10-F106NIA150SA-M136F Maximum Ratings

10-F106NIA150SA-M136F
flowNPC 1
600V/150A
flow1 housing
Features
● Neutral-point-Clamped inverter
● Compact flow1 housing
● Low Inductance Layout
Target Applications
Schematic
● UPS
● Motor Drive
● Solar inverters
Types
● 10-F106NIA150SA-M136F
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
109
144
A
450
A
166
251
W
±20
V
6
360
µs
V
175
°C
Tj≤150°C
VCE<=VCES
300
A
VRRM
Tj=25°C
600
V
IF
Tj=Tjmax
Th=80°C
Tc=80°C
62
82
A
Buck IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Turn off safe operating area
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
450
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
74
112
W
175
°C
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Revision: 5
10-F106NIA150SA-M136F
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
100
134
A
450
A
151
228
W
±20
V
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tj=Tjmax
Tc=80°C
Pulsed collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
6
µs
360
V
175
°C
Tj≤150°C
VCE<=VCES
300
A
VRRM
Tc=25°C
600
V
IF
Tj=Tjmax
91
121
A
300
A
123
187
W
175
°C
600
V
98
129
A
300
A
135
205
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Turn off safe operating area
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 5
10-F106NIA150SA-M136F
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,57
1,73
1,85
Buck IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0024
15
150
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
tf
Fall time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
60
1,4
Rgon=4 Ω
Rgoff=4 Ω
±15
350
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
µA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
161
162
24
28
221
249
82
114
1,01
1,75
4,10
5,92
ns
mWs
9240
f=1MHz
0
25
15
480
Tj=25°C
576
pF
274
150
Tj=25°C
Thermal grease
thickness≤50um
λ = 0,81 W/mK
940
nC
0,574
K/W
Buck Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
150
IRRM
trr
Qrr
Rgoff=4 Ω
±15
350
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 0,81 W/mK
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
1,69
1,75
150
178
119
148
8,6
13,7
4704
3013
2,30
3,63
1,288
1,9
V
A
ns
µC
A/µs
mWs
K/W
Note: All characteristic values are related to gates of paralell IGBTs connected together
Copyright by Vincotech
3
Revision: 5
10-F106NIA150SA-M136F
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,57
1,73
1,85
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0024
150
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
tr
tf
Fall time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
60
1,4
Rgoff=4 Ω
Rgon=4 Ω
±15
350
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
µA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
160
159
27
30
224
248
75
99
1,08
1,68
4,35
5,94
ns
mWs
9240
f=1MHz
25
0
pF
576
Tj=25°C
274
15
480
150
Tj=25°C
Thermal grease
thickness≤50um
λ = 0,81 W/mK
940
nC
0,630
K/W
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
150
Tj=25°C
Tj=125°C
1,2
Thermal grease
thickness≤50um
λ = 0,81 W/mK
1,68
1,68
1,9
0,771
V
K/W
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink per chip
VF
150
Ir
600
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
1,68
1,68
1,9
60
131
166
121
151
7,6
14,4
3810
1668
2,20
4,14
Thermal grease
thickness≤50um
λ = 0,81 W/mK
V
µA
A
ns
µC
A/µs
mWs
0,701
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-5
5
T=25°C
200
mW
T=25°C
2
mW/K
K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
B-value
B(25/100) Tol. ±3%
T=25°C
3996
Vincotech NTC Reference
Copyright by Vincotech
%
K
B
4
Revision: 5
10-F106NIA150SA-M136F
Buck
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
10-F106NIA150SA-M136F
400
IC (A)
IC (A)
400
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
300
200
200
100
100
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
V CE (V)
µs
250
150
°C
7 V to 17 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
400,00
IF (A)
IC (A)
125
5
100
300,00
75
200,00
50
100,00
25
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0,00
0,00
At
tp =
VCE =
2,00
250
10
4,00
6,00
8,00
10,00
V GE (V)12,00
0,00
At
tp =
µs
V
Copyright by Vincotech
5
0,50
250
1,00
1,50
2,00
2,50
V F (V) 3,00
µs
Revision: 5
10-F106NIA150SA-M136F
Buck
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
10
E (mWs)
E (mWs)
Eoff High T
Eon High T
8
8
Eoff Low T
Eon Low T
Eoff High T
6
6
Eoff Low T
4
4
Eon High T
2
2
Eon Low T
0
0
0
50
100
150
200
250
I C (A)
0
300
With an inductive load at
Tj =
°C
25/150
VCE =
175
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
°C
25/150
VCE =
175
V
VGE =
±15
V
IC =
150
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
5
E (mWs)
E (mWs)
Erec High T
4
4
3
3
Erec High T
Erec Low T
2
2
1
1
Erec Low T
0
0
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
°C
25/150
VCE =
175
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/150
°C
VCE =
175
V
VGE =
±15
V
IC =
150
A
6
Revision: 5
10-F106NIA150SA-M136F
Buck
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
1,00
tf
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
tdon
tdon
tdoff
tr
0,10
0,10
tf
tr
0,01
0,01
0,00
0,00
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
150
°C
VCE =
175
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
150
°C
VCE =
175
V
VGE =
±15
V
IC =
150
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,4
t rr(ms)
0,20
trr High T
trr High T
0,3
0,15
trr Low T
0,2
0,10
trr Low T
0,1
0,05
0,0
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
175
±15
4
100
150
200
250
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/150
175
150
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 5
10-F106NIA150SA-M136F
Buck
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
20
20
Qrr (mC)
Qrr (mC)
Qrr High T
15
Qrr High T
15
Qrr Low T
10
10
Qrr Low T
5
5
0
0
0
50
At
At
Tj =
VCE =
VGE =
Rgon =
25/150
175
±15
4
100
150
200
250
I C (A)
300
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/150
175
150
±15
12
16
R gon ( Ω)
20
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
200,00
IrrM (A)
IrrM (A)
250,00
IRRM High T
200,00
150,00
IRRM High T
150,00
IRRM Low T
100,00
IRRM Low T
100,00
50,00
50,00
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
175
±15
4
100
150
200
250
I C (A)
300
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
4
25/150
175
150
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 5
10-F106NIA150SA-M136F
Buck
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
12000,00
dIo/dt T
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
9000,00
7500,00
dI0/dt T
dIrec/dt T
10000,00
6000,00
8000,00
4500,00
6000,00
3000,00
4000,00
1500,00
2000,00
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
50
25/150
175
±15
4
100
150
200
250
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
175
150
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
FRED
10
ZthJH (K/W)
ZthJH (K/W)
100
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
t p (s)
1021
At
D=
RthJH =
tp / T
0,574
K/W
tp / T
1,288
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,05
0,10
0,26
0,10
0,05
0,01
R (C/W)
0,07
0,20
0,60
0,28
0,12
0,03
Tau (s)
4,5E+00
1,0E+00
2,0E-01
6,1E-02
1,3E-02
1,8E-03
Copyright by Vincotech
9
-4210
-3
-2
-1
10
10-5
Tau (s)
4,9E+00
1,0E+00
2,3E-01
8,0E-02
1,6E-02
1,8E-03
Revision: 5
10-F106NIA150SA-M136F
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
175
Ptot (W)
IC (A)
350
300
150
250
125
200
100
150
75
100
50
50
25
0
0
0,00
At
Tj =
50,00
175
100,00
150,00
T h ( o C)
0,00
200,00
At
Tj =
VGE =
°C
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50,00
175
15
100,00
150,00
200,00
°C
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
Ptot (W)
IF (A)
160
T h ( o C)
80
120
60
80
40
40
20
0
0
0,00
At
Tj =
50,00
175
100,00
150,00
T h ( o C)
200,00
0,00
At
Tj =
°C
Copyright by Vincotech
10
50,00
175
100,00
150,00
T h ( o C) 200,00
°C
Revision: 5
10-F106NIA150SA-M136F
Buck
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
103
VGE (V)
16
IC (A)
10
IGBT
Figure 26
Gate voltage vs Gate charge
14
100uS
2
12
100mS
10
120V
1mS
10
10mS
1
480V
8
DC
10
0
6
4
10
-1
2
0
10
At
D=
Th =
VGE =
Tj =
0
101
10
2
V CE (V)
10
0
3
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
11
200
150
400
600
800
Q g (nC)
1000
A
Revision: 5
10-F106NIA150SA-M136F
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
400
IC (A)
IC (A)
400
300
300
200
200
100
100
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
µs
250
150
°C
7 V to 17 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
125,00
5
IF (A)
IC (A)
400
100,00
300
75,00
200
50,00
100
25,00
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0,00
At
tp =
VCE =
Tj = 25°C
0
0,00
2,00
250
10
4,00
6,00
8,00
10,00
0,0
V GE (V)12,00
At
tp =
µs
V
Copyright by Vincotech
12
0,5
250
1,0
1,5
2,0
2,5
V F (V)
3,0
µs
Revision: 5
10-F106NIA150SA-M136F
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10,00
E (mWs)
Eoff High T
8,00
Eon High T
E (mWs)
10,00
Eon Low T
8,00
Eoff Low T
Eoff High T
6,00
6,00
4,00
4,00
Eon High T
Eon Low T
2,00
Eoff Low T
2,00
0,00
0,00
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
°C
25/150
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/150
°C
VCE =
350
V
VGE =
±15
V
IC =
149
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5,00
E (mWs)
E (mWs)
5,00
Erec High T
4,00
4,00
3,00
3,00
Erec Low T
2,00
Erec High T
2,00
Erec Low T
1,00
1,00
0,00
0,00
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
°C
25/150
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/150
°C
VCE =
350
V
VGE =
±15
V
IC =
149
A
13
Revision: 5
10-F106NIA150SA-M136F
Boost
IGBT
IGBT
1,00
1,00
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdon
tdoff
tdon
tf
0,10
0,10
tr
tr
tf
0,01
0,01
0,00
0,00
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
150
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
150
°C
VCE =
V
350
VGE =
±15
V
IC =
149
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,4
t rr(ms)
0,20
trr High T
trr High T
0,3
0,15
trr Low T
0,10
0,2
0,05
0,1
trr Low T
0,0
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
350
±15
4
100
150
200
250
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
14
4
25/150
350
149
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 5
10-F106NIA150SA-M136F
Boost
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
20,00
20
Qrr (mC)
Qrr (mC)
Qrr High T
16,00
16
Qrr High T
12,00
12
Qrr Low T
8,00
8
Qrr Low T
4,00
4
0,00
0
0
50
At
At
Tj =
VCE =
VGE =
Rgon =
100
25/150
350
±15
4
150
200
250
0
I C (A) 300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
200,00
4
25/150
350
149
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
200,00
IrrM (A)
IrrM (A)
IRRM High T
150,00
150,00
IRRM Low T
100,00
IRRM High T
100,00
IRRM Low T
50,00
50,00
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
350
±15
4
100
150
200
250
I C (A)
300
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
15
4
25/150
350
149
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 5
10-F106NIA150SA-M136F
Boost
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
10000,00
dI0/dt T
direc / dt (A/ms)
direc / dt (A/ms)
10000,00
dIrec/dt T
8000,00
dI0/dt T
dIrec/dt T
8000,00
6000,00
6000,00
4000,00
4000,00
2000,00
2000,00
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
50
25/150
350
±15
4
100
150
200
250
0
I C (A) 300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
350
149
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
ZthJH (K/W)
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
100-2
10-5
At
D=
RthJH =
tp / T
0,630
10-4
10-3
10-2
10-1
-1
10-2
10-5
t p (s)
10-4
10-3
10-1
1021
t p (s)
100 1021
At
D=
RthJH =
K/W
tp / T
0,701
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,06
0,10
0,31
0,10
0,05
0,02
R (C/W)
0,07
0,17
0,34
0,10
0,03
Tau (s)
4,3E+00
1,1E+00
2,2E-01
6,2E-02
1,2E-02
1,3E-03
Copyright by Vincotech
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
100
0,005
0.000
16
Tau (s)
3,3E+00
4,3E-01
9,8E-02
1,4E-02
1,2E-03
Revision: 5
10-F106NIA150SA-M136F
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
175
IC (A)
Ptot (W)
300
150
250
125
200
100
150
75
100
50
50
25
0
0
0,00
At
Tj =
50,00
175
100,00
150,00
T h ( o C)
200,00
0,00
At
Tj =
VGE =
ºC
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50,00
175
15
100,00
150,00
T h ( o C) 200,00
ºC
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
150
Ptot (W)
IF (A)
280
240
125
200
100
160
75
120
50
80
25
40
0
0
0,00
At
Tj =
50,00
175
100,00
150,00
Th ( o C)
200,00
0,00
At
Tj =
ºC
Copyright by Vincotech
17
50,00
175
100,00
150,00
Th ( o C)
200,00
ºC
Revision: 5
10-F106NIA150SA-M136F
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
400,00
ZthJC (K/W)
IF (A)
100
300,00
200,00
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100,00
Tj = Tjmax-25°C
Tj = 25°C
0,00
0,00
At
tp =
0,50
1,00
1,50
2,00
2,50
10-2
3,00
V F (V)
10
10
At
D=
RthJH =
µs
250
-5
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
-4
10
tp / T
0,771
-3
10
-2
10
-1
10
0
t p (s)
10
21
K/W
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
150
Ptot (W)
IF (A)
250
125
200
100
150
75
100
50
50
25
0
0
0,00
At
Tj =
50,00
175
100,00
150,00
Th ( o C) 200,00
0,00
At
Tj =
ºC
Copyright by Vincotech
18
50,00
175
100,00
150,00
Th ( o C)
200,00
ºC
Revision: 5
10-F106NIA150SA-M136F
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values
R(T ) = R25 ⋅ e
NTC-typical temperature characteristic
[Ω]
R/Ω
25000



 B25/100⋅ 1 − 1  
T

T25  


20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
19
Revision: 5
10-F106NIA150SA-M136F
Switching Definitions BUCK IGBT
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
10-F106NIA150SA-M136F Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
%
VCE
100
VGE 90%
IC
200
VCE 90%
150
75
IC
VCE
100
50
tEoff
VGE
tdon
50
25
VGE
VGE 10%
VCE
IC10%
0
0
3%
tEon
IC 1%
-50
-25
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
350
150
0,25
0,63
0,4
time (us)
2,8
0,6
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,2
-15
15
350
150
0,16
0,36
3,4
3,6
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
VCE
IC
100
%
IC
200
IC 90%
75
150
IC 60%
VCE
50
100
IC
IC 40%
90%
tr
25
50
IC10%
0
IC10%
0
tf
-25
-50
0,1
VC (100%) =
IC (100%) =
tf =
0,15
0,2
350
150
0,11
Copyright by Vincotech
0,25
0,3
0,35
time (us)
0,4
3
VC (100%) =
IC (100%) =
tr =
V
A
µs
20
3,1
3,2
350
150
0,03
3,3
time(us)
3,4
V
A
µs
Revision: 5
10-F106NIA150SA-M136F
Switching Definitions BUCK IGBT
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Eoff
100
100
Eon
Poff
75
75
50
50
Pon
25
25
VGE
VGE 10%
90%
VCE
3%
0
0
tEon
tEoff
-25
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
52,44
5,92
0,63
0,4
time (us)
2,9
0,6
3
3,1
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
Output inverter FRED
52,44
1,75
0,36
3,2
3,3
time(us)
3,4
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
15
Id
100
10
trr
50
5
Vd
0
0
fitted
IRRM 10%
-5
-50
-10
-100
IRRM 90%
IRRM 100%
-15
-20
-200
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-150
0
200
400
600
-15
15
350
150
1585,43
Copyright by Vincotech
800
1000
1200
1400
3,1
1600 1800
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
3,2
3,3
350
150
-178
0,15
3,4
time(us)
3,5
V
A
A
µs
Revision: 5
10-F106NIA150SA-M136F
Switching Definitions BUCK IGBT
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Erec
Qrr
100
100
Prec
tQrr
50
75
0
50
-50
25
-100
0
tErec
-25
-150
3,1
Id (100%) =
Qrr (100%) =
tQrr =
3,2
3,3
150
13,73
0,30
3,4
3,5
time(us)
3
3,6
3,1
3,2
3,3
3,4
3,5
3,6
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
150
300
40
2
52,44
3,63
0,30
kW
mJ
µs
80
40
100
30
12
50
3000
60
25
40
150
1,4
1,25 1
Measurement circuit
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
22
Revision: 5
10-F106NIA150SA-M136F
Switching Definitions BOOST IGBT
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
10-F106NIA150SA-M136F Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
IC
120
tdoff
200
VCE
100
VGE 90%
VCE 90%
150
80
%
60
%
100
IC
VCE
tdon
tEoff
40
VGE
50
IC 1%
20
VGE10%
VGE
0
VCE3%
IC10%
0
tEon
-20
-0,2
-50
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
0,3
time (us)
-15
15
350
150
0,25
0,49
V
V
V
A
µs
µs
0,4
0,5
0,6
0,7
2,8
2,9
3
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Output inverter IGBT
Figure 3
3,2
time(us)
-15
15
350
150
0,16
0,34
3,3
3,5
3,6
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,4
Turn-on Switching Waveforms & definition of tr
125
250
IC
Ic
100
VCE
IC 90%
200
75
150
IC 60%
%
50
%
100
IC90%
IC 40%
tr
25
50
IC10%
VCE
IC10%
0
0
fitted
tf
-25
0,1
VC (100%) =
IC (100%) =
tf =
0,15
0,2
0,25
time (us)
350
150
0,10
V
A
µs
Copyright by Vincotech
0,3
0,35
-50
3,05
0,4
VC (100%) =
IC (100%) =
tr =
23
3,1
3,15
350
150
0,03
3,2
3,25
time(us)
3,3
3,35
3,4
V
A
µs
Revision: 5
10-F106NIA150SA-M136F
Switching Definitions BOOST IGBT
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
%
Eoff
Poff
Eon
%
100
100
80
80
60
60
40
40
20
20
Pon
VGE10%
VCE3%
0
0
tEoff
VGE90%
-20
-0,2
IC 1%
tEon
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
52,38
5,94
0,49
0,2(us)
time
0,3
0,4
0,5
2,9
0,6
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
Output inverter FRED
3,1
3,2
time(us)
52,38
1,68
0,34
kW
mJ
µs
3,3
3,4
3,5
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
150
Id
15
100
10
trr
fitted
50
5
VGE (V)
Vd
%
0
0
IRRM10%
-5
-50
-10
IRRM90%
-100
-15
IRRM100%
-20
-200
-150
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
200
400
600
-15
15
350
150
1583,47
Copyright by Vincotech
800
Qg (nC)
1000
1200
1400
1600
3,1
1800
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
3,15
3,2
350
150
-166
0,15
3,25
3,3
time(us)
3,35
3,4
3,45
V
A
A
µs
Revision: 5
10-F106NIA150SA-M136F
Switching Definitions BOOST IGBT
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
Id
Qrr
100
100
tQrr
80
50
tEre
60
%0
%
40
-50
20
Prec
-100
0
-150
3
Id (100%) =
Qrr (100%) =
tQrr =
3,1
3,2
150
14,35
0,31
3,3
time(us)
3,4
3,5
3,6
-20
3,05
3,7
3,15
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
150
75
300
100
40
2 1
3,25
3,35
time(us)
52,38
4,14
0,31
kW
mJ
µs
3,45
3,55
3,65
80
40
100
30
12
50
3000
60
25
40
150
1,4
1,25 1
Measurement circuit
Figure 11
BOOST stage switching measurement circuit
Copyright by Vincotech
25
Revision: 5
10-F106NIA150SA-M136F
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
in DataMatrix as
10-F106NIA150SA-M136F
M136F
in packaging barcode as
M136F
Outline
Pinout
Copyright by Vincotech
26
Revision: 5
10-F106NIA150SA-M136F
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
27
Revision: 5