70 W212NMA600SC M200P D6 14

70-W212NMA600SC-M200P
datasheet
flow MNPC 4w
1200 V / 600 A
Features
flow SCREW 4w housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
● Integrated DC-snubber capacitors
Target Applications
● Solar inverter
● UPS
Schematic
● High speed motor drive
Types
● 70-W212NMA600SC-M200P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
498
637
A
1800
A
1188
1799
W
±20
V
10
800
µs
V
1200
A
175
°C
600
V
288
384
A
1250
A
7800
A 2s
1200
A
half bridge IGBT ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
neutral point FWD ( D2 , D3 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
tp = 10 ms, sine halfwave
Tvj < 150°C
IFSM
I2t-value
I2 t
Repetitive peak forward current
IFRM
Power dissipation per FWD
Maximum Junction Temperature
copyright Vincotech
Ptot
tP = 1 ms
Tj=Tjmax
Tjmax
Tvj < 150°C
Th=80°C
365
Tc=80°C
554
175
1
W
°C
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
388
510
A
1800
A
neutral point IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Turn off safe operating area (RBSOA)
Maximum Junction Temperature
tSC
VCC
Icmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
594
900
W
±20
V
6
360
µs
V
1200
A
175
°C
1200
V
355
470
A
3600
A
16200
2
A s
1800
A
633
960
W
175
°C
half bridge FWD ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms , sin 180°
Tj=150°C
IFSM
I2t-value
I2 t
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per FWD
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
2
Th=80°C
Tc=80°C
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
DC link Capacitor
Max.DC voltage
VMAX
630
V
Operation Temperature
TOP
-40...+105
°C
RMS Current
IRMS
10
A
General Module Properties
Material of module baseplate
Cu
Material of internal isulation
Al2O3
Thermal Properties
Storage temperature
Tstg
Operation temperature under switching condition
Top
for power part
Vis
t=2s
-40…+125
°C
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
DC voltage
>200
CTI
3
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Min
Unit
Typ
Max
5
5,8
6,5
1
2,16
2,42
2,4
half bridge IGBT ( T1 , T4 )
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
VCE=VGE
0,024
600
15
Collector-emitter cut-off current incl. FWD
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
Rth(j-s)
Thermal resistance chip to case per chip
Rth(j-c)
0,6
3000
Rgoff=1 Ω
Rgon=1 Ω
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
1,25
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
296
310
57
64
350
410
62
83
12
17
20
31
ns
mWs
37200
0
f=1MHz
25
Tj=25°C
2320
pF
2040
15
960
640
Tj=25°C
2800
Phase-Change
Material
ʎ=3,4W/mK
nC
0,08
K/W
0,06
neutral point FWD ( D2 , D3 )
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
600
IRRM
trr
Qrr
±15
Rgon=1 Ω
350
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
Rth(j-s)
Thermal resistance chip to case per chip
Rth(j-c)
Phase-Change
Material
ʎ=3,4W/mK
Gate emitter threshold voltage
VGE(th)
VCE=VGE
Collector-emitter saturation voltage
VCE(sat)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,2
1,67
1,65
339
399
132
257
23
44
4888
3314
5
9
2,3
V
A
ns
µC
A/µs
mWs
0,26
K/W
0,17
neutral point IGBT ( T2 , T3 )
0,0096
15
600
Collector-emitter cut-off incl FWD
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
Rth(j-s)
Thermal resistance chip to case per chip
Rth(j-c)
copyright Vincotech
5
5,8
6,5
1
1,57
1,80
2,3
0,1
3000
0,5
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=1 Ω
Rgon=1 Ω
±15
350
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
244
250
49
53
306
325
48
67
8
13
15
22
V
V
mA
nA
Ω
ns
mWs
36960
0
f=1MHz
Tj=25°C
25
2304
pF
1096
15
Phase-Change
Material
ʎ=3,4W/mK
480
600
Tj=25°C
3760
nC
0,16
K/W
0,11
4
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Min
Typ
1
2,23
2,31
Unit
Max
half bridge FWD ( D1 , D4 )
FWD forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
VF
600
Ir
1200
IRRM
trr
Qrr
Rgon=1 Ω
±15
350
600
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
Rth(j-s)
Thermal resistance chip to case per chip
Rth(j-c)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3
720
422
568
76
290
20
61
14692
12189
4
14
Phase-Change
Material
ʎ=3,4W/mK
V
µA
A
ns
µC
A/µs
mWs
0,15
K/W
0,10
DC link Capacitor
Capacitance
1360
C
-10
Tolerance
TJ=20ºC
Dissipation factor
µF
+10
nH
0,0004
mΩ
+12
%
40/105/56
Climatic category
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
Tj=100°C
R100=1486 Ω
Power dissipation constant
22000
-12
Tj=25°C
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3998
Vincotech NTC Reference
Ω
Tj=25°C
K
B
Module Properties
Module inductance (from chips to PCB)
LsCE
5
Module inductance (from PCB to PCB using Intercon board)
LsCE
3
nH
1,5
mΩ
Resistance of Intercon boards (from PCB to PCB using Intercon board)
Rcc'1+EE' Tc=25°C, per switch
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
copyright Vincotech
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
5
nH
2
2,2
Nm
4
6
Nm
5
Nm
710
g
2,5
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Buck
half bridge IGBT and neutral point FWD
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
1200
IC (A)
1200
1000
1000
800
800
600
600
400
400
200
200
0
IGBT
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
IGBT
1
2
3
4
V CE (V)
350
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
500
5
FWD
IC (A)
IF (A)
1200
1000
400
800
300
600
200
400
Tj = Tjmax-25°C
100
200
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
350
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
0
12
At
tp =
6
0,5
350
1
1,5
2
V F (V)
2,5
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Buck
half bridge IGBT and neutral point FWD
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
60
IGBT
80
Eon High T
E (mWs)
E (mWs)
Eoff High T
45
Eon Low T
60
Eoff Low T
Eon High T
30
40
Eoff High T
Eon Low T
Eoff Low T
15
20
0
0
200
400
600
800
1000
0
1200
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
596
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
12
E (mWs)
12
FWD
Erec High T
10
10
8
8
6
Erec High T
6
Erec Low T
4
4
2
2
Erec Low T
0
0
0
200
400
600
800
1000 I (A)
C
1200
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
copyright Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
596
A
7
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Buck
half bridge IGBT and neutral point FWD
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10,00
IGBT
t (µs)
t (µs)
10,00
1,00
1,00
tdoff
tdoff
tdon
tdon
tf
0,10
tr
0,10
tf
tr
0,01
0,01
0,00
0,00
0
200
400
600
800
1000
0
1200
I C (A)
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
596
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
FWD
0,5
0,30
t rr(µs)
t rr(µs)
trr High T
trr High T
0,25
0,4
0,20
trr Low T
0,3
0,15
trr Low T
0,2
0,10
0,1
0,05
0,00
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright Vincotech
400
600
800
1000
I C (A) 1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
2
25/125
350
596
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Buck
half bridge IGBT and neutral point FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
FWD
50
Qrr (µC)
Qrr (µC)
60
Qrr High T
50
Qrr High T
40
40
30
30
Qrr Low T
20
Qrr Low T
20
10
10
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
400
600
800
1000
I C (A) 1200
0
2
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(I C)
FWD
4
25/125
350
596
±15
6
8
R gon ( Ω)
10
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
FWD
500
500
400
IrrM (A)
IrrM (A)
IRRM High T
400
IRRM Low T
300
300
200
200
IRRM High T
IRRM Low T
100
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright Vincotech
400
600
800
1000
I C (A)
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
2
25/125
350
596
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Buck
half bridge IGBT and neutral point FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
14000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
FWD
20000
direc / dt (A/ms)
dIrec/dt T
dIo/dt T
12000
dIrec/dt T
dI0/dt T
16000
10000
12000
8000
6000
8000
4000
4000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
25/125
350
±15
1
600
800
1000
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
IGBT
10
0
10
4
25/125
350
596
±15
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
ZthJH (K/W)
0
10-1
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10
2
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
10
1200
I C (A)
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t p (s)
10
10-5
2
At
D=
RthJH =
tp / T
0,08
K/W
10-4
10-3
10-2
R (C/W)
0,035
0,021
0,022
0,003
0,004
R (C/W)
0,049
0,057
0,041
0,075
0,024
0,006
0,012
10
101
t p (s)
102
K/W
FWD thermal model values
copyright Vincotech
100
tp / T
0,26
IGBT thermal model values
Tau (s)
1,2E+00
1,8E-01
3,6E-02
8,0E-03
6,8E-04
10-1
Tau (s)
5,4E+00
1,1E+00
2,6E-01
5,0E-02
1,7E-02
3,4E-03
4,0E-04
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Buck
half bridge IGBT and neutral point FWD
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
IGBT
800
Ptot (W)
IC (A)
2500
700
2000
600
500
1500
400
1000
300
200
500
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C) 200
0
At
Tj =
VGE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
FWD
50
175
15
100
150
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
FWD
500
IF (A)
Ptot (W)
700
600
400
500
300
400
300
200
200
100
100
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
11
50
175
100
150
T h ( o C)
200
°C
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Buck
half bridge IGBT and neutral point FWD
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
IGBT
VGE = f(Qg)
VGE (V)
IC (A)
17,5
1
103
15
240V
1
12,5
102
960V
10
101
7,5
10
0
5
2,5
10
-1
0
0
100
101
At
D=
300
At
IC =
Figure 27
Reverse bias safe operating area
450
600
750
900
Q g (nC)
single pulse
80
ºC
±15
V
Tjmax
ºC
Th =
VGE =
Tj =
150
V CE (V)
103
102
600
A
IGBT
IC = f(VCE)
IC (A)
1400
ICMAX
1200
Ic MODULE
Ic CHIP
1000
800
VCEMAX
600
400
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
12
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Boost
neutral point IGBT and half bridge FWD
Figure 2
Typical output characteristics
IC = f(VCE)
1000
1000
IC (A)
IGBT
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
800
800
600
600
400
400
200
200
0
IGBT
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
IGBT
1
2
3
4
V CE (V)
5
350
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
FWD
1200
IC (A)
IF (A)
500
1000
400
800
300
600
200
Tj = Tjmax-25°C
400
Tj = 25°C
100
200
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
350
0
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
13
1
350
2
3
V F (V)
4
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Boost
neutral point IGBT and half bridge FWD
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
50
IGBT
E (mWs)
E (mWs)
120
Eoff High T
Eon High T
100
40
Eon Low T
80
30
Eoff Low T
60
Eon High T
20
Eoff High T
40
Eon Low T
Eoff Low T
10
20
0
0
200
400
600
800
1000
0
1200
0
I C (A)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
FWD
20
Erec High T
E (mWs)
E (mWs)
20
Erec High T
16
15
12
10
8
Erec Low T
5
4
Erec Low T
0
0
0
200
400
600
800
1000
I C (A) 1200
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
copyright Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
14
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Boost
neutral point IGBT and half bridge FWD
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t ( µs)
1
IGBT
t ( µs)
tdoff
tdoff
tdon
tdon
1
tr
0,1
tr
tf
0,1
tf
0,01
0,01
0,001
0,001
0
200
400
600
800
1000
I C (A)
0
1200
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
600
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
FWD
1,2
trr High T
t rr(µs)
t rr(µs)
0,4
1
trr High T
0,3
0,8
0,6
0,2
0,4
0,1
trr Low T
0,2
trr Low T
0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright Vincotech
400
600
800
1000
I C (A)
0
1200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
2
25/125
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Boost
neutral point IGBT and half bridge FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
FWD
100
80
Qrr (µC)
Qrr (µC)
Qrr High T
Qrr High T
80
60
60
40
40
Qrr Low T
20
20
Qrr Low T
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
400
600
800
1000
1200
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(I C)
FWD
2
25/125
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
FWD
800
IrrM (A)
700
IrrM (A)
IRRM High T
600
600
500
IRRM Low T
400
400
300
200
200
IRRM High T
IRRM Low T
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright Vincotech
400
600
800
1000
0
I C (A) 1200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
2
25/125
350
600
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Boost
neutral point IGBT and half bridge FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
25000
direc / dt (A/ms)
20000
dIrec/dt T
dIo/dt T
16000
dIrec/dt T
dI0/dt T
20000
12000
15000
8000
10000
4000
5000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
FWD
200
400
25/125
350
±15
1
600
800
1000 I (A)
C
1200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
IGBT
2
25/125
350
600
±15
4
6
8
R gon ( Ω)
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
FWD
100
ZthJH (K/W)
ZthJH (K/W)
100
10
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
At
D=
RthJH =
10-4
10-3
tp / T
0,16
10-2
10-1
100
101
t p (s)
102
10-5
At
D=
RthJH =
K/W
IGBT thermal model values
R (K/W) Tau (s)
0,05
4,40
0,03
1,10
0,03
0,24
0,04
0,05
0,01
0,02
0,002
0,003
0,005
0,0005
copyright Vincotech
10-4
tp / T
0,15
10-3
10-2
10-1
100
101
t p (s)
102
K/W
FWD thermal model values
R (K/W) Tau (s)
0,02
6,05
0,04
1,29
0,03
0,22
0,04
0,05
0,01
0,01
0,01
0,001
17
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Boost
neutral point IGBT and half bridge FWD
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
600
IC (A)
Ptot (W)
1200
IGBT
1000
500
800
400
600
300
400
200
100
200
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
FWD
50
175
15
100
150
T h ( o C)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
1200
200
FWD
Ptot (W)
IF (A)
600
1000
500
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Boost
neutral point IGBT
Figure 25
Reverse bias safe operating area
IGBT
IC = f(VCE)
IC (A)
1400
ICMAX
Ic CHIP
1200
800
VCEMAX
Ic MODULE
1000
600
400
200
0
0
100
200
300
400
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
500
600
700
VCE(V)
19
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Thermistor
Figure 26
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Switching Definitions half bridge IGBT
General
Tj
Rgon
Rgoff
conditions
= 125 °C
= 2Ω
= 2Ω
Figure 1
half bridge IGBT
Turn-off Switching Waveforms & definition of t doff, tEoff
(tEoff = integrating time for Eoff)
Figure 2
half bridge IGBT
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
150
IC
%
%
VCE
tdoff
150
100
VGE 90%
VCE 90%
IC
VCE
100
VGE
50
tEoff
tdon
50
IC 1%
0
VGE10%
VGE
VCE3%
IC10%
0
tEon
-50
-50
-0,3
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,3
-15
15
350
591
0,37
0,93
0,6
0,9
time (us)
4,8
1,2
5
5,2
5,4
5,6
5,8
time(us)
V
V
V
A
µs
µs
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
half bridge IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
350
591
0,26
0,51
V
V
V
A
µs
µs
Figure 4
half bridge IGBT
Turn-on Switching Waveforms & definition of tr
150
200
%
VCE
Ic
%
125
fitted
IC
150
100
IC 90%
VCE
100
75
IC90%
IC 60%
tr
50
50
IC 40%
25
0
IC10%
0
IC10%
tf
-50
-25
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,3
350
591
0,08
0,4
0,5
time (us)
5,1
0,6
V
A
µs
VC (100%) =
IC (100%) =
tr =
21
5,2
5,3
350
591
0,06
5,4
time(us)
5,5
V
A
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Switching Definitions half bridge IGBT
Figure 5
half bridge IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
half bridge IGBT
Turn-on Switching Waveforms & definition of tEon
120
120
%
IC 1%
Poff
Eon
%
Eoff
100
90
80
60
60
40
30
20
VGE10%
VGE90%
VCE3%
Pon
0
tEon
0
tEoff
-20
-0,2
-30
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0,4
206,68
30,27
0,93
0,6
0,8
time (us)
1
4,8
kW
mJ
µs
5
Pon (100%) =
Eon (100%) =
tEon =
Figure 7
Gate voltage vs Gate charge (measured)
half bridge IGBT
5,2
206,68
12,81
0,51
5,4
5,6
time(us)
5,8
kW
mJ
µs
Figure 8
neutral point FWD
Turn-off Switching Waveforms & definition of t rr
20
VGE (V)
120
Id
%
15
80
10
trr
40
5
Vd
0
fitted
0
IRRM 10%
-5
-40
-10
IRRM 90%
IRRM 100%
-80
-15
-20
-2000
-120
0
2000
4000
6000
8000
5,2
5,3
5,4
5,5
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
350
591
6760,90
5,6
5,7
time(us)
V
V
V
A
nC
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
22
350
591
-457
0,25
V
A
A
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Switching Definitions half bridge IGBT
Figure 9
neutral point FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Figure 10
neutral point FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Qrr
Id
Erec
100
100
tErec
75
tQrr
50
50
0
25
-50
-100
5,15
Prec
0
-25
5,3
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
5,45
591
47,04
0,55
5,6
5,75
5,9
time(us)
5,2
6,05
A
µC
µs
Prec (100%) =
Erec (100%) =
tErec =
23
5,4
5,6
206,68
10,70
0,55
5,8
time(us)
6
kW
mJ
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
half bridge IGBT switching measurement circuit
Figure 11
copyright Vincotech
24
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Switching Definitions neutral point IGBT
General
Tj
Rgon
Rgoff
conditions
= 125 °C
= 2Ω
= 2Ω
Figure 1
neutral point IGBT
Turn-off Switching Waveforms & definition of t doff, tEoff
(tEoff = integrating time for Eoff)
Figure 2
neutral point IGBT
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
%
IC
%
125
tdoff
150
100
VCE
VGE 90%
VCE
90%
100
75
IC
tdon
50
50
tEoff
VGE
25
IC 1%
VCE
VCE 3%
VGE 10%
0
IC 10%
tEon
0
VGE
-50
-25
-0,2
0
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
700
592
0,23
0,58
0,4
0,6 time (us)
4,9
0,8
V
V
V
A
µs
µs
5
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
neutral point IGBT
Turn-off Switching Waveforms & definition of t f
5,1
5,2
-15
15
700
592
0,25
0,38
V
V
V
A
µs
µs
5,3
5,4
time(us)
5,5
Figure 4
neutral point IGBT
Turn-on Switching Waveforms & definition of tr
150
200
%
%
VCE
125
fitted
IC
150
IC
100
Ic 90%
VCE
100
75
IC 90%
Ic 60%
tr
50
50
Ic 40%
25
Ic10%
0
IC 10%
0
tf
-25
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,3
700
592
0,067
0,4
time (us)
-50
0,5
5,1
V
A
µs
VC (100%) =
IC (100%) =
tr =
25
5,2
5,3
700
592
0,053
5,4
time(us)
5,5
V
A
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Switching Definitions neutral point IGBT
Figure 5
neutral point IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
neutral point IGBT
Turn-on Switching Waveforms & definition of tEon
125
125
%
Poff
100
Eoff
%
IC 1%
Eon
100
75
75
50
50
25
Pon
25
Uge90%
Uge
0
Uce 3%
10%
0
tEoff
-25
-0,2
tEon
-25
0
0,2
0,4
0,6
4,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
414,61
22,22
0,58
kW
mJ
µs
5,1
Pon (100%) =
Eon (100%) =
tEon =
Figure 7
neutral point IGBT
Gate voltage vs Gate charge (measured)
5,2
5,3
5,4
time(us)
5,5
414,6107 kW
13,39
mJ
0,38
µs
Figure 8
half bridge FWD
Turn-off Switching Waveforms & definition of t rr
20
Uge (V)
5
150
%
15
Id
100
10
trr
50
5
0
Ud
fitted
0
IRRM 10%
-5
-50
-10
IRRM 90%
IRRM 100%
-15
0
500
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
1000
1500
-15
15
700
592
3441,54
2000
2500
-100
3000
3500
Qg (nC)
5,1
V
V
V
A
nC
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
26
5,2
5,3
700
592
-568
0,29
5,4
5,5
time(us) 5,6
V
A
A
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Switching Definitions neutral point IGBT
Figure 9
half bridge FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Figure 10
half bridge FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
Erec
%
%
Qrr
Id
100
100
tErec
75
tQint
50
50
0
25
Prec
-50
0
-100
-25
5
5,2
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
5,4
592
60,53
0,33
5,6
time(us)
5,8
5
A
µC
µs
Prec (100%) =
Erec (100%) =
tErec =
27
5,2
5,4
414,61
14,30
0,33
5,6
time(us)
5,8
kW
mJ
µs
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
neutral point IGBT switching measurement circuit
Figure 11
copyright Vincotech
28
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W212NMA600SC-M200P
in DataMatrix as
M200P
in packaging barcode as
M200P
Outline
copyright Vincotech
29
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Ordering Code and Marking - Outline - Pinout
Pinout
copyright Vincotech
30
24 Mar. 2015 / Revision 6
70-W212NMA600SC-M200P
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
10
>SPQ
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flowMNPC 4w packages see vincotech.com website.
Document No.:
Date:
70-W212NMA600SC-M200P
24 Mar. 2015
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are
believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the
right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to
reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses,
damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to
test and determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or effectiveness.
copyright Vincotech
31
24 Mar. 2015 / Revision 6