10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet flowNPC 0 650 V / 60 A Features flow0 12mm housing ● neutral point clamped inverter ● reactive power capability ● clip-in pcb mounting ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ06NRA060FU-P967F08 ● 10-PZ06NRA060FU-P967F08Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 15 20 A 20 A 9,5 A 2s 26 39 W Tjmax 175 °C VCES 650 V 53 70 A tp limited by Tjmax 180 A Tj≤150°C VCE<=VCES 180 A 108 163 W Buck & Boost Inv. Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Maximum repetitive forward current IFRM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp limited by Tjmax Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Buck IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Tj=Tjmax Th=80°C Tc=80°C Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE ±20 V Tjmax 175 °C Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C 1 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 27 36 A 300 A 40 60 W Tjmax 150 °C VCES 600 V 46 63 A tp limited by Tjmax 225 A Tj≤150°C VCE<=VCES 225 A 68 103 W ±20 V 6 360 µs V 175 °C 1200 V 16 21 A 36 A 32 48 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V min 12,7 mm 9,15 mm Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Non-repetitive Peak Surge Current IFSM 60Hz Single Half-Sine Wave Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V Tjmax Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax 20kHz Square Wave Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Vis t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,25 1,66 1,52 1,16 1,00 0,05 0,05 1,95 Buck & Boost Inv. Diode Forward voltage VF 10 Threshold voltage (for power loss calc. only) Vto 10 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 10 600 V Ω 0,027 Thermal grease thickness≤50u m λ = 1 W/mK V 3,66 mA K/W Buck IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) VCE=VGE 0,00025 15 30 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge Thermal resistance chip to heatsink per chip Rgoff=4 Ω Rgon=4 Ω 4,5 5,6 1,51 1,52 2,1 0,03 230 ±15 350 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 49 50 4 4 90 115 5 6 0,17 0,35 0,18 0,38 ns mWs 2915 f=1MHz 0 Tj=25°C 30 270 pF 85 QGate RthJH 3,9 none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C ±15 400 60 Tj=25°C Thermal grease thickness≤50u m λ = 1 W/mK 189 nC 0,88 K/W Buck Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time Reverse recovered charge Qrr Reverse recovered energy Thermal resistance chip to heatsink per chip copyright Vincotech 600 IRRM trr Peak rate of fall of recovery current 30 Rgon=4 Ω 350 ±15 di(rec)max /dt Erec RthJH Thermal grease thickness≤50u m λ = 1 W/mK 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,15 1,61 50 59 14 26 0,36 0,94 16743 8913 0,022 0,098 1,77 3 2,8 100 V µA A ns µC A/µs mWs K/W 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,31 1,40 1,85 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,0012 15 50 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Gate charge Thermal resistance chip to heatsink per chip 0,0038 600 Rgoff=4 Ω Rgon=4 Ω ±15 350 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA 87 88 11 12 177 204 85 93 0,37 0,54 1,69 2,25 ns mWs 4620 f=1MHz 0 25 Tj=25°C pF 288 Crss 137 QGate RthJH V Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 15 480 75 Tj=25°C Thermal grease thickness≤50u m λ = 1 W/mK 465 nC 1,40 K/W Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink per chip VF 18 Ir 1200 IRRM trr Qrr Rgon=4 Ω ±15 350 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,43 2,10 3,3 100 69 77 25 123 3,42 6,27 9632 5392 1,04 1,97 Thermal grease thickness≤50u m λ = 1 W/mK V µA A ns µC A/µs mWs 2,21 K/W 21500 Ω Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -4,5 4,5 T=25°C 210 mW T=25°C 3,5 mW/K K B-value B(25/50) T=25°C 3884 B-value B(25/100) T=25°C 3964 Vincotech NTC Reference copyright Vincotech % K F 4 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 IGBT 125 125 100 100 75 75 50 50 25 25 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) IGBT 1 2 3 4 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) FWD 120 Tj = Tjmax-25°C IF (A) IC (A) 60 Tj = 25°C 50 100 40 80 30 60 20 40 10 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 0 V GE (V) 10 At tp = µs V 5 1 250 2 3 4 V F (V) 5 µs 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,8 IGBT E (mWs) E (mWs) 0,5 Eon High T Eon High T Eoff High T 0,4 0,6 Eoff High T 0,3 0,4 Eon Low T Eon Low T 0,2 Eoff Low T Eoff Low T 0,2 0,1 0 0,0 0 10 20 30 40 50 60 0 I C (A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 8 12 16 R G ( Ω) 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 30 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,20 FWD 0,10 E (mWs) E (mWs) 4 Erec High T Erec High T 0,08 0,15 0,06 0,10 0,04 Erec Low T 0,05 0,02 Erec Low T 0,00 0,00 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A 6 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 IGBT tdoff tdoff 0,10 0,10 tdon tdon tr 0,01 0,01 tf tf tr 0,00 0,00 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 30 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,04 t rr(ms) 0,04 FWD trr High T trr High T 0,03 0,03 0,02 0,02 trr Low T trr Low T 0,01 0,01 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 copyright Vincotech 20 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω 7 4 25/125 350 30 ±15 8 12 16 R gon ( Ω) 20 °C V A V 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1 Qrr (µC) Qrr (µC) 1,5 Qrr High T 1,2 FWD 0,8 Qrr High T 0,9 0,6 0,6 0,4 Qrr Low T Qrr Low T 0,3 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 30 40 50 60 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(I C) FWD 4 25/125 350 30 ±15 8 12 16 R gon ( Ω) 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 75 IrrM (A) 75 FWD IRRM High T 60 60 IRRM Low T 45 45 IRRM High T 30 30 IRRM Low T 15 15 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 copyright Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 8 4 25/125 350 30 ±15 8 12 16 R gon ( Ω) 20 °C V A V 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 20000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) 18000 FWD dIo/dt T 15000 dIrec/dt T dI0/dt T 16000 12000 12000 9000 8000 6000 4000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 30 40 50 0 I C (A) 60 At Tj = VR = IF = VGE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) IGBT 25/125 350 30 ±15 8 12 16 R gon ( Ω) 20 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 FWD ZthJH (K/W) ZthJH (K/W) 101 100 10 4 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 t p (s) 100 10-2 10110 tp / T 0,88 K/W RthJH = 0,59 K/W IGBT thermal model values Thermal grease Phase change interface R (K/W) Tau (s) R (K/W) Tau (s) 0,08 2,8E+00 0,05 1,87 0,20 3,7E-01 0,13 0,25 0,45 8,9E-02 0,30 0,06 0,13 1,2E-02 0,09 0,01 0,02 8,8E-04 0,02 0,00 copyright Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-5 10-4 At D= RthJH = 1,77 10-3 10-2 10-1 t p (s) 100 1021 tp / T K/W RthJH = 1,18 K/W FWD thermal model values Thermal grease Phase change interface R (K/W) Tau (s) R (K/W) Tau (s) 0,10 5,3E+00 0,06 3,54 0,23 8,1E-01 0,15 0,54 0,71 1,4E-01 0,48 0,10 0,45 4,0E-02 0,30 0,03 0,16 8,4E-03 0,11 0,01 0,12 1,3E-03 0,08 0,00 9 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 Ptot (W) IC (A) 200 IGBT 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) FWD 50 175 15 100 150 T h ( o C) °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) FWD 60 Ptot (W) IF (A) 100 200 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 10 50 150 100 150 T h ( o C) 200 °C 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge IGBT VGE = f(Qg) 103 IC (A) VGE (V) 15 100uS 102 12 400V 200V 1mS 100mS 10mS 9 101 DC 6 100 3 10-1 0 100 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 11 50 60 100 150 Q g (nC) 200 A 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Boost Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IGBT 200 IC (A) IC (A) 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) IGBT 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 40 5 FWD IC (A) IF (A) 75 60 30 45 20 30 Tj = Tjmax-25°C 10 15 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 0 10 At tp = µs V 12 1 250 2 3 4 V F (V) 5 µs 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Boost Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) IGBT 2,5 Eoff High T E (mWs) E (mWs) 4 Eoff High T 2 Eon High T 3 Eoff Low T Eoff Low T Eon Low T 1,5 2 1 Eon High T 1 0,5 Eon Low T 0 0 0 20 40 60 80 0 100 I C (A) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 20 R G( Ω ) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 3 Erec High T FWD 2,5 2,5 2 2 Erec High T 1,5 Erec Low T 1,5 1 1 Erec Low T 0,5 0,5 0 0 0 10 20 30 40 50 60 70 80 I 90 C (A) 100 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 50 A 13 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Boost Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) 1 IGBT t ( µs) tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr 0,01 0,01 tr 0,001 0,001 0 10 20 30 40 50 60 70 80 90 I C (A) 100 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 50 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,6 trr High T t rr(ms) t rr(ms) 0,15 FWD trr High T 0,5 0,12 0,4 0,09 trr Low T 0,3 0,06 0,2 trr Low T 0,03 0,1 0,00 0,0 0 At Tj = VCE = VGE = Rgon = 10 20 25/125 350 ±15 4 copyright Vincotech 30 40 50 60 70 80 I90C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 14 4 25/125 350 50 ±15 8 12 16 R gon ( Ω) 20 °C V A V 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Boost Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (µC) 8 Qrr (µC) 10 FWD Qrr High T 8 6 Qrr High T 6 Qrr Low T 4 Qrr Low T 4 2 2 0 0 0 At At Tj = VCE = VGE = Rgon = 10 20 25/125 350 ±15 4 30 40 50 60 70 80 90 I C (A) 0 100 4 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(I C) FWD 25/125 350 50 ±15 8 12 16 R gon ( Ω) °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 20 FWD IrrM (A) IrrM (A) 100 IRRM High T 80 80 IRRM Low T 60 60 40 40 IRRM High T IRRM Low T 20 20 0 0 0 At Tj = VCE = VGE = Rgon = 10 20 25/125 350 ±15 4 copyright Vincotech 30 40 50 60 70 80 90 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 15 4 25/125 350 50 ±15 8 12 16 R gon ( Ω) 20 °C V A V 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Boost Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD 12000 Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 18000 direc / dt (A/ms) direc / dt (A/ms) dIrec/dt T dIo/dt T 10000 dIrec/dt T dI0/dt T 15000 8000 12000 6000 9000 4000 6000 2000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 10 20 25/125 350 ±15 4 30 40 50 60 70 80 0 90 I (A) 100 C At Tj = VR = IF = VGE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) IGBT 4 8 25/125 350 50 ±15 12 16 R gon ( Ω) 20 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) FWD 101 ZthJH (K/W) ZthJH (K/W) 101 10 FWD 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 At D= RthJH = 10-4 10-3 tp / T 1,40 K/W 10-2 RthJH = 10-1 0,94 t p (s) 100 10 1021 copyright Vincotech -2 10-5 At D= RthJH = K/W IGBT thermal model values Thermal grease R (K/W) Tau (s) 0,25 8,1E+00 0,22 4,7E-01 0,69 9,9E-02 0,14 2,0E-02 0,05 4,1E-03 0,05 4,0E-04 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 0 10-4 10-3 tp / T 2,21 K/W 10-2 10-1 RthJH = 100 1,48 t p (s) 1021 K/W FWD thermal model values Phase change interface R (K/W) Tau (s) 0,17 5,45 0,14 0,32 0,47 0,07 0,10 0,01 0,03 0,00 0,03 0,00 Thermal grease R (K/W) Tau (s) 0,08 2,5E+00 0,32 3,3E-01 1,23 8,5E-02 0,32 1,1E-02 0,18 2,1E-03 0,09 5,7E-04 16 Phase change interface R (K/W) Tau (s) 0,05 0,21 0,82 0,21 0,12 0,06 1,64 0,22 0,06 0,01 0,00 0,00 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Boost Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 75 IC (A) Ptot (W) 150 IGBT 125 60 100 45 75 30 50 15 25 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) FWD 50 175 15 100 150 T h ( o C) ºC V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) FWD 30 Ptot (W) IF (A) 80 200 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 17 50 150 100 150 Th ( o C) 200 ºC 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Buck & Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 Boost Inverse Diode ZthJC (K/W) IF (A) 101 30 100 20 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 1 250 1,5 2 2,5 V F (V) 10-2 3 10-5 At D= RthJH = µs Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) Boost Inverse Diode 10-3 tp / T 3,66 10-2 10-1 100 t p (s) 1021 K/W Figure 28 Forward current as a function of heatsink temperature IF = f(Th) Boost Inverse Diode 25 Ptot (W) IF (A) 50 40 20 30 15 20 10 10 5 0 0 0 At Tj = 10-4 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Switching Definitions BUCK IGBT General conditions Tj Rgon Rgoff = = = Figure 1 BUCK IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) 125 % 125 °C 4Ω 4Ω Figure 2 BUCK IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 300 % tdoff IC 250 100 VGE 90% IC 75 200 VGE 150 50 VCE 90% tEoff 100 VCE 25 IC 1% VGE tdon 50 VCE 0 VCE 3% VGE 10% IC 10% 0 tEon -25 -0,2 -0,1 0 0,1 0,2 -50 0,3 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tE off = -15 15 700 30 0,12 0,26 V V V A µs µs 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tE on = Figure 3 BUCK IGBT Turn-off Switching Waveforms & definition of t f 120 % 2,95 -15 15 700 30 0,05 0,09 3,05 3,1 time(us) 3,15 V V V A µs µs Figure 4 BUCK IGBT Turn-on Switching Waveforms & definition of t r 300 % fitted IC IC 250 100 IC 90% 200 80 VCE IC 60% 60 150 100 IC 40% 40 50 20 IC 90% tr VCE IC10% IC 10% 0 0 tf -50 2,97 -20 0 0,02 VC (100%) = IC (100%) = tf = copyright Vincotech 0,04 700 30 0,006 0,06 0,08 time (us) 0,1 V A µs VC (100%) = IC (100%) = tr = 20 2,99 3,01 700 30 0,004 3,03 time(us) 3,05 V A µs 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Switching Definitions BUCK IGBT Figure 5 BUCK IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 BUCK IGBT Turn-on Switching Waveforms & definition of t Eon 120 120 IC 1% % Eon % Eoff 100 100 80 80 60 60 40 40 Pon 20 20 VGE 90% VCE 3% VGE 10% Poff 0 0 tEoff tEon -20 -20 -0,2 -0,1 0 Poff (100%) = Eoff (100%) = tE off = 0,1 21,01 0,39 0,26 0,2 2,9 time (us) 0,3 kW mJ µs Pon (100%) = Eon (100%) = tE on = 2,95 3 21,01 0,35 0,09 3,05 time(us) 3,1 kW mJ µs Figure 7 BUCK FWD Turn-off Switching Waveforms & definition of t rr VGE (V) 150 20 % Id 100 15 trr 50 10 Vd 05 IRRM 10% -50 0 -100-5 fitted -150 -10 IRRM 90% -200 -15 -250 -20 3-50 IRRM 100% 0 50 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3,02 100 700 30 10 0,026 150 200 3,04 250 300 350 3,06 400 Qg time(us) (nC) V A A µs 21 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Switching Definitions BUCK IGBT Figure 8 BUCK FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 BUCK FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 150 Id % % Qrr Prec 100 125 Erec tQrr 50 100 0 75 -50 50 -100 25 -150 0 -200 2,98 3,005 Id (100%) = Qrr (100%) = tQrr = 3,03 3,055 30 0,943 0,05 3,08 tErec -25 2,98 3,105 time(us) A µC µs 3,005 Prec (100%) = Erec (100%) = tErec = 150 75 1,6 80 40 1,25 120 100 300 225 0,08 7032 11 3,03 21,01 0,098 0,05 3,055 3,08 3,105 time(us) kW mJ µs 80 40 100 30 50 12 3000 40 60 25 150 50 1,4 1 1,25 Measurement circuits Figure 10 BUCK stage switching measurement circuit T5 T3 D3 VDC 700V Figure 11 BOOST stage switching measurement circuit D5 T1 400V C1 100uF 100k R1 VDC 350V D1 200uH L Vcc V D4 D6 T2 D2 400V C2 100uF Vce V Vge V T1 D3 D5 Ic R2 100k A 15V D4 D6 D1 Vce V T2 D2 T4 Ic 200uH L 1mH A L2 Vge T6 VDC2 15V 0.00001 0.000003 Q Q Q Q 0.00001 0.000003 0.000003 Q Q Q Q Q Q 0.000003 Q Q copyright Vincotech 22 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Switching Definitions BOOST IGBT General conditions Tj Rgon Rgoff = = = Figure 1 BOOST IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) 124 °C 4Ω 4Ω Figure 2 BOOST IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 % 300 % IC 175 250 150 200 125 tdoff VCE 150 100 VGE 90% IC VCE 75 VGE 100 VGE 50 VCE 90% tdon tEoff 50 25 VGE 10% IC 1% VCE 3% IC 10% 0 0 tEon -25 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 -50 2,95 0,6 3 3,05 3,1 3,15 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tE off = -15 15 350 50 0,20 0,53 V V V A µs µs VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tE on = Figure 3 BOOST IGBT Turn-off Switching Waveforms & definition of t f 120 % 3,2 time(us) -15 15 350 50 0,088 0,14 V V V A µs µs Figure 4 BOOST IGBT Turn-on Switching Waveforms & definition of t r 300 % fitted IC VCE 100 250 IC 90% 200 80 IC 60% 60 150 IC VCE 100 IC 40% 40 IC 90% tr 50 20 IC10% 0 IC 10% 0 tf -50 -20 0 0,05 0,1 VC (100%) = IC (100%) = tf = copyright Vincotech 0,15 0,2 350 50 0,093 V A µs 0,25 0,3 3 0,35 0,4 time (us) 3,02 VC (100%) = IC (100%) = tr = 23 3,04 3,06 3,08 350 50 0,012 3,1 3,12 3,14 3,16 3,18 time(us) 3,2 V A µs 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Switching Definitions BOOST IGBT Figure 5 BOOST IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 BOOST IGBT Turn-on Switching Waveforms & definition of t Eon 120 120 % % Poff 100 Eoff Eon Pon 100 80 80 IC 1% 60 60 40 40 20 20 VGE 90% VCE 3% VGE 10% 0 0 tEoff -20 -0,2 -0,1 0 Poff (100%) = Eoff (100%) = tE off = 0,1 0,2 17,48 2,25 0,53 tEon 0,3 0,4 0,5 time (us) -20 2,95 0,6 3 3,05 3,1 3,15 3,2 time(us) kW mJ µs Pon (100%) = Eon (100%) = tE on = 17,48 0,54 0,14 kW mJ µs Figure 7 BOOST FWD Turn-off Switching Waveforms & definition of t rr VGE (V) 150 20 % Id 100 15 trr 50 10 Vd 05 IRRM 10% -50 0 fitted -100-5 IRRM 90% -150 -10 IRRM 100% -200 -15 -250 -20 3,05 -100 3,07 0 3,09 100 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3,11 200 3,13 300 350 50 10 0,123 3,15 400 3,17 500 3,19 600 3,21 700 3,23 800 time(us) Qg (nC) 3,25 900 V A A µs 24 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Switching Definitions BOOST IGBT Figure 8 BOOST FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 BOOST FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 200 % % Id Qrr Prec 175 100 150 tQrr 50 125 Erec 0 100 -50 75 tErec 50 -100 25 -150 0 -200 -25 3 3,1 3,2 3,3 Id (100%) = Qrr (100%) = tQrr = 3,4 3,5 3,6 50 6,267 1,00 3,7 3,8 3,9 4 4,1 4,2 time(us) 3 A µC µs 3,1 3,2 3,3 Prec (100%) = Erec (100%) = tErec = 3,4 3,5 17,48 1,966 1,00 3,6 3,7 3,8 3,9 4 4,1 4,2 time(us) kW mJ µs Measurement circuits Figure 10 BUCK stage switching measurement circuit T5 T3 D3 VDC 700V Figure 11 BOOST stage switching measurement circuit D5 T1 400V C1 100uF 100k R1 VDC 350V D1 200uH L Vcc V D4 D6 T2 D2 400V C2 100uF Vce V Vge V T1 D3 D5 Ic R2 100k A 15V D4 D6 D1 Vce V T2 D2 T4 Ic 200uH L 1mH A L2 Vge T6 VDC2 15V 0.00001 0.000003 Q Q Q Q 0.00001 0.000003 0.000003 Q Q Q Q Q Q 0.000003 Q Q copyright Vincotech 25 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking w/o thermal paste 12mm housing solder pin Version Ordering Code 10-FZ06NRA060FU-P967F08 in DataMatrix as P967F08 in packaging barcode as P967F08 w/o thermal paste 12mm housing Press-fit pin 10-PZ06NRA060FU-P967F08Y P967F08Y P967F08Y Outline Pinout Identification ID Component Voltage Current Function T5,T6 D3,D4 T1,T2 D1,D2 D13,D14 D9,D10 T IGBT FWD IGBT FWD FWD FWD NTC 650V 600V 600V 1200V 600V 600V 30A 30A 50A 18A 10A 10A Buck switch Buck diode copyright Vincotech Comment Boost switch Boost diode Buck inverse diode Boost inverse diode 26 10 Jun. 2015 / Revision 4 10-FZ06NRA060FU-P967F08 10-PZ06NRA060FU-P967F08Y datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 27 10 Jun. 2015 / Revision 4