V23990-P769-A-PM V23990-P769-AY-PM datasheet flow PIM 2 3rd 1200 V / 75 A Features flow 2 housing ● 3~rectifier,BRC,Inverter, NTC ● Very Compact housing, easy to route ● IGBT4/ EmCon4 technology for low saturation losses and improved EMC behavior Target Applications Schematic ● Motor Drives ● Power Generation Types ● V23990-P769-A ● V23990-P769-AY Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 100 100 A 1000 A 5000 A2s 114 172 W Input Rectifier Diode Repetitive peak reverse voltage V RRM Forward current I FAV Surge forward current I FSM DC current Th=80°C Tc=80°C tp=10ms Tj=25°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V 80 100 A 210 A 211 319 W ±20 V 10 900 µs V 175 °C Tj=Tjmax Th=80°C Tc=80°C Inverter IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Repetitive peak collector current I CRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech Tj≤150°C VGE=15V T jmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 73 97 A 150 A 135 205 W Inverter FWD Peak Repetitive Reverse Voltage DC forward current V RRM IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C V CE 1200 V 58 74 A 150 A 155 235 W ±20 V 10 900 µs V 175 °C Th=80°C Tc=80°C Brake IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Repetitive peak collector current I CRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V T jmax Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current V RRM IF I FRM Tj=Tjmax 1200 V Th=80°C Tc=80°C 16 16 A 20 A Th=80°C Tc=80°C 50 75 W tp limited by Tjmax Tj=Tjmax Brake Inverse Diode P tot Maximum Junction Temperature T jmax 175 °C V RRM 1200 V 35 40 A 50 A 75 114 W 175 °C Brake FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax copyright Vincotech 2 Th=80°C Tc=80°C Th=80°C Tc=80°C 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+Tjmax-25 °C 4000 VDC Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation properties Insulation voltage copyright Vincotech V is t=1min 3 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Min Unit Typ Max 1,18 1,16 0,87 0,79 0,003 0,004 1,9 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) V to Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink 100 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V Ω 0,05 1,1 mA 0,61 V23990-P769-A Thermal grease K/W thickness≤50µm Thermal resistance chip to case V λ = 0,61 W/m·K V23990-P769-AY 0,40 Inverter IGBT Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode V GE(th) V CEsat I GES Integrated Gate resistor R gint Rise time Turn-off delay time Fall time 0 1200 20 0 t d(off) tf Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Rgoff=8 Ω Rgon=8 Ω Thermal resistance chip to heatsink Thermal resistance chip to case R th(j-c) Coupled thermal resistance transistor-transistorR thJHT-T 5 5,8 6,5 1,96 2,47 2,1 0,025 200 ±15 600 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 106 86 24 23 188 270 64,9 114 3,97 6,39 3,63 6,39 ns mWs 3900 f=1MHz 0 25 Tj=25°C pF 310 230 QG R th(j-s) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C none tr E on Coupled thermal resistance diode-transistor 75 t d(on) Turn-on energy loss per pulse Gate charge 0,0024 15 I CES Gate-emitter leakage current Turn-on delay time VCE=VGE ±15 Tj=25°C nC 400 0,45 0,3 Thermal grease thickness≤50µm λ = 0,61 W/m·K K/W 0,09 R thJHD-T 0,1 Inverter FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy VF I RRM t rr Q rr ±15 600 E rec Thermal resistance chip to heatsink R th(j-s) R th(j-c) copyright Vincotech Rgon=8 Ω ( di rf/dt )max Thermal resistance chip to case Coupled thermal resistance transistor-diode 75 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,81 1,83 46,6 117 287 310 4,17 14,13 2312 1378 1,78 5,64 2,4 V A ns µC A/µs mWs 0,7 Thermal grease thickness≤50µm λ = 0,61 W/m·K 0,46 R thJHT-D K/W 0,08 4 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 5 5,8 6,5 1,9 2,3 2,3 Brake IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,0017 50 15 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 0,25 200 4 tr t d(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=8 Ω Rgon=8 Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 98 103 18 25 208 284 66 112 2,43 3,46 2,45 4,23 ns mWs 2770 f=1MHz 0 25 Tj=25°C 205 ±15 960 Tj=25°C 290 pF 160 nC 0,61 Thermal grease thickness≤50µm λ = 0,61 W/m·K K/W 0,40 Brake Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 10 Tj=25°C Tj=150°C 1,1 Thermal grease thickness≤50µm λ = 0,61 W/m·K 1,81 1,81 2,1 V 1,92 K/W 1,27 K/W Brake FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Q rr Reverse recovery energy ±15 600 50 I RRM t rr Peak rate of fall of recovery current 25 Rgon=8 Ω ±15 600 ( di rf/dt )max E rec Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,82 1,82 2,2 10 51 51,67 152 328 3,07 6,3 3443 806 3,07 6,3 V µA A ns µC A/µs mWs 1,27 Thermal grease thickness≤50µm λ = 0,61 W/m·K K/W 0,84 Thermistor Rated resistance R 25 Deviation of R100 D R /R Power dissipation P Tol. ±5% Tj=25°C R100=1486Ω Tc=100°C Power dissipation constant 22 -12 kΩ 12 %/K Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B (25/50) Tol. ±3% Tj=25°C 3950 K B-value B (25/100) Tol. ±3% Tj=25°C 3998 K Vincotech NTC Reference copyright Vincotech B 5 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Output Inverter Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 250 IC (A) Ic (A) 250 Output inverter IGBT 200 200 ● Motor Drives 150 150 100 100 ●50V23990-P769-A ● V23990-P769-AY 50 0 0 0 1 2 3 VCE (V) 4 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics Ic = f(V GE) Output inverter IGBT Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 250 IC (A) IF (A) 75 Output inverter FWD Tj = 25°C 60 200 45 150 30 Tj = Tjmax-25°C 100 Tj = Tjmax-25°C 15 50 Tj = 25°C 0 0 0 At tp = VCE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 6 1 250 2 3 VF (V) 4 µs 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I c) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 18 E (mWs) E (mWs) 18 Output inverter IGBT 15 Eon 15 Eon 12 12 Eoff Eon Eon: 9 9 Eoff 6 Eoff 6 Eoff 3 3 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = 25/150 °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 25/150 °C 25/150 VCE = 600 V VGE = ±15 V IC = 75 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 7 E (mWs) 9 Output inverter IGBT Erec 6 7,5 Erec 5 6 4 4,5 3 3 2 Erec Erec 1,5 1 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 R G( Ω ) 40 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 75 A 7 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Output Inverter Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 1 t ( µs) Output inverter IGBT t ( µs) Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 25 50 75 100 125 IC (A) 150 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 75 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 Output inverter FWD 0,8 t rr( µs) t rr( µs) trr trr 0,4 0,6 trr trr 0,3 0,4 0,2 0,2 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 25/150 600 ±15 8 copyright Vincotech 50 75 100 125 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω 8 8 25/150 25/150 600 75 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(Ic) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr ( µC) 18 Qrr ( µC) 25 Output inverter FWD Qrr Qrr 15 20 12 15 9 10 6 Qrr Qrr 5 3 0 0 0 At At Tj = VCE = VGE = Rgon = 25 25/150 25/150 600 ±15 8 50 75 100 125 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(Ic) Output inverter FWD 8 25/150 25/150 600 75 ±15 16 24 R Gon ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 125 32 Output inverter FWD 300 IrrM (A) IrrM (A) IRRM 100 240 75 180 50 120 IRRM 25 60 IRRM IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 25/150 600 ±15 8 copyright Vincotech 50 75 100 125 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω 9 8 25/150 25/150 600 75 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(R gon) 12000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) 5000 Output inverter FWD dIrec/dt 4000 dI0/dt dIrec/dt 10000 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 25/150 600 ±15 8 50 75 100 I C (A) 150 125 0 At Tj = VR = IF = VGE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Output inverter IGBT 8 25/150 25/150 600 75 ±15 16 24 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Output inverter FWD 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 R Gon ( Ω) 40 32 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -2 10-5 10-4 10-3 10-2 10-1 At D= RthJH = tp / T RthJH = 0,451 K/W 0,54 Single device heated AlI devices heated IGBT thermal model values R (K/W) 0,05 0,08 0,19 0,09 0,02 0,02 Tau (s) 3,0E+00 4,5E-01 7,6E-02 1,7E-02 1,7E-03 2,9E-04 copyright Vincotech R (K/W) 0,13 0,08 0,19 0,09 0,02 0,02 100 t p (s) 10-5 10110 10-4 10-3 10-2 10-1 At D= RthJH = tp / T RthJH = 0,70 K/W 0,70 Single device heated AlI devices heated FWD thermal model values K/W Tau (s) 3,0E+00 4,5E-01 7,6E-02 1,7E-02 1,7E-03 2,9E-04 R (K/W) 0,02 0,08 0,17 0,31 0,08 0,05 10 Tau (s) 9,9E+00 1,4E+00 1,6E-01 3,6E-02 7,1E-03 5,3E-04 R (K/W) 0,02 0,08 0,17 0,31 0,08 0,05 100 t p (s) 10110 K/W Tau (s) 9,9E+00 1,4E+00 1,6E-01 3,6E-02 7,1E-03 5,3E-04 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 400 Output inverter IGBT 80 300 60 200 40 100 20 0 0 0 At Tj = 50 175 100 °C 150 Th ( o C) 200 0 At Tj = single heating overall heating Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 VGE = Output inverter FWD 50 100 Th ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) Output inverter FWD 100 IF (A) Ptot (W) 250 150 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = °C 11 50 175 100 150 Th ( o C) 200 °C 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 VGE (V) 17,5 IC (A) 10 Output inverter IGBT 15 100uS 2 240V 10uS 12,5 960V 1mS 100mS 10 DC 101 10mS 7,5 5 100 2,5 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 103 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 12 50 75 100 150 200 250 300 Qg (nC) 350 A 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Brake Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 150 IC (A) 150 Brake IGBT 125 125 100 100 75 75 50 50 25 25 0 0 0 1 2 3 V CE (V) 4 5 0 At tp = Tj = 1 2 3 V CE (V) 4 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) Brake IGBT Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 IF (A) IC (A) 60 Brake FWD Tj = 25°C 50 60 40 45 Tj = Tjmax-25°C 30 30 20 Tj = Tjmax-25°C 15 10 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 13 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Brake Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 E (mWs) 8 Brake IGBT E (mWs) Eon Eoff 6 Eon 6 Eon Eon Eoff 4 4 Eoff Eoff 2 2 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 4 Brake IGBT E (mWs) E (mWs) 3 Erec 2,5 Erec 3 2 2 1,5 Erec Erec 1 1 0,5 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 R G ( Ω ) 40 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A 14 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Brake Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 Brake IGBT tdoff tdon tdoff tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 20 40 60 I C (A) 80 100 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake IGBT 16 24 R G ( Ω ) 40 32 Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake IGBT ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 8 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 50 A 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 -1 10 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 -1 10-2 10-5 At D= RthJH = 10-4 tp / T 0,61 copyright Vincotech 10-3 10-2 10-1 100 t p (s) 101 10 10-5 At D= RthJH = K/W 15 10-4 tp / T 1,27 10-3 10-2 10-1 100 t p (s) 101 10 K/W 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Brake Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 80 Ptot (W) IC (A) 300 Brake IGBT 250 60 200 150 40 100 20 50 0 0 0 50 At Tj = 175 100 150 Th ( o C) 200 0 At Tj = VGE = ºC Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake FWD 50 175 15 100 150 200 ºC V Figure 16 Forward current as a function of heatsink temperature IF = f(Th) Brake FWD 40 IF (A) Ptot (W) 150 Th ( o C) 120 30 90 20 60 10 30 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 16 50 175 100 150 Th ( o C) 200 ºC 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Brake Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 IF (A) 10 1 ZthJC (K/W) Tj = 25°C Brake inverse diode 25 Tj = Tjmax-25°C 20 100 15 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 5 0 0 At tp = 1 250 2 VF (V) 10-2 4 10-5 10-4 At D= RthJH = µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake inverse diode 10-3 tp / T 1,92 10-2 100 t p (s) 10110 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 10-1 Brake inverse diode 18 IF (A) Ptot (W) 3 15 80 12 60 9 40 6 20 3 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 300 Rectifier diode ZthJC (K/W) IF (A) 100 250 200 150 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100 50 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 250 1 VF (V) 1,5 10 2 µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Rectifier diode -2 10-5 10-4 10-3 At D= RthJH = tp / T 0,61 10-2 10-1 t p (s) 10110 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) Rectifier diode 100 IF (A) Ptot (W) 250 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 18 30 150 60 90 120 Th ( o C) 150 ºC 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Switching Definitions Output Inverter General Tj R gon R goff conditions = 150 °C = 8Ω = 8Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 300 140 % % ● 120 Motor Drives tdoff 250 Uce Ic 100 200 Uce 90% Uge 90% 80 150 Ic 60 Uce 100 tEoff 40 ● V23990-P769-A ● V23990-P769-AY tdon Uge 50 20 Ic 1% Ic10% Uge10% Uce3% 0 0 Uge tEon -20 -50 0 0,2 0,4 0,6 0,8 1 2,9 time (µs) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 600 75 0,27 0,65 V V V A µs µs 3 3,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3,2 -15 15 600 75 0,09 0,34 3,3 time(µs) 3,4 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 120 300 fitted % Uce % 100 250 Ic Ic Ic 90% 80 200 Ic 60% 60 150 Uce Ic 40% 40 100 Ic90% tr 20 50 Ic10% 0 Ic10% tf 0 -20 -50 0,3 0,35 V C (100%) = I C (100%) = tf = copyright Vincotech 0,4 600 75 0,11 0,45 0,5 0,55 0,6 0,65 time (µs) 3 V A µs V C (100%) = I C (100%) = tr = 20 3,1 3,2 600 75 0,02 3,3 time(µs) 3,4 V A µs 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 200 % Poff 100 Pon % Eoff 150 80 100 60 Eon 40 50 20 Uce3% Uge10% 0 0 tEoff Uge90% -20 -0,1 tEon Ic 1% -50 0,05 P off (100%) = E off (100%) = t E off = 0,2 45,16 6,39 0,65 0,35 0,5 0,65 0,8 0,95 time (µs) 2,9 kW mJ µs 3 3,1 P on (100%) = E on (100%) = t E on = 3,2 45,16 6,39 0,34 3,3 3,4 3,5 3,6 time(µs) kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 120 Id % 80 trr 40 Ud 0 fitted IRRM10% -40 -80 -120 IRRM90% IRRM100% -160 -200 3 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 21 3,2 600 75 -117 0,31 3,3 3,4 3,5 time(µs) 3,6 V A A µs 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 120 150 % Id % Erec Qrr 100 100 80 50 tErec tQrr 0 60 -50 40 -100 20 -150 0 -200 Prec -20 3 3,2 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,4 75 14,13 0,62 3,6 3,8 time(µs) 4 2,9 A µC µs 3,1 P rec (100%) = E rec (100%) = t E rec = 22 3,3 3,5 45,16 5,64 0,62 kW mJ µs 3,7 3,9 time(µs) 4,1 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as V23990-P769-A-PM V23990-P769-AY-PM V23990-P769-A-/3/-PM V23990-P769-AY-/3/-PM without thermal paste with solder pins without thermal paste with Press-fit pins with thermal paste with solder pins with thermal paste with Press-fit pins P769A P769AY P769A P769AY in packaging barcode as P769A P769AY P769A-/3/ P769AY-/3/ Outline Pin X Y DCDCDCDC- 71,2 68,7 66,2 63,7 0 0 0 0 29 30 31 32 U U U E 0 2,5 5 7,8 37,2 37,2 37,2 37,2 5 6 7 8 9 10 11 DC+ DC+ DC+ DC+ DC+ DC+ E 55,95 53,45 55,95 53,45 48,4 45,9 38,9 0 0 2,8 2,8 0 0 0 33 34 35 36 37 38 39 G G E V V V W 10,6 18,45 21,25 24,05 26,55 29,05 36,1 37,2 37,2 37,2 37,2 37,2 37,2 37,2 12 13 14 15 16 17 DCG DCDCE DC- 36,1 38,9 36,1 31,3 28,5 31,3 0 2,8 2,8 0 0 2,8 40 41 42 43 44 45 W W E G L1 L1 38,6 41,1 43,9 46,7 53,7 56,2 37,2 37,2 37,2 37,2 37,2 37,2 18 19 20 21 G R1 R2 DC+ 28,5 19,3 19,3 12,3 2,8 0 2,8 0 46 47 48 49 L1 L2 L2 L2 58,7 71,2 71,2 71,2 37,2 37,2 34,7 32,2 22 23 24 25 DC+ DC+ DC+ E 9,8 12,3 9,8 2,8 0 2,8 2,8 0 50 51 52 53 L3 L3 L3 BrC 71,2 71,2 71,2 71,2 25,2 22,7 20,2 12,8 0 2,8 0 0 2,8 2,8 54 BrC 55 BrG 56 BrE 68,7 71,2 71,2 12,8 5,6 2,8 1 2 3 4 X Pin table Y Pin 26 DC27 G 28 DC- Pinout Identification ID Component Voltage Current Function T1,T3,T5,T7,T9, T11 IGBT 1200V 70A Inverter Switch D9,D10,D11, D12,D13,D14 T13 D7 D8 FWD 1200V 75A Inverter Diode IGBT FWD FWD 1200V 1200V 1200V D1,D2,D3,D4,D5,D6 NTC Rectifier NTC 1600V - 50A 25A 10A 75A - Brake Switch Brake Diode Brake Protection Diode Rectifier Thermistor copyright Vincotech 23 Comment 05 Jun 2015 / Revision: 5 V23990-P769-A-PM V23990-P769-AY-PM datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 24 05 Jun 2015 / Revision: 5