70-W612M3A600SC-M200E Maximum Ratings

70-W612M3A600SC-M200E
datasheet
flow MNPC 4w
1200V/600A
Features
FlowScrew WideBody 12mm housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
● Integrated DC-snubber capacitors
Target Applications
● Solar inverter
● UPS
Schematic
● High speed motor drive
Types
● 70-W612M3A600SC-M200E
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
432
560
A
1800
A
910
1378
W
±20
V
10
800
µs
V
1200
A
175
°C
600
V
362
475
A
1250
A
7800
A 2s
half bridge IGBT ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
neutral point FWD ( D2 , D3 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp = 10 ms, sine halfwave
Tvj < 150°C
IFSM
I2t
I2t-value
Repetitive peak forward current
Power dissipation per FWD
Maximum Junction Temperature
Copyright by Vincotech
IFRM
Ptot
tP = 1 ms
Tvj < 150°C
1200
A
Tj=Tjmax
Th=80°C
Tc=80°C
502
760
W
175
°C
Tjmax
1
Revision: 4
70-W612M3A600SC-M200E
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
422
551
A
1800
A
668
1012
W
±20
V
6
360
µs
V
1200
A
175
°C
1200
V
369
488
A
3600
A
16200
A 2s
1800
A
682
1033
W
175
°C
630
V
neutral point IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
half bridge FWD ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms , sin 180°
Tj=150°C
IFSM
I2t
I2t-value
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per FWD
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
DC link Capacitor
Max.DC voltage
VMAX
Tcmax=100°C
General Module Properties
Material of module baseplate
Cu
Material of internal isulation
Al2O3
Thermal Properties
Storage temperature
Tstg
Operation temperature under switching condition
Top
-40…+125
°C
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
for power part
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 4
70-W612M3A600SC-M200E
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
5
5,8
6,5
1,4
2,16
2,42
2,4
half bridge IGBT ( T1 , T4 )
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Collector-emitter cut-off current incl. FWD
VCE=VGE
0,024
600
Turn-off delay time
td(off)
tf
Fall time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,2
2800
Rgoff=2 ۷
Rgon=2 ۷
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
۷
1,25
tr
Rise time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
389
405
78
85
429
486
57
86
21
27
21
31
ns
mWs
37200
0
f=1MHz
25
Tj=25°C
2320
pF
2040
15
960
640
Tj=25°C
2800
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,10
K/W
0,07
neutral point FWD ( D2 , D3 )
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
600
IRRM
trr
Qrr
Rgon=2 ۷
±15
350
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
Gate emitter threshold voltage
VGE(th)
VCE=VGE
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,27
1,67
1,65
251
311
191
281
21
41
4449
1803
4
8
1,97
V
A
ns
µC
A/µs
mWs
0,19
K/W
0,13
neutral point IGBT ( T2 , T3 )
Collector-emitter cut-off incl FWD
0,0096
600
td(off)
tf
Fall time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
5
5,8
6,5
1,05
1,57
1,80
1,85
0,0304
2400
0,5
tr
Rise time
Turn-off delay time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=2 ۷
Rgon=2 ۷
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
337
345
72
75
413
440
35
53
20
29
18
25
V
V
mA
nA
۷
ns
mWs
36960
f=1MHz
0
25
Tj=25°C
2304
pF
1096
15
Thermal grease
thickness≤50um
λ = 1 W/mK
3
480
600
Tj=25°C
3760
nC
0,14
K/W
0,09
Revision: 4
70-W612M3A600SC-M200E
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
1
2,23
2,31
Unit
Max
half bridge FWD ( D1 , D4 )
FWD forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
600
Ir
1200
IRRM
trr
Qrr
Rgon=2 ۷
±15
350
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,7
720
289
397
90
473
18
65
8488
6098
3
14
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
0,14
K/W
0,09
DC link Capacitor
C value
C
2 * 0,68
µF
Thermistor
Rated resistance
R
Deviation of R25
ǑR/R
Power dissipation
P
T=25°C
R100=1486 ۷
T=100°C
Power dissipation constant
۷
22000
-5
+5
%
T=25°C
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
K
B
Module Properties
Module inductance (from chips to PCB)
LsCE
5
nH
Module inductance (from PCB to PCB using Intercon board)
LsCE
3
nH
m۷
Chip module lead resistance, terminals -chip
Rcc'1+EE' Tc=25°C, per switch
tbd.
Resistance of Intercon boards (from PCB to PCB using Intercon board)
Rcc'1+EE'
1,5
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
Copyright by Vincotech
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
4
m۷
2
2,2
4
6
Nm
2,5
5
Nm
710
g
Nm
Revision: 4
70-W612M3A600SC-M200E
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
1000
IC (A)
1000
800
800
600
600
400
400
200
200
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
µs
350
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
IF (A)
1200
IC (A)
500
V CE (V)
1000
400
800
300
600
200
400
100
200
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
350
10
µs
V
Copyright by Vincotech
6
8
10
V GE (V) 12
0
At
tp =
5
0,5
350
1
1,5
2
V F (V) 2,5
µs
Revision: 4
70-W612M3A600SC-M200E
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
80
60
Eon High T
E (mWs)
E (mWs)
Eon High T
Eoff High T
Eon Low T
60
45
Eon Low T
Eoff Low T
40
30
Eoff High T
Eoff Low T
20
15
0
0
0
200
400
600
800
1000
I C (A)
0
1200
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
۷
Rgoff =
2
۷
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
596
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
12
E (mWs)
E (mWs)
12
10
Erec High T
10
Erec High T
8
8
6
6
Erec Low T
Erec Low T
4
4
2
2
0
0
0
200
400
600
800
1000
I C (A)
1200
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
۷
Copyright by Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
596
A
6
Revision: 4
70-W612M3A600SC-M200E
datasheet
Buck
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10,00
t (ms)
t (ms)
10,00
tdoff
1,00
1,00
tdoff
tdon
0,10
tdon
tf
tr
0,10
tf
tr
0,01
0,01
0,00
0,00
0
200
400
600
800
1000
I C (A)
1200
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
2
۷
Rgoff =
2
۷
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
596
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
trr High T
t rr(ms)
t rr(ms)
0,4
trr High T
0,4
0,3
trr Low T
0,3
trr Low T
0,2
0,2
0,1
0,1
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
2
400
600
800
1000
0,0
I C (A) 1200
°C
V
V
۷
Copyright by Vincotech
7
0
2
At
Tj =
VR =
IF =
VGE =
25/125
350
596
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 4
70-W612M3A600SC-M200E
datasheet
Buck
half bridge IGBT and neutral point FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
60
Qrr High T
Qrr (mC)
Qrr (mC)
50
Qrr High T
50
40
40
30
Qrr Low T
30
Qrr Low T
20
20
10
10
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
2
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
350
596
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
500
IrrM (A)
IrrM (A)
400
IRRM High T
400
300
IRRM Low T
300
200
200
IRRM High T
100
IRRM Low T
100
0
0
200
400
600
800
1000
0
1200
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
2
°C
V
V
۷
Copyright by Vincotech
8
0
2
At
Tj =
VR =
IF =
VGE =
25/125
350
596
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 4
70-W612M3A600SC-M200E
datasheet
Buck
half bridge IGBT and neutral point FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
20000
direc / dt (A/ms)
12000
direc / dt (A/ms)
dIo/dt T
dIrec/dt T
10000
dI0/dt T
dIrec/dt T
16000
8000
12000
6000
8000
4000
4000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
800
1000
I C (A) 1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
25/125
350
±15
2
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
4
25/125
350
596
±15
6
R gon ( Ω) 10
8
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
-1
10
-2
ZthJH (K/W)
ZthJH (K/W)
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-3
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
101
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
10
2
-3
10
-5
At
D=
RthJH =
tp / T
0,10
-1
K/W
10
-4
10
-3
10
R (C/W)
0,03
0,04
0,03
0,01
R (C/W)
0,02
0,05
0,04
0,06
0,01
0,01
9
-1
10
0
10
1
t p (s)
10
2
K/W
FWD thermal model values
Copyright by Vincotech
10
tp / T
0,19
IGBT thermal model values
Tau (s)
3,8E+00
7,5E-01
9,4E-02
1,9E-02
-2
Tau (s)
8,0E+00
1,7E+00
3,2E-01
4,4E-02
5,9E-03
3,4E-04
Revision: 4
70-W612M3A600SC-M200E
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
700
Ptot (W)
IC (A)
2000
600
1600
500
1200
400
300
800
200
400
100
0
0
0
50
At
Tj =
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
1000
200
IF (A)
Ptot (W)
600
500
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 4
70-W612M3A600SC-M200E
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
10
VGE (V)
IC (A)
17,5
1
3
15
240V
1
960V
12,5
1
102
10
10
1
7,5
100
10
5
2,5
-1
0
100
10
At
D=
102
1
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Th =
VGE =
Tj =
100
200
300
V CE (V)
600
400
500
600
700
800
900
Q g (nC)
A
IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1400
IC MAX
Ic MODULE
1000
800
Ic CHIP
1200
VCE MAX
600
400
200
0
0
200
400
600
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
800
1000
1200
1400
V CE (V)
11
Revision: 4
70-W612M3A600SC-M200E
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
1000
IC (A)
1000
800
800
600
600
400
400
200
200
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
µs
350
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
µs
350
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
500
V CE (V)
IC (A)
IF (A)
1200
1000
400
800
300
600
200
Tj = Tjmax-25°C
400
Tj = 25°C
Tj = Tjmax-25°C
100
200
Tj = 25°C
0
0
0
At
tp =
VCE =
2
350
0
4
6
8
10
V GE (V) 12
0
At
tp =
µs
V
Copyright by Vincotech
12
1
350
2
3
V F (V)
4
µs
Revision: 4
70-W612M3A600SC-M200E
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
120
E (mWs)
70
E (mWs)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon High T
60
Eon High T
100
50
Eon Low T
Eoff High T
80
Eon Low T
40
60
Eoff Low T
30
Eoff High T
40
Eoff Low T
20
20
10
0
0
0
200
400
600
800
1000
I C (A)
0
1200
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
۷
Rgoff =
2
۷
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
16
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
20
Erec High T
E (mWs)
E (mWs)
Erec High T
16
12
12
8
8
Erec Low T
4
4
Erec Low T
0
0
0
200
400
600
800
1000
I C (A) 1200
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
۷
Copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
13
Revision: 4
70-W612M3A600SC-M200E
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t ( µs)
1
t ( µs)
tdoff
tdon
tdoff
tdon
1
0,1
tf
tr
0,1
tr
tf
0,01
0,01
0,001
0,001
0
200
400
600
800
1000
I C (A)
0
1200
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
2
۷
Rgoff =
2
۷
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,2
trr High T
0,5
1,0
0,4
0,8
0,3
0,6
0,2
trr High T
t rr(ms)
t rr(ms)
0,6
0,4
trr Low T
0,1
0,2
trr Low T
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
2
400
600
800
1000
I C (A)
1200
°C
V
V
۷
Copyright by Vincotech
14
0
2
At
Tj =
VR =
IF =
VGE =
25/125
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 4
70-W612M3A600SC-M200E
datasheet
Boost
neutral point IGBT and half bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
100
80
Qrr (mC)
Qrr (mC)
Qrr High T
Qrr High T
80
60
60
40
40
Qrr Low T
20
20
Qrr Low T
0
0
0
200
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
2
400
600
800
1000 I (A)
C
1200
°C
V
V
۷
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
2
At
Tj =
VR =
IF =
VGE =
25/125
350
600
±15
4
6
8
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
800
IrrM (A)
500
R gon ( Ω)
IRRM High T
400
600
IRRM Low T
300
400
200
200
IRRM High T
100
IRRM Low T
0
0
0
200
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
2
400
600
800
1000
I C (A) 1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
Copyright by Vincotech
15
2
25/125
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 4
70-W612M3A600SC-M200E
datasheet
Boost
neutral point IGBT and half bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
10000
25000
dI0/dt T
direc / dt (A/ms)
dIo/dt T
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt T
8000
dIrec/dt T
20000
6000
15000
4000
10000
2000
5000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
2
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
۷
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/125
350
600
±15
4
6
8
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
10-3
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10-3
10-5
10-4
At
D=
RthJH =
tp / T
0,14
10-3
10-2
10-1
100
101
t p (s)
102
10-5
At
D=
RthJH =
K/W
10-4
tp / T
0,14
10-3
FWD thermal model values
R (C/W)
0,02
0,04
0,03
0,04
0,01
R (C/W)
0,02
0,04
0,04
0,04
0,01
Copyright by Vincotech
16
10-1
100
101
t p (s)
102
K/W
IGBT thermal model values
Tau (s)
8,94
2,07
0,29
0,05
0,01
10-2
Tau (s)
6,10
1,41
0,18
0,03
0,00
Revision: 4
70-W612M3A600SC-M200E
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
700
IC (A)
Ptot (W)
1400
1200
600
1000
500
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
600
IF (A)
Ptot (W)
1400
200
1200
500
1000
400
800
300
600
200
400
100
200
0
0
At
Tj =
50
175
100
150
Th ( o C)
0
200
0
At
Tj =
ºC
Copyright by Vincotech
17
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
70-W612M3A600SC-M200E
datasheet
Boost
neutral point IGBT
IGBT
Figure 25
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1400
IC MAX
Ic CHIP
1200
Ic MODULE
1000
VCE MAX
800
600
400
200
0
0
100
200
300
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
400
500
600
V CE (V)
700
18
Revision: 4
70-W612M3A600SC-M200E
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
19
Revision: 4
70-W612M3A600SC-M200E
datasheet
Switching Definitions half bridge IGBT
General conditions
= 125 °C
Tj
= 0,5 Ω
Rgon
Rgoff
= 0,5 Ω
half bridge IGBT
Figure 1
half bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
150
%
%
IC
125
VCE
tdoff
150
100
VGE 90%
VGE
VCE
100
75
IC
tdon
50
VCE 90%
50
tEoff
25
VGE10%
0
VCE3%
IC10%
0
VGE
tEon
IC 1%
-50
-25
-0,3
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,3
-15
15
350
591
0,37
0,93
0,6
0,9 time (us)
4,8
1,2
5
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
half bridge IGBT
Figure 3
5,2
-15
15
350
591
0,26
0,51
5,4
V
V
V
A
µs
µs
half bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us) 5,6
Turn-on Switching Waveforms & definition of tr
150
200
%
%
VCE
125
Ic
150
fitted
IC
100
IC 90%
VCE
100
75
IC 90%
tr
IC 60%
50
50
IC 40%
25
0
IC 10%
0
IC10%
tf
-50
-25
0,1
VC (100%) =
IC (100%) =
tf =
0,2
0,3
350
591
0,08
Copyright by Vincotech
0,4
0,5
5,2
time (us) 0,6
VC (100%) =
IC (100%) =
tr =
V
A
µs
20
5,25
5,3
350
591
0,06
5,35
5,4
time(us)
5,45
V
A
µs
Revision: 4
70-W612M3A600SC-M200E
datasheet
Switching Definitions half bridge IGBT
half bridge IGBT
Figure 5
half bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Poff
Eoff
100
Eon
100
75
75
50
50
25
25
Pon
VGE90%
VGE
VCE 3%
10%
0
0
tEon
tEoff
-25
-0,2
-25
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0,4
206,68
30,27
0,93
0,6
4,8
0,8 time (us) 1
5
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
half bridge IGBT
5,2
206,68
12,81
0,51
5,4
time(us)
5,6
kW
mJ
µs
neutral point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
Id
%
15
80
trr
10
40
5
Vd
fitted
0
0
IRRM10%
-5
-40
-10
IRRM90%
IRRM100%
-80
-15
-20
-2000
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-120
0
2000
-15
15
350
591
6760,86
Copyright by Vincotech
4000
6000
Qg (nC)
5,2
8000
5,3
5,4
5,5
5,6
5,7
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
350
591
-457
0,25
V
A
A
µs
Revision: 4
70-W612M3A600SC-M200E
datasheet
Switching Definitions half bridge IGBT
neutral point FWD
Figure 9
neutral point FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
Erec
%
Id
Qrr
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
5,15
Id (100%) =
Qrr (100%) =
tQrr =
-25
5,3
5,45
5,6
591
47,04
0,55
A
µC
µs
5,75
5,9
time(us)
5
6,05
Prec (100%) =
Erec (100%) =
tErec =
5,2
5,4
206,68
10,70
0,55
5,6
5,8
time(us)
6
kW
mJ
µs
half bridge IGBT switching measurement circuit
Figure 11
Copyright by Vincotech
22
Revision: 4
70-W612M3A600SC-M200E
datasheet
Switching Definitions neutral point IGBT
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
neutral point IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
160
200
%
%
120
neutral point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
150
tdoff
VGE 90%
VCE 90%
VCE
80
100
VGE
IC
tdon
tEoff
40
50
IC 1%
VCE
VGE10%
tEon
VGE
-40
-0,2
VCE 3%
IC10%
0
0
-50
0
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
700
592
0,23
0,58
0,4
0,6
time (us)
0,8
4,8
5
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
neutral point IGBT
Figure 3
5,2
-15
15
700
592
0,25
0,38
5,4
V
V
V
A
µs
µs
neutral point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us) 5,6
Turn-on Switching Waveforms & definition of tr
200
150
%
125
Ic
%
VCE
fitted
150
IC
100
Ic 90%
VCE
100
75
IC 90%
Ic 60%
tr
50
50
Ic 40%
25
IC 10%
Ic10%
0
0
tf
-25
-50
0,1
VC (100%) =
IC (100%) =
tf =
0,2
0,3
700
592
0,067
Copyright by Vincotech
0,4
time (us)
0,5
5,1
VC (100%) =
IC (100%) =
tr =
V
A
µs
23
5,2
5,3
700
592
0,053
5,4
time(us) 5,5
V
A
µs
Revision: 4
70-W612M3A600SC-M200E
datasheet
Switching Definitions neutral point IGBT
neutral point IGBT
Figure 5
neutral point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
%
125
%
Ic 1%
Eon
Eoff
100
100
Poff
75
75
50
50
Pon
25
25
Uge90%
Uge 10%
Uce3%
0
0
tEon
tEoff
-25
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
414,61
22,22
0,58
0,4
4,9
0,6
time (us)
5,1
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
neutral point IGBT
Figure 7
414,6107
13,39
0,38
5,2
5,3
5,4
time(us)
kW
mJ
µs
half bridge FWD
Figure 8
Gate voltage vs Gate charge (measured)
Uge (V)
5
Turn-off Switching Waveforms & definition of trr
20
150
%
15
Id
100
10
5
trr
50
Ud
0
fitted
0
-5
IRRM 10%
-10
-50
-15
-20
-500
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
IRRM 90%
IRRM 100%
-100
0
500
1000
-15
15
700
592
3441,54
V
V
V
A
nC
Copyright by Vincotech
1500
5,2
2000
2500
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
24
5,3
5,4
700
592
-568
0,29
5,5
time(us)
5,6
V
A
A
µs
Revision: 4
70-W612M3A600SC-M200E
datasheet
Switching Definitions neutral point IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
half bridge FWD
half bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Erec
100
100
tErec
75
tQint
50
50
Qrr
0
25
Prec
-50
0
-100
-25
5,2
Id (100%) =
Qrr (100%) =
tQint =
5,3
5,4
592
60,53
0,33
5,5
5,6 time(us) 5,7
5
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
5,2
414,61
14,30
0,33
5,4
5,6
time(us) 5,8
kW
mJ
µs
neutral point IGBT switching measurement circuit
Figure 11
Copyright by Vincotech
25
Revision: 4
70-W612M3A600SC-M200E
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W612M3A600SC-M200E
in DataMatrix as
M200E
in packaging barcode as
M200E
Outline
Copyright by Vincotech
26
Revision: 4
70-W612M3A600SC-M200E
datasheet
Ordering Code and Marking - Outline - Pinout
Pinout
Note: DC link and neutral pins are common for the 3 phases.
Copyright by Vincotech
27
Revision: 4
70-W612M3A600SC-M200E
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
28
Revision: 4