10-F106NIA150SA-M136F flowNPC 1 600V/150A flow1 housing Features ● Neutral-point-Clamped inverter ● Compact flow1 housing ● Low Inductance Layout Target Applications Schematic ● UPS ● Motor Drive ● Solar inverters Types ● 10-F106NIA150SA-M136F Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 109 144 A 450 A 166 251 W ±20 V 6 360 µs V 175 °C Tj≤150°C VCE<=VCES 300 A VRRM Tj=25°C 600 V IF Tj=Tjmax Th=80°C Tc=80°C 62 82 A Buck IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Turn off safe operating area Buck Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 450 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 74 112 W 175 °C Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Revision: 5 10-F106NIA150SA-M136F Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 100 134 A 450 A 151 228 W ±20 V Boost IGBT Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tj=Tjmax Tc=80°C Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 6 µs 360 V 175 °C Tj≤150°C VCE<=VCES 300 A VRRM Tc=25°C 600 V IF Tj=Tjmax 91 121 A 300 A 123 187 W 175 °C 600 V 98 129 A 300 A 135 205 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Turn off safe operating area Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 5 10-F106NIA150SA-M136F Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,57 1,73 1,85 Buck IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,0024 15 150 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time tf Fall time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 60 1,4 Rgon=4 Ω Rgoff=4 Ω ±15 350 150 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA µA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 161 162 24 28 221 249 82 114 1,01 1,75 4,10 5,92 ns mWs 9240 f=1MHz 0 25 15 480 Tj=25°C 576 pF 274 150 Tj=25°C Thermal grease thickness≤50um λ = 0,81 W/mK 940 nC 0,574 K/W Buck Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 150 IRRM trr Qrr Rgoff=4 Ω ±15 350 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 0,81 W/mK 150 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,69 1,75 150 178 119 148 8,6 13,7 4704 3013 2,30 3,63 1,288 1,9 V A ns µC A/µs mWs K/W Note: All characteristic values are related to gates of paralell IGBTs connected together Copyright by Vincotech 3 Revision: 5 10-F106NIA150SA-M136F Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,57 1,73 1,85 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,0024 150 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time tr tf Fall time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 60 1,4 Rgoff=4 Ω Rgon=4 Ω ±15 350 150 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA µA Ω none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 160 159 27 30 224 248 75 99 1,08 1,68 4,35 5,94 ns mWs 9240 f=1MHz 25 0 pF 576 Tj=25°C 274 15 480 150 Tj=25°C Thermal grease thickness≤50um λ = 0,81 W/mK 940 nC 0,630 K/W Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 150 Tj=25°C Tj=125°C 1,2 Thermal grease thickness≤50um λ = 0,81 W/mK 1,68 1,68 1,9 0,771 V K/W Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink per chip VF 150 Ir 600 IRRM trr Qrr Rgon=4 Ω ±15 350 di(rec)max /dt Erec RthJH 150 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,68 1,68 1,9 60 131 166 121 151 7,6 14,4 3810 1668 2,20 4,14 Thermal grease thickness≤50um λ = 0,81 W/mK V µA A ns µC A/µs mWs 0,701 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -5 5 T=25°C 200 mW T=25°C 2 mW/K K B-value B(25/50) Tol. ±3% T=25°C 3950 B-value B(25/100) Tol. ±3% T=25°C 3996 Vincotech NTC Reference Copyright by Vincotech % K B 4 Revision: 5 10-F106NIA150SA-M136F Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) 10-F106NIA150SA-M136F 400 IC (A) IC (A) 400 IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 300 200 200 100 100 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 V CE (V) µs 250 150 °C 7 V to 17 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 400,00 IF (A) IC (A) 125 5 100 300,00 75 200,00 50 100,00 25 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0,00 0,00 At tp = VCE = 2,00 250 10 4,00 6,00 8,00 10,00 V GE (V)12,00 0,00 At tp = µs V Copyright by Vincotech 5 0,50 250 1,00 1,50 2,00 2,50 V F (V) 3,00 µs Revision: 5 10-F106NIA150SA-M136F Buck IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10 10 E (mWs) E (mWs) Eoff High T Eon High T 8 8 Eoff Low T Eon Low T Eoff High T 6 6 Eoff Low T 4 4 Eon High T 2 2 Eon Low T 0 0 0 50 100 150 200 250 I C (A) 0 300 With an inductive load at Tj = °C 25/150 VCE = 175 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 175 V VGE = ±15 V IC = 150 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 5 E (mWs) E (mWs) Erec High T 4 4 3 3 Erec High T Erec Low T 2 2 1 1 Erec Low T 0 0 0 50 100 150 200 250 I C (A) 300 0 With an inductive load at Tj = °C 25/150 VCE = 175 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/150 °C VCE = 175 V VGE = ±15 V IC = 150 A 6 Revision: 5 10-F106NIA150SA-M136F Buck IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) 1,00 tf IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) tdon tdon tdoff tr 0,10 0,10 tf tr 0,01 0,01 0,00 0,00 0 50 100 150 200 250 I C (A) 300 0 With an inductive load at Tj = 150 °C VCE = 175 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 150 °C VCE = 175 V VGE = ±15 V IC = 150 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,4 t rr(ms) 0,20 trr High T trr High T 0,3 0,15 trr Low T 0,2 0,10 trr Low T 0,1 0,05 0,0 0,00 0 At Tj = VCE = VGE = Rgon = 50 25/150 175 ±15 4 100 150 200 250 I C (A) 0 300 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/150 175 150 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 5 10-F106NIA150SA-M136F Buck FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 20 20 Qrr (mC) Qrr (mC) Qrr High T 15 Qrr High T 15 Qrr Low T 10 10 Qrr Low T 5 5 0 0 0 50 At At Tj = VCE = VGE = Rgon = 25/150 175 ±15 4 100 150 200 250 I C (A) 300 0 4 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/150 175 150 ±15 12 16 R gon ( Ω) 20 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 200,00 IrrM (A) IrrM (A) 250,00 IRRM High T 200,00 150,00 IRRM High T 150,00 IRRM Low T 100,00 IRRM Low T 100,00 50,00 50,00 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 50 25/150 175 ±15 4 100 150 200 250 I C (A) 300 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 4 25/150 175 150 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 5 10-F106NIA150SA-M136F Buck FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 12000,00 dIo/dt T dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) 9000,00 7500,00 dI0/dt T dIrec/dt T 10000,00 6000,00 8000,00 4500,00 6000,00 3000,00 4000,00 1500,00 2000,00 0,00 0,00 0 At Tj = VCE = VGE = Rgon = FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 50 25/150 175 ±15 4 100 150 200 250 I C (A) 0 300 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 175 150 ±15 8 12 16 R gon ( Ω) 20 °C V A V Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) FRED 10 ZthJH (K/W) ZthJH (K/W) 100 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) t p (s) 1021 At D= RthJH = tp / T 0,574 K/W tp / T 1,288 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,05 0,10 0,26 0,10 0,05 0,01 R (C/W) 0,07 0,20 0,60 0,28 0,12 0,03 Tau (s) 4,5E+00 1,0E+00 2,0E-01 6,1E-02 1,3E-02 1,8E-03 Copyright by Vincotech 9 -4210 -3 -2 -1 10 10-5 Tau (s) 4,9E+00 1,0E+00 2,3E-01 8,0E-02 1,6E-02 1,8E-03 Revision: 5 10-F106NIA150SA-M136F Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 175 Ptot (W) IC (A) 350 300 150 250 125 200 100 150 75 100 50 50 25 0 0 0,00 At Tj = 50,00 175 100,00 150,00 T h ( o C) 0,00 200,00 At Tj = VGE = °C FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50,00 175 15 100,00 150,00 200,00 °C V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 Ptot (W) IF (A) 160 T h ( o C) 80 120 60 80 40 40 20 0 0 0,00 At Tj = 50,00 175 100,00 150,00 T h ( o C) 200,00 0,00 At Tj = °C Copyright by Vincotech 10 50,00 175 100,00 150,00 T h ( o C) 200,00 °C Revision: 5 10-F106NIA150SA-M136F Buck IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 103 VGE (V) 16 IC (A) 10 IGBT Figure 26 Gate voltage vs Gate charge 14 100uS 2 12 100mS 10 120V 1mS 10 10mS 1 480V 8 DC 10 0 6 4 10 -1 2 0 10 At D= Th = VGE = Tj = 0 101 10 2 V CE (V) 10 0 3 At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 11 200 150 400 600 800 Q g (nC) 1000 A Revision: 5 10-F106NIA150SA-M136F Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 400 IC (A) IC (A) 400 300 300 200 200 100 100 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) µs 250 150 °C 7 V to 17 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 125,00 5 IF (A) IC (A) 400 100,00 300 75,00 200 50,00 100 25,00 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0,00 At tp = VCE = Tj = 25°C 0 0,00 2,00 250 10 4,00 6,00 8,00 10,00 0,0 V GE (V)12,00 At tp = µs V Copyright by Vincotech 12 0,5 250 1,0 1,5 2,0 2,5 V F (V) 3,0 µs Revision: 5 10-F106NIA150SA-M136F Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10,00 E (mWs) Eoff High T 8,00 Eon High T E (mWs) 10,00 Eon Low T 8,00 Eoff Low T Eoff High T 6,00 6,00 4,00 4,00 Eon High T Eon Low T 2,00 Eoff Low T 2,00 0,00 0,00 0 50 100 150 200 250 I C (A) 300 0 With an inductive load at Tj = °C 25/150 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/150 °C VCE = 350 V VGE = ±15 V IC = 149 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5,00 E (mWs) E (mWs) 5,00 Erec High T 4,00 4,00 3,00 3,00 Erec Low T 2,00 Erec High T 2,00 Erec Low T 1,00 1,00 0,00 0,00 0 50 100 150 200 250 I C (A) 300 0 With an inductive load at Tj = °C 25/150 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/150 °C VCE = 350 V VGE = ±15 V IC = 149 A 13 Revision: 5 10-F106NIA150SA-M136F Boost IGBT IGBT 1,00 1,00 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdon tdoff tdon tf 0,10 0,10 tr tr tf 0,01 0,01 0,00 0,00 0 50 100 150 200 250 I C (A) 300 0 With an inductive load at Tj = 150 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 150 °C VCE = V 350 VGE = ±15 V IC = 149 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,4 t rr(ms) 0,20 trr High T trr High T 0,3 0,15 trr Low T 0,10 0,2 0,05 0,1 trr Low T 0,0 0,00 0 At Tj = VCE = VGE = Rgon = 50 25/150 350 ±15 4 100 150 200 250 I C (A) 0 300 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 14 4 25/150 350 149 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 5 10-F106NIA150SA-M136F Boost FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 20,00 20 Qrr (mC) Qrr (mC) Qrr High T 16,00 16 Qrr High T 12,00 12 Qrr Low T 8,00 8 Qrr Low T 4,00 4 0,00 0 0 50 At At Tj = VCE = VGE = Rgon = 100 25/150 350 ±15 4 150 200 250 0 I C (A) 300 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 200,00 4 25/150 350 149 ±15 8 12 16 R gon ( Ω) 20 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 200,00 IrrM (A) IrrM (A) IRRM High T 150,00 150,00 IRRM Low T 100,00 IRRM High T 100,00 IRRM Low T 50,00 50,00 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 50 25/150 350 ±15 4 100 150 200 250 I C (A) 300 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 15 4 25/150 350 149 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 5 10-F106NIA150SA-M136F Boost FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 10000,00 dI0/dt T direc / dt (A/ms) direc / dt (A/ms) 10000,00 dIrec/dt T 8000,00 dI0/dt T dIrec/dt T 8000,00 6000,00 6000,00 4000,00 4000,00 2000,00 2000,00 0,00 0,00 0 At Tj = VCE = VGE = Rgon = FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 50 25/150 350 ±15 4 100 150 200 250 0 I C (A) 300 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 350 149 ±15 8 12 16 R gon ( Ω) 20 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) ZthJH (K/W) 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 100-2 10-5 At D= RthJH = tp / T 0,630 10-4 10-3 10-2 10-1 -1 10-2 10-5 t p (s) 10-4 10-3 10-1 1021 t p (s) 100 1021 At D= RthJH = K/W tp / T 0,701 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,06 0,10 0,31 0,10 0,05 0,02 R (C/W) 0,07 0,17 0,34 0,10 0,03 Tau (s) 4,3E+00 1,1E+00 2,2E-01 6,2E-02 1,2E-02 1,3E-03 Copyright by Vincotech 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 100 0,005 0.000 16 Tau (s) 3,3E+00 4,3E-01 9,8E-02 1,4E-02 1,2E-03 Revision: 5 10-F106NIA150SA-M136F Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 175 IC (A) Ptot (W) 300 150 250 125 200 100 150 75 100 50 50 25 0 0 0,00 At Tj = 50,00 175 100,00 150,00 T h ( o C) 200,00 0,00 At Tj = VGE = ºC FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50,00 175 15 100,00 150,00 T h ( o C) 200,00 ºC V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 150 Ptot (W) IF (A) 280 240 125 200 100 160 75 120 50 80 25 40 0 0 0,00 At Tj = 50,00 175 100,00 150,00 Th ( o C) 200,00 0,00 At Tj = ºC Copyright by Vincotech 17 50,00 175 100,00 150,00 Th ( o C) 200,00 ºC Revision: 5 10-F106NIA150SA-M136F Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 400,00 ZthJC (K/W) IF (A) 100 300,00 200,00 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100,00 Tj = Tjmax-25°C Tj = 25°C 0,00 0,00 At tp = 0,50 1,00 1,50 2,00 2,50 10-2 3,00 V F (V) 10 10 At D= RthJH = µs 250 -5 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) -4 10 tp / T 0,771 -3 10 -2 10 -1 10 0 t p (s) 10 21 K/W Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 150 Ptot (W) IF (A) 250 125 200 100 150 75 100 50 50 25 0 0 0,00 At Tj = 50,00 175 100,00 150,00 Th ( o C) 200,00 0,00 At Tj = ºC Copyright by Vincotech 18 50,00 175 100,00 150,00 Th ( o C) 200,00 ºC Revision: 5 10-F106NIA150SA-M136F Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values R(T ) = R25 ⋅ e NTC-typical temperature characteristic [Ω] R/Ω 25000 B25/100⋅ 1 − 1 T T25 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 19 Revision: 5 10-F106NIA150SA-M136F Switching Definitions BUCK IGBT General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω 10-F106NIA150SA-M136F Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % % VCE 100 VGE 90% IC 200 VCE 90% 150 75 IC VCE 100 50 tEoff VGE tdon 50 25 VGE VGE 10% VCE IC10% 0 0 3% tEon IC 1% -50 -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 350 150 0,25 0,63 0,4 time (us) 2,8 0,6 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,2 -15 15 350 150 0,16 0,36 3,4 3,6 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 250 fitted % VCE IC 100 % IC 200 IC 90% 75 150 IC 60% VCE 50 100 IC IC 40% 90% tr 25 50 IC10% 0 IC10% 0 tf -25 -50 0,1 VC (100%) = IC (100%) = tf = 0,15 0,2 350 150 0,11 Copyright by Vincotech 0,25 0,3 0,35 time (us) 0,4 3 VC (100%) = IC (100%) = tr = V A µs 20 3,1 3,2 350 150 0,03 3,3 time(us) 3,4 V A µs Revision: 5 10-F106NIA150SA-M136F Switching Definitions BUCK IGBT Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Eoff 100 100 Eon Poff 75 75 50 50 Pon 25 25 VGE VGE 10% 90% VCE 3% 0 0 tEon tEoff -25 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 52,44 5,92 0,63 0,4 time (us) 2,9 0,6 3 3,1 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) Output inverter FRED 52,44 1,75 0,36 3,2 3,3 time(us) 3,4 kW mJ µs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % 15 Id 100 10 trr 50 5 Vd 0 0 fitted IRRM 10% -5 -50 -10 -100 IRRM 90% IRRM 100% -15 -20 -200 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -150 0 200 400 600 -15 15 350 150 1585,43 Copyright by Vincotech 800 1000 1200 1400 3,1 1600 1800 Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 3,2 3,3 350 150 -178 0,15 3,4 time(us) 3,5 V A A µs Revision: 5 10-F106NIA150SA-M136F Switching Definitions BUCK IGBT Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Erec Qrr 100 100 Prec tQrr 50 75 0 50 -50 25 -100 0 tErec -25 -150 3,1 Id (100%) = Qrr (100%) = tQrr = 3,2 3,3 150 13,73 0,30 3,4 3,5 time(us) 3 3,6 3,1 3,2 3,3 3,4 3,5 3,6 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 150 300 40 2 52,44 3,63 0,30 kW mJ µs 80 40 100 30 12 50 3000 60 25 40 150 1,4 1,25 1 Measurement circuit Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech 22 Revision: 5 10-F106NIA150SA-M136F Switching Definitions BOOST IGBT General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω 10-F106NIA150SA-M136F Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 140 IC 120 tdoff 200 VCE 100 VGE 90% VCE 90% 150 80 % 60 % 100 IC VCE tdon tEoff 40 VGE 50 IC 1% 20 VGE10% VGE 0 VCE3% IC10% 0 tEon -20 -0,2 -50 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 0,3 time (us) -15 15 350 150 0,25 0,49 V V V A µs µs 0,4 0,5 0,6 0,7 2,8 2,9 3 3,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Output inverter IGBT Figure 3 3,2 time(us) -15 15 350 150 0,16 0,34 3,3 3,5 3,6 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,4 Turn-on Switching Waveforms & definition of tr 125 250 IC Ic 100 VCE IC 90% 200 75 150 IC 60% % 50 % 100 IC90% IC 40% tr 25 50 IC10% VCE IC10% 0 0 fitted tf -25 0,1 VC (100%) = IC (100%) = tf = 0,15 0,2 0,25 time (us) 350 150 0,10 V A µs Copyright by Vincotech 0,3 0,35 -50 3,05 0,4 VC (100%) = IC (100%) = tr = 23 3,1 3,15 350 150 0,03 3,2 3,25 time(us) 3,3 3,35 3,4 V A µs Revision: 5 10-F106NIA150SA-M136F Switching Definitions BOOST IGBT Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 % Eoff Poff Eon % 100 100 80 80 60 60 40 40 20 20 Pon VGE10% VCE3% 0 0 tEoff VGE90% -20 -0,2 IC 1% tEon -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 52,38 5,94 0,49 0,2(us) time 0,3 0,4 0,5 2,9 0,6 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) Output inverter FRED 3,1 3,2 time(us) 52,38 1,68 0,34 kW mJ µs 3,3 3,4 3,5 Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 150 Id 15 100 10 trr fitted 50 5 VGE (V) Vd % 0 0 IRRM10% -5 -50 -10 IRRM90% -100 -15 IRRM100% -20 -200 -150 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 200 400 600 -15 15 350 150 1583,47 Copyright by Vincotech 800 Qg (nC) 1000 1200 1400 1600 3,1 1800 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 3,15 3,2 350 150 -166 0,15 3,25 3,3 time(us) 3,35 3,4 3,45 V A A µs Revision: 5 10-F106NIA150SA-M136F Switching Definitions BOOST IGBT Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec Id Qrr 100 100 tQrr 80 50 tEre 60 %0 % 40 -50 20 Prec -100 0 -150 3 Id (100%) = Qrr (100%) = tQrr = 3,1 3,2 150 14,35 0,31 3,3 time(us) 3,4 3,5 3,6 -20 3,05 3,7 3,15 Prec (100%) = Erec (100%) = tErec = A µC µs 150 75 300 100 40 2 1 3,25 3,35 time(us) 52,38 4,14 0,31 kW mJ µs 3,45 3,55 3,65 80 40 100 30 12 50 3000 60 25 40 150 1,4 1,25 1 Measurement circuit Figure 11 BOOST stage switching measurement circuit Copyright by Vincotech 25 Revision: 5 10-F106NIA150SA-M136F Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code in DataMatrix as 10-F106NIA150SA-M136F M136F in packaging barcode as M136F Outline Pinout Copyright by Vincotech 26 Revision: 5 10-F106NIA150SA-M136F DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 27 Revision: 5