) 0,15 trr High T 0,12 0,3 0,09 trr Low T 0,2 0,06 trr Low T 0,1 0,03 0,0 0,00 0 At Tj = VCE = VGE = Rgon = 20 125 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 16 5 125 25/125 350 50 ±15 10 15 R gon ( Ω) 20 °C V A V Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 8 Qrr (mC) Qrr (mC) 10 Qrr High T 8 Qrr High T 6 6 4 Qrr Low T 4 Qrr Low T 2 2 0 0 0 20 At At Tj = VCE = VGE = Rgon = 125 25/125 350 ±15 4 40 60 80 0 100 I C (A) 4 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 120 16 R gon ( Ω) 20 °C V A V FWD 120 IrrM (A) IrrM (A) 125 25/125 350 50 ±15 12 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IRRM High T 100 8 100 IRRM Low T 80 80 60 60 40 40 IRRM High T IRRM Low T 20 20 0 0 0 At Tj = VCE = VGE = Rgon = 20 125 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 17 5 125 25/125 350 50 ±15 10 15 R gon ( Ω) 20 °C V A V Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Boost FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a and reverse recovery current dI0/dt,dIrec/dt = f(Rgon) 20000 direc / dt (A/ms) direc / dt (A/ms) 14000 dIrec/dt T di0/dt T 12000 dI0/dt T dIrec/dt T 15000 10000 8000 10000 6000 4000 5000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 125 25/125 350 ±15 4 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 125 25/125 350 50 ±15 10 15 20 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 5 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 tp / T 1,02 10-3 10-2 10-1 100 t p (s) 101 2 10 10-5 At D= RthJH = K/W 10-4 tp / T 1,87 10-3 FWD thermal model values R (C/W) 0,08 0,12 0,47 0,26 R (C/W) 0,08 0,22 1,10 0,21 0,15 0,12 copyright Vincotech 18 10-1 100 t p (s) 12 1010 K/W IGBT thermal model values Tau (s) 4,3E+00 1,0E+00 1,5E-01 4,9E-02 10-2 Tau (s) 2,9E+00 4,4E-01 1,1E-01 3,3E-02 7,2E-03 1,0E-03 Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 Ptot (W) IC (A) 200 80 150 60 100 40 50 20 0 0 At Tj = 50 100 150 T h ( o C) 0 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 35 Ptot (W) IF (A) 100 200 30 80 25 60 20 15 40 10 20 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 175 100 150 Th ( o C) 200 ºC Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Boost Inv. IGBT Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) IGBT Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 ZthJC (K/W) IF (A) 101 30 10 0 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = 25°C Tj = Tjmax-25°C 0 0 At tp = 3 6 9 12 V F (V) 10-2 15 µs 250 IGBT Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 10-3 At D= RthJH = tp / T 2,17 K/W 10-2 100 t p (s) 1012 10 IGBT Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 15 Ptot (W) IF (A) 100 10-1 80 12 60 9 40 6 20 3 0 0 0 50 100 150 Th ( o C) 0 200 At Tj = 50 100 150 Th ( o C) 200 At 175 copyright Vincotech Tj = ºC 20 175 ºC Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 21 Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Switching Definitions BUCK IGBT&MOSFET Rgon IGBT Rgoff IGBT General conditions = 125°C Tj 4Ω Rgon MOSFET 4Ω Rgoff MOSFET = = = = 4Ω 4Ω MOSFET turn off delayed time with 350 nS BUCK IGBT&MOSFET Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 350 % tdoff % BUCK IGBT&MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC 300 100 VGE 90% IC VGE 250 75 200 50 VCE 90% tEoff 150 25 100 IC 1% VCE 0 50 VGE tdon VCE VGE10% -25 VCE 3% IC10% 0 tEon -50 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 700 40 0,41 0,44 0,4 time (us) -50 2,98 0,6 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs BUCK IGBT&MOSFET Figure 3 3,04 -15 15 700 40 0,04 0,06 3,06 time(us) 3,08 V V V A µs µs BUCK IGBT&MOSFET Turn-on Switching Waveforms & definition of tr 350 % fitted IC 100 3,02 Figure 4 Turn-off Switching Waveforms & definition of tf 125 % 3 IC 300 IC 90% 250 75 IC 60% 200 50 IC 40% 25 150 VCE IC10% 0 100 tf VCE -25 50 -50 0 -50 3,02 -75 0,4 0,41 VC (100%) = IC (100%) = tf = copyright Vincotech 0,42 700 40 0,004 0,43 0,44 time (us) 0,45 tr IC 90% IC 10% 3,03 3,04 3,05 3,06 3,07 time(us) VC (100%) = IC (100%) = tr = V A µs 22 700 40 0,003 V A µs Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Switching Definitions BUCK IGBT&MOSFET BUCK IGBT&MOSFET Figure 5 BUCK IGBT&MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Eon Eoff 100 100 75 75 Pon 50 50 25 25 VGE 90% VCE 3% VGE 10% Poff 0 0 tEoff -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = tEon 0,2 28,07 0,23 0,44 0,4 time (us) -25 2,98 0,6 3,02 Pon (100%) = Eon (100%) = tEon = kW mJ µs BUCK IGBT&MOSFET Figure 7 3 28,07 0,28 0,06 3,04 3,06 3,08 kW mJ µs BUCK FWD Figure 8 Turn-off Switching Waveforms & definition of trr time(us) Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 150 150 % % 100 Id Qrr 100 Id trr tQrr 50 50 fitted 0 0 IRRM 10% Vd -50 -50 -100 -100 -150 -150 IRRM 90% -200 -200 IRRM 100% -250 3,01 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech -250 3,03 3,05 700 40 -90 0,02 3,07 time(us) 3,09 3 Id (100%) = Qrr (100%) = tQrr = V A A µs 23 3,025 3,05 40 1,18 0,04 3,075 time(us) 3,1 A µC µs Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y Switching Definitions BUCK IGBT&MOSFET BUCK FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 % Erec 100 80 tErec 60 40 Prec 20 0 -20 3,03 3,05 Prec (100%) = Erec (100%) = tErec = 01-2 -1 -2 010-2 -1 -1 -5 -5 -5 1010 10 10 10 10 150 75 1,6 80 40 1,25 120 30 100 300 225 0,08 7032 11 3,07 kW mJ µs 28,07 0,19 0,04 -4 -4 1010 10-4 3,09 time(us) 10-3 10-3 -2 -2 1010 10-2 10-110-1-1 0 00 1 11 1010 10 20 -3 10= 10 100,5 10 10-1 10 D DD = = 0,5 0,5 01-2 -1 -2 01 01-2 -1 -1-5 -5 -5 -5 -4 -4 -4 o -4 10 10 10 10 10 10 10 10 10010 C10 80 40 100 30 50 12 3000 60 25 40 150 1,4 1T =130 1,25 -3 -3 -3-3 10 1010 -2-2 -2 10 10 10-1-1-1 0 10 10 10 10 00000 10 10 10 10 10 D D D D = = ==0,5 0,5 0,5 0,5 111 2 10 10 1010 Measurement circuits Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit T5 T5 T3 400V C1 100uF 100k R1 T1 D3 T1 D1 Vcc V VDC 700V 200uH L 4_OHM 4_OHM 0.00001 0.000003 Q Q Q Q +15V 400V C2 100uF R2 100k T2 D2 D4 T4 Driver Ic 1mH V T6 Vge L2 T4 Rgon -15V 200uH L A D2 A 0.000003 Vce V Ic T2 Vce V D1 D3 D4 Vge V T6 T3 VDC 350V Q Q VDC2 15V 350nS VDC2 15V Rgoff 0.00001 0.000003 Q Q Q Q 0.000003 Q Q Cg is included in the module (T5,T6) copyright Vincotech 24 Revision: 1 10-FZ06NRA084FP03-P969F78 10-PZ06NRA084FP03-P969F78Y Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 12mm housing with PressFiT without thermal paste 12mm housing in DataMatrix as 10-PZ06NRA084FP03-P969F78Y 10-FZ06NRA084FP03-P969F78 P969F78Y P969F78 in packaging barcode as P969F78Y P969F78 Outline Pin X Y 1 2 3 4 5 6 7 33,6 30,7 27,8 22 19,2 11,4 0 0 0 0 0 0 0 10,1 17,9 20,8 27,8 30,7 33,6 33,6 33,6 0 0 0 0 0 0 0 2,9 9,9 12,7 15,5 19,7 22,6 22,6 22,6 22,6 22,6 22,6 22,6 14,8 8,2 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Pinout copyright Vincotech 25 Revision: 1 10-FZ06NRA084FP02-P969F78 10-PZ06NRA084FP02-P969F78Y DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 26 Revision: 1