70-W612M3A600SC-M200E datasheet flow MNPC 4w 1200V/600A Features FlowScrew WideBody 12mm housing ● Mixed voltage NPC ● Low inductive ● High power screw interface ● Integrated DC-snubber capacitors Target Applications ● Solar inverter ● UPS Schematic ● High speed motor drive Types ● 70-W612M3A600SC-M200E Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 432 560 A 1800 A 910 1378 W ±20 V 10 800 µs V 1200 A 175 °C 600 V 362 475 A 1250 A 7800 A 2s half bridge IGBT ( T1 , T4 ) Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax neutral point FWD ( D2 , D3 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp = 10 ms, sine halfwave Tvj < 150°C IFSM I2t I2t-value Repetitive peak forward current Power dissipation per FWD Maximum Junction Temperature Copyright by Vincotech IFRM Ptot tP = 1 ms Tvj < 150°C 1200 A Tj=Tjmax Th=80°C Tc=80°C 502 760 W 175 °C Tjmax 1 Revision: 4 70-W612M3A600SC-M200E datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 422 551 A 1800 A 668 1012 W ±20 V 6 360 µs V 1200 A 175 °C 1200 V 369 488 A 3600 A 16200 A 2s 1800 A 682 1033 W 175 °C 630 V neutral point IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tj=Tjmax Tc=80°C Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax half bridge FWD ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp=10ms , sin 180° Tj=150°C IFSM I2t I2t-value Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per FWD Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax DC link Capacitor Max.DC voltage VMAX Tcmax=100°C General Module Properties Material of module baseplate Cu Material of internal isulation Al2O3 Thermal Properties Storage temperature Tstg Operation temperature under switching condition Top -40…+125 °C -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm for power part Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 4 70-W612M3A600SC-M200E datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 5 5,8 6,5 1,4 2,16 2,42 2,4 half bridge IGBT ( T1 , T4 ) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Collector-emitter cut-off current incl. FWD VCE=VGE 0,024 600 Turn-off delay time td(off) tf Fall time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,2 2800 Rgoff=2 ۷ Rgon=2 ۷ ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA ۷ 1,25 tr Rise time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 389 405 78 85 429 486 57 86 21 27 21 31 ns mWs 37200 0 f=1MHz 25 Tj=25°C 2320 pF 2040 15 960 640 Tj=25°C 2800 Thermal grease thickness≤50um λ = 1 W/mK nC 0,10 K/W 0,07 neutral point FWD ( D2 , D3 ) FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 600 IRRM trr Qrr Rgon=2 ۷ ±15 350 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK Gate emitter threshold voltage VGE(th) VCE=VGE Collector-emitter saturation voltage VCE(sat) 15 ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,27 1,67 1,65 251 311 191 281 21 41 4449 1803 4 8 1,97 V A ns µC A/µs mWs 0,19 K/W 0,13 neutral point IGBT ( T2 , T3 ) Collector-emitter cut-off incl FWD 0,0096 600 td(off) tf Fall time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 5 5,8 6,5 1,05 1,57 1,80 1,85 0,0304 2400 0,5 tr Rise time Turn-off delay time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=2 ۷ Rgon=2 ۷ ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 337 345 72 75 413 440 35 53 20 29 18 25 V V mA nA ۷ ns mWs 36960 f=1MHz 0 25 Tj=25°C 2304 pF 1096 15 Thermal grease thickness≤50um λ = 1 W/mK 3 480 600 Tj=25°C 3760 nC 0,14 K/W 0,09 Revision: 4 70-W612M3A600SC-M200E datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ 1 2,23 2,31 Unit Max half bridge FWD ( D1 , D4 ) FWD forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 600 Ir 1200 IRRM trr Qrr Rgon=2 ۷ ±15 350 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,7 720 289 397 90 473 18 65 8488 6098 3 14 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 0,14 K/W 0,09 DC link Capacitor C value C 2 * 0,68 µF Thermistor Rated resistance R Deviation of R25 ǑR/R Power dissipation P T=25°C R100=1486 ۷ T=100°C Power dissipation constant ۷ 22000 -5 +5 % T=25°C 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference K B Module Properties Module inductance (from chips to PCB) LsCE 5 nH Module inductance (from PCB to PCB using Intercon board) LsCE 3 nH m۷ Chip module lead resistance, terminals -chip Rcc'1+EE' Tc=25°C, per switch tbd. Resistance of Intercon boards (from PCB to PCB using Intercon board) Rcc'1+EE' 1,5 Mounting torque M Mounting torque M Terminal connection torque M Weight G Copyright by Vincotech Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 4 m۷ 2 2,2 4 6 Nm 2,5 5 Nm 710 g Nm Revision: 4 70-W612M3A600SC-M200E datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 1000 IC (A) 1000 800 800 600 600 400 400 200 200 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 µs 350 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) IF (A) 1200 IC (A) 500 V CE (V) 1000 400 800 300 600 200 400 100 200 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 4 350 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0 At tp = 5 0,5 350 1 1,5 2 V F (V) 2,5 µs Revision: 4 70-W612M3A600SC-M200E datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 80 60 Eon High T E (mWs) E (mWs) Eon High T Eoff High T Eon Low T 60 45 Eon Low T Eoff Low T 40 30 Eoff High T Eoff Low T 20 15 0 0 0 200 400 600 800 1000 I C (A) 0 1200 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 ۷ Rgoff = 2 ۷ 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 596 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 12 E (mWs) E (mWs) 12 10 Erec High T 10 Erec High T 8 8 6 6 Erec Low T Erec Low T 4 4 2 2 0 0 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 ۷ Copyright by Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 596 A 6 Revision: 4 70-W612M3A600SC-M200E datasheet Buck IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10,00 t (ms) t (ms) 10,00 tdoff 1,00 1,00 tdoff tdon 0,10 tdon tf tr 0,10 tf tr 0,01 0,01 0,00 0,00 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 2 ۷ Rgoff = 2 ۷ 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 596 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 trr High T t rr(ms) t rr(ms) 0,4 trr High T 0,4 0,3 trr Low T 0,3 trr Low T 0,2 0,2 0,1 0,1 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 2 400 600 800 1000 0,0 I C (A) 1200 °C V V ۷ Copyright by Vincotech 7 0 2 At Tj = VR = IF = VGE = 25/125 350 596 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 4 70-W612M3A600SC-M200E datasheet Buck half bridge IGBT and neutral point FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 60 Qrr High T Qrr (mC) Qrr (mC) 50 Qrr High T 50 40 40 30 Qrr Low T 30 Qrr Low T 20 20 10 10 0 0 0 At At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 2 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V ۷ FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 350 596 ±15 4 6 8 R gon ( Ω) 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 500 IrrM (A) IrrM (A) 400 IRRM High T 400 300 IRRM Low T 300 200 200 IRRM High T 100 IRRM Low T 100 0 0 200 400 600 800 1000 0 1200 I C (A) At Tj = VCE = VGE = Rgon = 25/125 350 ±15 2 °C V V ۷ Copyright by Vincotech 8 0 2 At Tj = VR = IF = VGE = 25/125 350 596 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 4 70-W612M3A600SC-M200E datasheet Buck half bridge IGBT and neutral point FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 20000 direc / dt (A/ms) 12000 direc / dt (A/ms) dIo/dt T dIrec/dt T 10000 dI0/dt T dIrec/dt T 16000 8000 12000 6000 8000 4000 4000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V ۷ 25/125 350 ±15 2 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 4 25/125 350 596 ±15 6 R gon ( Ω) 10 8 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 -1 10 -2 ZthJH (K/W) ZthJH (K/W) 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-3 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 101 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 10 2 -3 10 -5 At D= RthJH = tp / T 0,10 -1 K/W 10 -4 10 -3 10 R (C/W) 0,03 0,04 0,03 0,01 R (C/W) 0,02 0,05 0,04 0,06 0,01 0,01 9 -1 10 0 10 1 t p (s) 10 2 K/W FWD thermal model values Copyright by Vincotech 10 tp / T 0,19 IGBT thermal model values Tau (s) 3,8E+00 7,5E-01 9,4E-02 1,9E-02 -2 Tau (s) 8,0E+00 1,7E+00 3,2E-01 4,4E-02 5,9E-03 3,4E-04 Revision: 4 70-W612M3A600SC-M200E datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 700 Ptot (W) IC (A) 2000 600 1600 500 1200 400 300 800 200 400 100 0 0 0 50 At Tj = 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 1000 200 IF (A) Ptot (W) 600 500 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 4 70-W612M3A600SC-M200E datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 10 VGE (V) IC (A) 17,5 1 3 15 240V 1 960V 12,5 1 102 10 10 1 7,5 100 10 5 2,5 -1 0 100 10 At D= 102 1 0 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC Th = VGE = Tj = 100 200 300 V CE (V) 600 400 500 600 700 800 900 Q g (nC) A IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 1400 IC MAX Ic MODULE 1000 800 Ic CHIP 1200 VCE MAX 600 400 200 0 0 200 400 600 At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 800 1000 1200 1400 V CE (V) 11 Revision: 4 70-W612M3A600SC-M200E datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 1000 IC (A) 1000 800 800 600 600 400 400 200 200 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from µs 350 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 µs 350 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 500 V CE (V) IC (A) IF (A) 1200 1000 400 800 300 600 200 Tj = Tjmax-25°C 400 Tj = 25°C Tj = Tjmax-25°C 100 200 Tj = 25°C 0 0 0 At tp = VCE = 2 350 0 4 6 8 10 V GE (V) 12 0 At tp = µs V Copyright by Vincotech 12 1 350 2 3 V F (V) 4 µs Revision: 4 70-W612M3A600SC-M200E datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 120 E (mWs) 70 E (mWs) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon High T 60 Eon High T 100 50 Eon Low T Eoff High T 80 Eon Low T 40 60 Eoff Low T 30 Eoff High T 40 Eoff Low T 20 20 10 0 0 0 200 400 600 800 1000 I C (A) 0 1200 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 ۷ Rgoff = 2 ۷ 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 600 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) 16 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 20 Erec High T E (mWs) E (mWs) Erec High T 16 12 12 8 8 Erec Low T 4 4 Erec Low T 0 0 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 ۷ Copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 600 A 13 Revision: 4 70-W612M3A600SC-M200E datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t ( µs) 1 t ( µs) tdoff tdon tdoff tdon 1 0,1 tf tr 0,1 tr tf 0,01 0,01 0,001 0,001 0 200 400 600 800 1000 I C (A) 0 1200 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 2 ۷ Rgoff = 2 ۷ 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 600 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,2 trr High T 0,5 1,0 0,4 0,8 0,3 0,6 0,2 trr High T t rr(ms) t rr(ms) 0,6 0,4 trr Low T 0,1 0,2 trr Low T 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 2 400 600 800 1000 I C (A) 1200 °C V V ۷ Copyright by Vincotech 14 0 2 At Tj = VR = IF = VGE = 25/125 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 4 70-W612M3A600SC-M200E datasheet Boost neutral point IGBT and half bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 100 80 Qrr (mC) Qrr (mC) Qrr High T Qrr High T 80 60 60 40 40 Qrr Low T 20 20 Qrr Low T 0 0 0 200 At At Tj = VCE = VGE = Rgon = 25/125 350 ±15 2 400 600 800 1000 I (A) C 1200 °C V V ۷ FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 2 At Tj = VR = IF = VGE = 25/125 350 600 ±15 4 6 8 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 800 IrrM (A) 500 R gon ( Ω) IRRM High T 400 600 IRRM Low T 300 400 200 200 IRRM High T 100 IRRM Low T 0 0 0 200 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 2 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V ۷ Copyright by Vincotech 15 2 25/125 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 4 70-W612M3A600SC-M200E datasheet Boost neutral point IGBT and half bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 10000 25000 dI0/dt T direc / dt (A/ms) dIo/dt T direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt T 8000 dIrec/dt T 20000 6000 15000 4000 10000 2000 5000 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 2 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V ۷ IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/125 350 600 ±15 4 6 8 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 10-3 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10-3 10-5 10-4 At D= RthJH = tp / T 0,14 10-3 10-2 10-1 100 101 t p (s) 102 10-5 At D= RthJH = K/W 10-4 tp / T 0,14 10-3 FWD thermal model values R (C/W) 0,02 0,04 0,03 0,04 0,01 R (C/W) 0,02 0,04 0,04 0,04 0,01 Copyright by Vincotech 16 10-1 100 101 t p (s) 102 K/W IGBT thermal model values Tau (s) 8,94 2,07 0,29 0,05 0,01 10-2 Tau (s) 6,10 1,41 0,18 0,03 0,00 Revision: 4 70-W612M3A600SC-M200E datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 700 IC (A) Ptot (W) 1400 1200 600 1000 500 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 600 IF (A) Ptot (W) 1400 200 1200 500 1000 400 800 300 600 200 400 100 200 0 0 At Tj = 50 175 100 150 Th ( o C) 0 200 0 At Tj = ºC Copyright by Vincotech 17 50 175 100 150 Th ( o C) 200 ºC Revision: 4 70-W612M3A600SC-M200E datasheet Boost neutral point IGBT IGBT Figure 25 Reverse bias safe operating area IC = f(VCE) IC (A) 1400 IC MAX Ic CHIP 1200 Ic MODULE 1000 VCE MAX 800 600 400 200 0 0 100 200 300 At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 400 500 600 V CE (V) 700 18 Revision: 4 70-W612M3A600SC-M200E datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 19 Revision: 4 70-W612M3A600SC-M200E datasheet Switching Definitions half bridge IGBT General conditions = 125 °C Tj = 0,5 Ω Rgon Rgoff = 0,5 Ω half bridge IGBT Figure 1 half bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 150 % % IC 125 VCE tdoff 150 100 VGE 90% VGE VCE 100 75 IC tdon 50 VCE 90% 50 tEoff 25 VGE10% 0 VCE3% IC10% 0 VGE tEon IC 1% -50 -25 -0,3 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,3 -15 15 350 591 0,37 0,93 0,6 0,9 time (us) 4,8 1,2 5 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs half bridge IGBT Figure 3 5,2 -15 15 350 591 0,26 0,51 5,4 V V V A µs µs half bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) 5,6 Turn-on Switching Waveforms & definition of tr 150 200 % % VCE 125 Ic 150 fitted IC 100 IC 90% VCE 100 75 IC 90% tr IC 60% 50 50 IC 40% 25 0 IC 10% 0 IC10% tf -50 -25 0,1 VC (100%) = IC (100%) = tf = 0,2 0,3 350 591 0,08 Copyright by Vincotech 0,4 0,5 5,2 time (us) 0,6 VC (100%) = IC (100%) = tr = V A µs 20 5,25 5,3 350 591 0,06 5,35 5,4 time(us) 5,45 V A µs Revision: 4 70-W612M3A600SC-M200E datasheet Switching Definitions half bridge IGBT half bridge IGBT Figure 5 half bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Poff Eoff 100 Eon 100 75 75 50 50 25 25 Pon VGE90% VGE VCE 3% 10% 0 0 tEon tEoff -25 -0,2 -25 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,4 206,68 30,27 0,93 0,6 4,8 0,8 time (us) 1 5 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) half bridge IGBT 5,2 206,68 12,81 0,51 5,4 time(us) 5,6 kW mJ µs neutral point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 Id % 15 80 trr 10 40 5 Vd fitted 0 0 IRRM10% -5 -40 -10 IRRM90% IRRM100% -80 -15 -20 -2000 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -120 0 2000 -15 15 350 591 6760,86 Copyright by Vincotech 4000 6000 Qg (nC) 5,2 8000 5,3 5,4 5,5 5,6 5,7 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 350 591 -457 0,25 V A A µs Revision: 4 70-W612M3A600SC-M200E datasheet Switching Definitions half bridge IGBT neutral point FWD Figure 9 neutral point FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % Erec % Id Qrr 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 5,15 Id (100%) = Qrr (100%) = tQrr = -25 5,3 5,45 5,6 591 47,04 0,55 A µC µs 5,75 5,9 time(us) 5 6,05 Prec (100%) = Erec (100%) = tErec = 5,2 5,4 206,68 10,70 0,55 5,6 5,8 time(us) 6 kW mJ µs half bridge IGBT switching measurement circuit Figure 11 Copyright by Vincotech 22 Revision: 4 70-W612M3A600SC-M200E datasheet Switching Definitions neutral point IGBT General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω neutral point IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 160 200 % % 120 neutral point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC 150 tdoff VGE 90% VCE 90% VCE 80 100 VGE IC tdon tEoff 40 50 IC 1% VCE VGE10% tEon VGE -40 -0,2 VCE 3% IC10% 0 0 -50 0 0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 700 592 0,23 0,58 0,4 0,6 time (us) 0,8 4,8 5 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs neutral point IGBT Figure 3 5,2 -15 15 700 592 0,25 0,38 5,4 V V V A µs µs neutral point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) 5,6 Turn-on Switching Waveforms & definition of tr 200 150 % 125 Ic % VCE fitted 150 IC 100 Ic 90% VCE 100 75 IC 90% Ic 60% tr 50 50 Ic 40% 25 IC 10% Ic10% 0 0 tf -25 -50 0,1 VC (100%) = IC (100%) = tf = 0,2 0,3 700 592 0,067 Copyright by Vincotech 0,4 time (us) 0,5 5,1 VC (100%) = IC (100%) = tr = V A µs 23 5,2 5,3 700 592 0,053 5,4 time(us) 5,5 V A µs Revision: 4 70-W612M3A600SC-M200E datasheet Switching Definitions neutral point IGBT neutral point IGBT Figure 5 neutral point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 % 125 % Ic 1% Eon Eoff 100 100 Poff 75 75 50 50 Pon 25 25 Uge90% Uge 10% Uce3% 0 0 tEon tEoff -25 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 414,61 22,22 0,58 0,4 4,9 0,6 time (us) 5,1 Pon (100%) = Eon (100%) = tEon = kW mJ µs neutral point IGBT Figure 7 414,6107 13,39 0,38 5,2 5,3 5,4 time(us) kW mJ µs half bridge FWD Figure 8 Gate voltage vs Gate charge (measured) Uge (V) 5 Turn-off Switching Waveforms & definition of trr 20 150 % 15 Id 100 10 5 trr 50 Ud 0 fitted 0 -5 IRRM 10% -10 -50 -15 -20 -500 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = IRRM 90% IRRM 100% -100 0 500 1000 -15 15 700 592 3441,54 V V V A nC Copyright by Vincotech 1500 5,2 2000 2500 Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = 24 5,3 5,4 700 592 -568 0,29 5,5 time(us) 5,6 V A A µs Revision: 4 70-W612M3A600SC-M200E datasheet Switching Definitions neutral point IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) half bridge FWD half bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Erec 100 100 tErec 75 tQint 50 50 Qrr 0 25 Prec -50 0 -100 -25 5,2 Id (100%) = Qrr (100%) = tQint = 5,3 5,4 592 60,53 0,33 5,5 5,6 time(us) 5,7 5 Prec (100%) = Erec (100%) = tErec = A µC µs 5,2 414,61 14,30 0,33 5,4 5,6 time(us) 5,8 kW mJ µs neutral point IGBT switching measurement circuit Figure 11 Copyright by Vincotech 25 Revision: 4 70-W612M3A600SC-M200E datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W612M3A600SC-M200E in DataMatrix as M200E in packaging barcode as M200E Outline Copyright by Vincotech 26 Revision: 4 70-W612M3A600SC-M200E datasheet Ordering Code and Marking - Outline - Pinout Pinout Note: DC link and neutral pins are common for the 3 phases. Copyright by Vincotech 27 Revision: 4 70-W612M3A600SC-M200E datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 28 Revision: 4