70-W212NMA600SC-M200P datasheet flow MNPC 4w 1200 V / 600 A Features flow SCREW 4w housing ● Mixed voltage NPC ● Low inductive ● High power screw interface ● Integrated DC-snubber capacitors Target Applications ● Solar inverter ● UPS Schematic ● High speed motor drive Types ● 70-W212NMA600SC-M200P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 498 637 A 1800 A 1188 1799 W ±20 V 10 800 µs V 1200 A 175 °C 600 V 288 384 A 1250 A 7800 A 2s 1200 A half bridge IGBT ( T1 , T4 ) Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax neutral point FWD ( D2 , D3 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C tp = 10 ms, sine halfwave Tvj < 150°C IFSM I2t-value I2 t Repetitive peak forward current IFRM Power dissipation per FWD Maximum Junction Temperature copyright Vincotech Ptot tP = 1 ms Tj=Tjmax Tjmax Tvj < 150°C Th=80°C 365 Tc=80°C 554 175 1 W °C 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 388 510 A 1800 A neutral point IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Turn off safe operating area (RBSOA) Maximum Junction Temperature tSC VCC Icmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax 594 900 W ±20 V 6 360 µs V 1200 A 175 °C 1200 V 355 470 A 3600 A 16200 2 A s 1800 A 633 960 W 175 °C half bridge FWD ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C tp=10ms , sin 180° Tj=150°C IFSM I2t-value I2 t Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per FWD Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 2 Th=80°C Tc=80°C 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit DC link Capacitor Max.DC voltage VMAX 630 V Operation Temperature TOP -40...+105 °C RMS Current IRMS 10 A General Module Properties Material of module baseplate Cu Material of internal isulation Al2O3 Thermal Properties Storage temperature Tstg Operation temperature under switching condition Top for power part Vis t=2s -40…+125 °C -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech DC voltage >200 CTI 3 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Min Unit Typ Max 5 5,8 6,5 1 2,16 2,42 2,4 half bridge IGBT ( T1 , T4 ) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) VCE=VGE 0,024 600 15 Collector-emitter cut-off current incl. FWD ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip Rth(j-s) Thermal resistance chip to case per chip Rth(j-c) 0,6 3000 Rgoff=1 Ω Rgon=1 Ω ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 1,25 tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 296 310 57 64 350 410 62 83 12 17 20 31 ns mWs 37200 0 f=1MHz 25 Tj=25°C 2320 pF 2040 15 960 640 Tj=25°C 2800 Phase-Change Material ʎ=3,4W/mK nC 0,08 K/W 0,06 neutral point FWD ( D2 , D3 ) FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 600 IRRM trr Qrr ±15 Rgon=1 Ω 350 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip Rth(j-s) Thermal resistance chip to case per chip Rth(j-c) Phase-Change Material ʎ=3,4W/mK Gate emitter threshold voltage VGE(th) VCE=VGE Collector-emitter saturation voltage VCE(sat) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,2 1,67 1,65 339 399 132 257 23 44 4888 3314 5 9 2,3 V A ns µC A/µs mWs 0,26 K/W 0,17 neutral point IGBT ( T2 , T3 ) 0,0096 15 600 Collector-emitter cut-off incl FWD ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip Rth(j-s) Thermal resistance chip to case per chip Rth(j-c) copyright Vincotech 5 5,8 6,5 1 1,57 1,80 2,3 0,1 3000 0,5 tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=1 Ω Rgon=1 Ω ±15 350 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 244 250 49 53 306 325 48 67 8 13 15 22 V V mA nA Ω ns mWs 36960 0 f=1MHz Tj=25°C 25 2304 pF 1096 15 Phase-Change Material ʎ=3,4W/mK 480 600 Tj=25°C 3760 nC 0,16 K/W 0,11 4 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Min Typ 1 2,23 2,31 Unit Max half bridge FWD ( D1 , D4 ) FWD forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy VF 600 Ir 1200 IRRM trr Qrr Rgon=1 Ω ±15 350 600 di(rec)max /dt Erec Thermal resistance chip to heatsink per chip Rth(j-s) Thermal resistance chip to case per chip Rth(j-c) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3 720 422 568 76 290 20 61 14692 12189 4 14 Phase-Change Material ʎ=3,4W/mK V µA A ns µC A/µs mWs 0,15 K/W 0,10 DC link Capacitor Capacitance 1360 C -10 Tolerance TJ=20ºC Dissipation factor µF +10 nH 0,0004 mΩ +12 % 40/105/56 Climatic category Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C Tj=100°C R100=1486 Ω Power dissipation constant 22000 -12 Tj=25°C 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3998 Vincotech NTC Reference Ω Tj=25°C K B Module Properties Module inductance (from chips to PCB) LsCE 5 Module inductance (from PCB to PCB using Intercon board) LsCE 3 nH 1,5 mΩ Resistance of Intercon boards (from PCB to PCB using Intercon board) Rcc'1+EE' Tc=25°C, per switch Mounting torque M Mounting torque M Terminal connection torque M Weight G copyright Vincotech Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 5 nH 2 2,2 Nm 4 6 Nm 5 Nm 710 g 2,5 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Buck half bridge IGBT and neutral point FWD Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 1200 IC (A) 1200 1000 1000 800 800 600 600 400 400 200 200 0 IGBT 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) IGBT 1 2 3 4 V CE (V) 350 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 500 5 FWD IC (A) IF (A) 1200 1000 400 800 300 600 200 400 Tj = Tjmax-25°C 100 200 Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 4 350 10 µs V copyright Vincotech 6 8 10 V GE (V) 0 12 At tp = 6 0,5 350 1 1,5 2 V F (V) 2,5 µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Buck half bridge IGBT and neutral point FWD Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 60 IGBT 80 Eon High T E (mWs) E (mWs) Eoff High T 45 Eon Low T 60 Eoff Low T Eon High T 30 40 Eoff High T Eon Low T Eoff Low T 15 20 0 0 200 400 600 800 1000 0 1200 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 596 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 12 E (mWs) 12 FWD Erec High T 10 10 8 8 6 Erec High T 6 Erec Low T 4 4 2 2 Erec Low T 0 0 0 200 400 600 800 1000 I (A) C 1200 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω copyright Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 596 A 7 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Buck half bridge IGBT and neutral point FWD Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10,00 IGBT t (µs) t (µs) 10,00 1,00 1,00 tdoff tdoff tdon tdon tf 0,10 tr 0,10 tf tr 0,01 0,01 0,00 0,00 0 200 400 600 800 1000 0 1200 I C (A) With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 596 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) FWD 0,5 0,30 t rr(µs) t rr(µs) trr High T trr High T 0,25 0,4 0,20 trr Low T 0,3 0,15 trr Low T 0,2 0,10 0,1 0,05 0,00 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright Vincotech 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω 8 2 25/125 350 596 ±15 4 6 8 R gon ( Ω) 10 °C V A V 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Buck half bridge IGBT and neutral point FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) FWD 50 Qrr (µC) Qrr (µC) 60 Qrr High T 50 Qrr High T 40 40 30 30 Qrr Low T 20 Qrr Low T 20 10 10 0 0 0 At At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 400 600 800 1000 I C (A) 1200 0 2 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(I C) FWD 4 25/125 350 596 ±15 6 8 R gon ( Ω) 10 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) FWD 500 500 400 IrrM (A) IrrM (A) IRRM High T 400 IRRM Low T 300 300 200 200 IRRM High T IRRM Low T 100 100 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright Vincotech 400 600 800 1000 I C (A) 1200 0 At Tj = VR = IF = VGE = °C V V Ω 9 2 25/125 350 596 ±15 4 6 8 R gon ( Ω) 10 °C V A V 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Buck half bridge IGBT and neutral point FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) 14000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) FWD 20000 direc / dt (A/ms) dIrec/dt T dIo/dt T 12000 dIrec/dt T dI0/dt T 16000 10000 12000 8000 6000 8000 4000 4000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 25/125 350 ±15 1 600 800 1000 0 At Tj = VR = IF = VGE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) IGBT 10 0 10 4 25/125 350 596 ±15 6 8 R gon ( Ω) 10 °C V A V FWD ZthJH (K/W) 0 10-1 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10 2 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 10 1200 I C (A) -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t p (s) 10 10-5 2 At D= RthJH = tp / T 0,08 K/W 10-4 10-3 10-2 R (C/W) 0,035 0,021 0,022 0,003 0,004 R (C/W) 0,049 0,057 0,041 0,075 0,024 0,006 0,012 10 101 t p (s) 102 K/W FWD thermal model values copyright Vincotech 100 tp / T 0,26 IGBT thermal model values Tau (s) 1,2E+00 1,8E-01 3,6E-02 8,0E-03 6,8E-04 10-1 Tau (s) 5,4E+00 1,1E+00 2,6E-01 5,0E-02 1,7E-02 3,4E-03 4,0E-04 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Buck half bridge IGBT and neutral point FWD Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) IGBT 800 Ptot (W) IC (A) 2500 700 2000 600 500 1500 400 1000 300 200 500 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) FWD 50 175 15 100 150 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) FWD 500 IF (A) Ptot (W) 700 600 400 500 300 400 300 200 200 100 100 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 11 50 175 100 150 T h ( o C) 200 °C 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Buck half bridge IGBT and neutral point FWD Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge IGBT VGE = f(Qg) VGE (V) IC (A) 17,5 1 103 15 240V 1 12,5 102 960V 10 101 7,5 10 0 5 2,5 10 -1 0 0 100 101 At D= 300 At IC = Figure 27 Reverse bias safe operating area 450 600 750 900 Q g (nC) single pulse 80 ºC ±15 V Tjmax ºC Th = VGE = Tj = 150 V CE (V) 103 102 600 A IGBT IC = f(VCE) IC (A) 1400 ICMAX 1200 Ic MODULE Ic CHIP 1000 800 VCEMAX 600 400 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 12 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Boost neutral point IGBT and half bridge FWD Figure 2 Typical output characteristics IC = f(VCE) 1000 1000 IC (A) IGBT IC (A) Figure 1 Typical output characteristics IC = f(VCE) 800 800 600 600 400 400 200 200 0 IGBT 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) IGBT 1 2 3 4 V CE (V) 5 350 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) FWD 1200 IC (A) IF (A) 500 1000 400 800 300 600 200 Tj = Tjmax-25°C 400 Tj = 25°C 100 200 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 350 0 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 13 1 350 2 3 V F (V) 4 µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Boost neutral point IGBT and half bridge FWD Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 50 IGBT E (mWs) E (mWs) 120 Eoff High T Eon High T 100 40 Eon Low T 80 30 Eoff Low T 60 Eon High T 20 Eoff High T 40 Eon Low T Eoff Low T 10 20 0 0 200 400 600 800 1000 0 1200 0 I C (A) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 600 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) FWD 20 Erec High T E (mWs) E (mWs) 20 Erec High T 16 15 12 10 8 Erec Low T 5 4 Erec Low T 0 0 0 200 400 600 800 1000 I C (A) 1200 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω copyright Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 600 A 14 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Boost neutral point IGBT and half bridge FWD Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t ( µs) 1 IGBT t ( µs) tdoff tdoff tdon tdon 1 tr 0,1 tr tf 0,1 tf 0,01 0,01 0,001 0,001 0 200 400 600 800 1000 I C (A) 0 1200 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 600 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) FWD 1,2 trr High T t rr(µs) t rr(µs) 0,4 1 trr High T 0,3 0,8 0,6 0,2 0,4 0,1 trr Low T 0,2 trr Low T 0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright Vincotech 400 600 800 1000 I C (A) 0 1200 At Tj = VR = IF = VGE = °C V V Ω 15 2 25/125 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Boost neutral point IGBT and half bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) FWD 100 80 Qrr (µC) Qrr (µC) Qrr High T Qrr High T 80 60 60 40 40 Qrr Low T 20 20 Qrr Low T 0 0 0 At At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 400 600 800 1000 1200 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(I C) FWD 2 25/125 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) FWD 800 IrrM (A) 700 IrrM (A) IRRM High T 600 600 500 IRRM Low T 400 400 300 200 200 IRRM High T IRRM Low T 100 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright Vincotech 400 600 800 1000 0 I C (A) 1200 At Tj = VR = IF = VGE = °C V V Ω 16 2 25/125 350 600 ±15 4 6 8 R gon ( Ω) 10 °C V A V 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Boost neutral point IGBT and half bridge FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) 25000 direc / dt (A/ms) 20000 dIrec/dt T dIo/dt T 16000 dIrec/dt T dI0/dt T 20000 12000 15000 8000 10000 4000 5000 0 0 0 At Tj = VCE = VGE = Rgon = FWD 200 400 25/125 350 ±15 1 600 800 1000 I (A) C 1200 0 At Tj = VR = IF = VGE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) IGBT 2 25/125 350 600 ±15 4 6 8 R gon ( Ω) °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) FWD 100 ZthJH (K/W) ZthJH (K/W) 100 10 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 At D= RthJH = 10-4 10-3 tp / T 0,16 10-2 10-1 100 101 t p (s) 102 10-5 At D= RthJH = K/W IGBT thermal model values R (K/W) Tau (s) 0,05 4,40 0,03 1,10 0,03 0,24 0,04 0,05 0,01 0,02 0,002 0,003 0,005 0,0005 copyright Vincotech 10-4 tp / T 0,15 10-3 10-2 10-1 100 101 t p (s) 102 K/W FWD thermal model values R (K/W) Tau (s) 0,02 6,05 0,04 1,29 0,03 0,22 0,04 0,05 0,01 0,01 0,01 0,001 17 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Boost neutral point IGBT and half bridge FWD Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 600 IC (A) Ptot (W) 1200 IGBT 1000 500 800 400 600 300 400 200 100 200 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = ºC Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) FWD 50 175 15 100 150 T h ( o C) ºC V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 1200 200 FWD Ptot (W) IF (A) 600 1000 500 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Boost neutral point IGBT Figure 25 Reverse bias safe operating area IGBT IC = f(VCE) IC (A) 1400 ICMAX Ic CHIP 1200 800 VCEMAX Ic MODULE 1000 600 400 200 0 0 100 200 300 400 At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 500 600 700 VCE(V) 19 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Thermistor Figure 26 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Switching Definitions half bridge IGBT General Tj Rgon Rgoff conditions = 125 °C = 2Ω = 2Ω Figure 1 half bridge IGBT Turn-off Switching Waveforms & definition of t doff, tEoff (tEoff = integrating time for Eoff) Figure 2 half bridge IGBT Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 150 IC % % VCE tdoff 150 100 VGE 90% VCE 90% IC VCE 100 VGE 50 tEoff tdon 50 IC 1% 0 VGE10% VGE VCE3% IC10% 0 tEon -50 -50 -0,3 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,3 -15 15 350 591 0,37 0,93 0,6 0,9 time (us) 4,8 1,2 5 5,2 5,4 5,6 5,8 time(us) V V V A µs µs VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 3 half bridge IGBT Turn-off Switching Waveforms & definition of t f -15 15 350 591 0,26 0,51 V V V A µs µs Figure 4 half bridge IGBT Turn-on Switching Waveforms & definition of tr 150 200 % VCE Ic % 125 fitted IC 150 100 IC 90% VCE 100 75 IC90% IC 60% tr 50 50 IC 40% 25 0 IC10% 0 IC10% tf -50 -25 0,1 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,3 350 591 0,08 0,4 0,5 time (us) 5,1 0,6 V A µs VC (100%) = IC (100%) = tr = 21 5,2 5,3 350 591 0,06 5,4 time(us) 5,5 V A µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Switching Definitions half bridge IGBT Figure 5 half bridge IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 half bridge IGBT Turn-on Switching Waveforms & definition of tEon 120 120 % IC 1% Poff Eon % Eoff 100 90 80 60 60 40 30 20 VGE10% VGE90% VCE3% Pon 0 tEon 0 tEoff -20 -0,2 -30 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,4 206,68 30,27 0,93 0,6 0,8 time (us) 1 4,8 kW mJ µs 5 Pon (100%) = Eon (100%) = tEon = Figure 7 Gate voltage vs Gate charge (measured) half bridge IGBT 5,2 206,68 12,81 0,51 5,4 5,6 time(us) 5,8 kW mJ µs Figure 8 neutral point FWD Turn-off Switching Waveforms & definition of t rr 20 VGE (V) 120 Id % 15 80 10 trr 40 5 Vd 0 fitted 0 IRRM 10% -5 -40 -10 IRRM 90% IRRM 100% -80 -15 -20 -2000 -120 0 2000 4000 6000 8000 5,2 5,3 5,4 5,5 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 350 591 6760,90 5,6 5,7 time(us) V V V A nC Vd (100%) = Id (100%) = IRRM (100%) = trr = 22 350 591 -457 0,25 V A A µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Switching Definitions half bridge IGBT Figure 9 neutral point FWD Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Figure 10 neutral point FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Qrr Id Erec 100 100 tErec 75 tQrr 50 50 0 25 -50 -100 5,15 Prec 0 -25 5,3 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 5,45 591 47,04 0,55 5,6 5,75 5,9 time(us) 5,2 6,05 A µC µs Prec (100%) = Erec (100%) = tErec = 23 5,4 5,6 206,68 10,70 0,55 5,8 time(us) 6 kW mJ µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet half bridge IGBT switching measurement circuit Figure 11 copyright Vincotech 24 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Switching Definitions neutral point IGBT General Tj Rgon Rgoff conditions = 125 °C = 2Ω = 2Ω Figure 1 neutral point IGBT Turn-off Switching Waveforms & definition of t doff, tEoff (tEoff = integrating time for Eoff) Figure 2 neutral point IGBT Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 % IC % 125 tdoff 150 100 VCE VGE 90% VCE 90% 100 75 IC tdon 50 50 tEoff VGE 25 IC 1% VCE VCE 3% VGE 10% 0 IC 10% tEon 0 VGE -50 -25 -0,2 0 0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 700 592 0,23 0,58 0,4 0,6 time (us) 4,9 0,8 V V V A µs µs 5 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 3 neutral point IGBT Turn-off Switching Waveforms & definition of t f 5,1 5,2 -15 15 700 592 0,25 0,38 V V V A µs µs 5,3 5,4 time(us) 5,5 Figure 4 neutral point IGBT Turn-on Switching Waveforms & definition of tr 150 200 % % VCE 125 fitted IC 150 IC 100 Ic 90% VCE 100 75 IC 90% Ic 60% tr 50 50 Ic 40% 25 Ic10% 0 IC 10% 0 tf -25 0,1 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,3 700 592 0,067 0,4 time (us) -50 0,5 5,1 V A µs VC (100%) = IC (100%) = tr = 25 5,2 5,3 700 592 0,053 5,4 time(us) 5,5 V A µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Switching Definitions neutral point IGBT Figure 5 neutral point IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 neutral point IGBT Turn-on Switching Waveforms & definition of tEon 125 125 % Poff 100 Eoff % IC 1% Eon 100 75 75 50 50 25 Pon 25 Uge90% Uge 0 Uce 3% 10% 0 tEoff -25 -0,2 tEon -25 0 0,2 0,4 0,6 4,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 414,61 22,22 0,58 kW mJ µs 5,1 Pon (100%) = Eon (100%) = tEon = Figure 7 neutral point IGBT Gate voltage vs Gate charge (measured) 5,2 5,3 5,4 time(us) 5,5 414,6107 kW 13,39 mJ 0,38 µs Figure 8 half bridge FWD Turn-off Switching Waveforms & definition of t rr 20 Uge (V) 5 150 % 15 Id 100 10 trr 50 5 0 Ud fitted 0 IRRM 10% -5 -50 -10 IRRM 90% IRRM 100% -15 0 500 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 1000 1500 -15 15 700 592 3441,54 2000 2500 -100 3000 3500 Qg (nC) 5,1 V V V A nC Vd (100%) = Id (100%) = IRRM (100%) = trr = 26 5,2 5,3 700 592 -568 0,29 5,4 5,5 time(us) 5,6 V A A µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Switching Definitions neutral point IGBT Figure 9 half bridge FWD Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Figure 10 half bridge FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 Erec % % Qrr Id 100 100 tErec 75 tQint 50 50 0 25 Prec -50 0 -100 -25 5 5,2 Id (100%) = Qrr (100%) = tQint = copyright Vincotech 5,4 592 60,53 0,33 5,6 time(us) 5,8 5 A µC µs Prec (100%) = Erec (100%) = tErec = 27 5,2 5,4 414,61 14,30 0,33 5,6 time(us) 5,8 kW mJ µs 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet neutral point IGBT switching measurement circuit Figure 11 copyright Vincotech 28 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W212NMA600SC-M200P in DataMatrix as M200P in packaging barcode as M200P Outline copyright Vincotech 29 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Ordering Code and Marking - Outline - Pinout Pinout copyright Vincotech 30 24 Mar. 2015 / Revision 6 70-W212NMA600SC-M200P datasheet Packaging instruction Standard packaging quantity (SPQ) 10 >SPQ Standard <SPQ Sample Handling instruction Handling instructions for flowMNPC 4w packages see vincotech.com website. Document No.: Date: 70-W212NMA600SC-M200P 24 Mar. 2015 Modification: Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 31 24 Mar. 2015 / Revision 6