V23990 P769 A D5 14

V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
flow PIM 2 3rd
1200 V / 75 A
Features
flow 2 housing
● 3~rectifier,BRC,Inverter, NTC
● Very Compact housing, easy to route
● IGBT4/ EmCon4 technology for low saturation
losses and improved EMC behavior
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P769-A
● V23990-P769-AY
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
100
100
A
1000
A
5000
A2s
114
172
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
Forward current
I FAV
Surge forward current
I FSM
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
80
100
A
210
A
211
319
W
±20
V
10
900
µs
V
175
°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
I CRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
Tj≤150°C
VGE=15V
T jmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
73
97
A
150
A
135
205
W
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
175
°C
V CE
1200
V
58
74
A
150
A
155
235
W
±20
V
10
900
µs
V
175
°C
Th=80°C
Tc=80°C
Brake IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
I CRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
T jmax
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
V RRM
IF
I FRM
Tj=Tjmax
1200
V
Th=80°C
Tc=80°C
16
16
A
20
A
Th=80°C
Tc=80°C
50
75
W
tp limited by Tjmax
Tj=Tjmax
Brake Inverse Diode
P tot
Maximum Junction Temperature
T jmax
175
°C
V RRM
1200
V
35
40
A
50
A
75
114
W
175
°C
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
copyright Vincotech
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+Tjmax-25
°C
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation properties
Insulation voltage
copyright Vincotech
V is
t=1min
3
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Min
Unit
Typ
Max
1,18
1,16
0,87
0,79
0,003
0,004
1,9
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
V to
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink
100
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
Ω
0,05
1,1
mA
0,61
V23990-P769-A
Thermal grease
K/W
thickness≤50µm
Thermal resistance chip to case
V
λ = 0,61 W/m·K
V23990-P769-AY
0,40
Inverter IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
V GE(th)
V CEsat
I GES
Integrated Gate resistor
R gint
Rise time
Turn-off delay time
Fall time
0
1200
20
0
t d(off)
tf
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Rgoff=8 Ω
Rgon=8 Ω
Thermal resistance chip to heatsink
Thermal resistance chip to case
R th(j-c)
Coupled thermal resistance transistor-transistorR thJHT-T
5
5,8
6,5
1,96
2,47
2,1
0,025
200
±15
600
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
106
86
24
23
188
270
64,9
114
3,97
6,39
3,63
6,39
ns
mWs
3900
f=1MHz
0
25
Tj=25°C
pF
310
230
QG
R th(j-s)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
none
tr
E on
Coupled thermal resistance diode-transistor
75
t d(on)
Turn-on energy loss per pulse
Gate charge
0,0024
15
I CES
Gate-emitter leakage current
Turn-on delay time
VCE=VGE
±15
Tj=25°C
nC
400
0,45
0,3
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
K/W
0,09
R thJHD-T
0,1
Inverter FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
VF
I RRM
t rr
Q rr
±15
600
E rec
Thermal resistance chip to heatsink
R th(j-s)
R th(j-c)
copyright Vincotech
Rgon=8 Ω
( di rf/dt )max
Thermal resistance chip to case
Coupled thermal resistance transistor-diode
75
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,81
1,83
46,6
117
287
310
4,17
14,13
2312
1378
1,78
5,64
2,4
V
A
ns
µC
A/µs
mWs
0,7
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
0,46
R thJHT-D
K/W
0,08
4
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,9
2,3
2,3
Brake IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,0017
50
15
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
0,25
200
4
tr
t d(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=8 Ω
Rgon=8 Ω
±15
600
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
98
103
18
25
208
284
66
112
2,43
3,46
2,45
4,23
ns
mWs
2770
f=1MHz
0
25
Tj=25°C
205
±15
960
Tj=25°C
290
pF
160
nC
0,61
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
K/W
0,40
Brake Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
10
Tj=25°C
Tj=150°C
1,1
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
1,81
1,81
2,1
V
1,92
K/W
1,27
K/W
Brake FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Q rr
Reverse recovery energy
±15
600
50
I RRM
t rr
Peak rate of fall of recovery current
25
Rgon=8 Ω
±15
600
( di rf/dt )max
E rec
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,82
1,82
2,2
10
51
51,67
152
328
3,07
6,3
3443
806
3,07
6,3
V
µA
A
ns
µC
A/µs
mWs
1,27
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
K/W
0,84
Thermistor
Rated resistance
R 25
Deviation of R100
D R /R
Power dissipation
P
Tol. ±5%
Tj=25°C
R100=1486Ω
Tc=100°C
Power dissipation constant
22
-12
kΩ
12
%/K
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B (25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B (25/100)
Tol. ±3%
Tj=25°C
3998
K
Vincotech NTC Reference
copyright Vincotech
B
5
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
250
IC (A)
Ic (A)
250
Output inverter IGBT
200
200
● Motor Drives
150
150
100
100
●50V23990-P769-A
● V23990-P769-AY
50
0
0
0
1
2
3
VCE (V)
4
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
Ic = f(V GE)
Output inverter IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
250
IC (A)
IF (A)
75
Output inverter FWD
Tj = 25°C
60
200
45
150
30
Tj = Tjmax-25°C
100
Tj = Tjmax-25°C
15
50
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
6
1
250
2
3
VF (V)
4
µs
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I c)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
18
E (mWs)
E (mWs)
18
Output inverter IGBT
15
Eon
15
Eon
12
12
Eoff
Eon
Eon:
9
9
Eoff
6
Eoff
6
Eoff
3
3
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
7
E (mWs)
9
Output inverter IGBT
Erec
6
7,5
Erec
5
6
4
4,5
3
3
2
Erec
Erec
1,5
1
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
R G( Ω )
40
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
7
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Output Inverter
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
1
t ( µs)
Output inverter IGBT
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
25
50
75
100
125
IC (A)
150
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
Output inverter FWD
0,8
t rr( µs)
t rr( µs)
trr
trr
0,4
0,6
trr
trr
0,3
0,4
0,2
0,2
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
600
±15
8
copyright Vincotech
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
8
25/150
25/150
600
75
±15
16
24
32
R Gon ( Ω ) 40
°C
V
A
V
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr ( µC)
18
Qrr ( µC)
25
Output inverter FWD
Qrr
Qrr
15
20
12
15
9
10
6
Qrr
Qrr
5
3
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
600
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
Output inverter FWD
8
25/150
25/150
600
75
±15
16
24
R Gon ( Ω) 40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
125
32
Output inverter FWD
300
IrrM (A)
IrrM (A)
IRRM
100
240
75
180
50
120
IRRM
25
60
IRRM
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
600
±15
8
copyright Vincotech
50
75
100
125
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
8
25/150
25/150
600
75
±15
16
24
32
R Gon ( Ω )
40
°C
V
A
V
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(R gon)
12000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
5000
Output inverter FWD
dIrec/dt
4000
dI0/dt
dIrec/dt
10000
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
25/150
600
±15
8
50
75
100
I C (A) 150
125
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter IGBT
8
25/150
25/150
600
75
±15
16
24
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter FWD
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
R Gon ( Ω) 40
32
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-2
10-5
10-4
10-3
10-2
10-1
At
D=
RthJH =
tp / T
RthJH =
0,451
K/W
0,54
Single device heated
AlI devices heated
IGBT thermal model values
R (K/W)
0,05
0,08
0,19
0,09
0,02
0,02
Tau (s)
3,0E+00
4,5E-01
7,6E-02
1,7E-02
1,7E-03
2,9E-04
copyright Vincotech
R (K/W)
0,13
0,08
0,19
0,09
0,02
0,02
100
t p (s)
10-5
10110
10-4
10-3
10-2
10-1
At
D=
RthJH =
tp / T
RthJH =
0,70
K/W
0,70
Single device heated
AlI devices heated
FWD thermal model values
K/W
Tau (s)
3,0E+00
4,5E-01
7,6E-02
1,7E-02
1,7E-03
2,9E-04
R (K/W)
0,02
0,08
0,17
0,31
0,08
0,05
10
Tau (s)
9,9E+00
1,4E+00
1,6E-01
3,6E-02
7,1E-03
5,3E-04
R (K/W)
0,02
0,08
0,17
0,31
0,08
0,05
100
t p (s)
10110
K/W
Tau (s)
9,9E+00
1,4E+00
1,6E-01
3,6E-02
7,1E-03
5,3E-04
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
400
Output inverter IGBT
80
300
60
200
40
100
20
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
VGE =
Output inverter FWD
50
100
Th ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
Output inverter FWD
100
IF (A)
Ptot (W)
250
150
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
Th ( o C)
200
°C
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
VGE (V)
17,5
IC (A)
10
Output inverter IGBT
15
100uS
2
240V
10uS
12,5
960V
1mS
100mS
10
DC
101
10mS
7,5
5
100
2,5
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
12
50
75
100
150
200
250
300
Qg (nC)
350
A
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Brake
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
150
IC (A)
150
Brake IGBT
125
125
100
100
75
75
50
50
25
25
0
0
0
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
1
2
3
V CE (V)
4
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
Brake IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
IF (A)
IC (A)
60
Brake FWD
Tj = 25°C
50
60
40
45
Tj = Tjmax-25°C
30
30
20
Tj = Tjmax-25°C
15
10
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V) 12
0
At
tp =
µs
V
13
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
µs
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Brake
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
E (mWs)
8
Brake IGBT
E (mWs)
Eon
Eoff
6
Eon
6
Eon
Eon
Eoff
4
4
Eoff
Eoff
2
2
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
4
Brake IGBT
E (mWs)
E (mWs)
3
Erec
2,5
Erec
3
2
2
1,5
Erec
Erec
1
1
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
R G ( Ω ) 40
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
14
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
Brake IGBT
tdoff
tdon
tdoff
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
I C (A)
80
100
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake IGBT
16
24
R G ( Ω ) 40
32
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake IGBT
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
8
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
-1
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
-1
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,61
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
101 10
10-5
At
D=
RthJH =
K/W
15
10-4
tp / T
1,27
10-3
10-2
10-1
100
t p (s)
101 10
K/W
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
80
Ptot (W)
IC (A)
300
Brake IGBT
250
60
200
150
40
100
20
50
0
0
0
50
At
Tj =
175
100
150
Th ( o C)
200
0
At
Tj =
VGE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake FWD
40
IF (A)
Ptot (W)
150
Th ( o C)
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Brake Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
IF (A)
10
1
ZthJC (K/W)
Tj = 25°C
Brake inverse diode
25
Tj = Tjmax-25°C
20
100
15
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
5
0
0
At
tp =
1
250
2
VF (V)
10-2
4
10-5
10-4
At
D=
RthJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake inverse diode
10-3
tp / T
1,92
10-2
100
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
10-1
Brake inverse diode
18
IF (A)
Ptot (W)
3
15
80
12
60
9
40
6
20
3
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
300
Rectifier diode
ZthJC (K/W)
IF (A)
100
250
200
150
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
50
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
250
1
VF (V)
1,5
10
2
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Rectifier diode
-2
10-5
10-4
10-3
At
D=
RthJH =
tp / T
0,61
10-2
10-1
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
Rectifier diode
100
IF (A)
Ptot (W)
250
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
18
30
150
60
90
120
Th ( o C)
150
ºC
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Switching Definitions Output Inverter
General
Tj
R gon
R goff
conditions
= 150 °C
= 8Ω
= 8Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
300
140
%
%
● 120
Motor Drives
tdoff
250
Uce
Ic
100
200
Uce 90%
Uge 90%
80
150
Ic
60
Uce
100
tEoff
40
● V23990-P769-A
● V23990-P769-AY
tdon
Uge
50
20
Ic 1%
Ic10%
Uge10%
Uce3%
0
0
Uge
tEon
-20
-50
0
0,2
0,4
0,6
0,8
1
2,9
time (µs)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
600
75
0,27
0,65
V
V
V
A
µs
µs
3
3,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3,2
-15
15
600
75
0,09
0,34
3,3
time(µs)
3,4
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
120
300
fitted
%
Uce
%
100
250
Ic
Ic
Ic 90%
80
200
Ic 60%
60
150
Uce
Ic 40%
40
100
Ic90%
tr
20
50
Ic10%
0
Ic10%
tf
0
-20
-50
0,3
0,35
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,4
600
75
0,11
0,45
0,5
0,55
0,6
0,65
time (µs)
3
V
A
µs
V C (100%) =
I C (100%) =
tr =
20
3,1
3,2
600
75
0,02
3,3
time(µs)
3,4
V
A
µs
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
200
%
Poff
100
Pon
%
Eoff
150
80
100
60
Eon
40
50
20
Uce3%
Uge10%
0
0
tEoff
Uge90%
-20
-0,1
tEon
Ic 1%
-50
0,05
P off (100%) =
E off (100%) =
t E off =
0,2
45,16
6,39
0,65
0,35
0,5
0,65
0,8
0,95
time (µs)
2,9
kW
mJ
µs
3
3,1
P on (100%) =
E on (100%) =
t E on =
3,2
45,16
6,39
0,34
3,3
3,4
3,5
3,6
time(µs)
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
Id
%
80
trr
40
Ud
0
fitted
IRRM10%
-40
-80
-120
IRRM90%
IRRM100%
-160
-200
3
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
21
3,2
600
75
-117
0,31
3,3
3,4
3,5
time(µs)
3,6
V
A
A
µs
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
120
150
%
Id
%
Erec
Qrr
100
100
80
50
tErec
tQrr
0
60
-50
40
-100
20
-150
0
-200
Prec
-20
3
3,2
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,4
75
14,13
0,62
3,6
3,8
time(µs)
4
2,9
A
µC
µs
3,1
P rec (100%) =
E rec (100%) =
t E rec =
22
3,3
3,5
45,16
5,64
0,62
kW
mJ
µs
3,7
3,9
time(µs)
4,1
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
V23990-P769-A-PM
V23990-P769-AY-PM
V23990-P769-A-/3/-PM
V23990-P769-AY-/3/-PM
without thermal paste with solder pins
without thermal paste with Press-fit pins
with thermal paste with solder pins
with thermal paste with Press-fit pins
P769A
P769AY
P769A
P769AY
in packaging barcode as
P769A
P769AY
P769A-/3/
P769AY-/3/
Outline
Pin
X
Y
DCDCDCDC-
71,2
68,7
66,2
63,7
0
0
0
0
29
30
31
32
U
U
U
E
0
2,5
5
7,8
37,2
37,2
37,2
37,2
5
6
7
8
9
10
11
DC+
DC+
DC+
DC+
DC+
DC+
E
55,95
53,45
55,95
53,45
48,4
45,9
38,9
0
0
2,8
2,8
0
0
0
33
34
35
36
37
38
39
G
G
E
V
V
V
W
10,6
18,45
21,25
24,05
26,55
29,05
36,1
37,2
37,2
37,2
37,2
37,2
37,2
37,2
12
13
14
15
16
17
DCG
DCDCE
DC-
36,1
38,9
36,1
31,3
28,5
31,3
0
2,8
2,8
0
0
2,8
40
41
42
43
44
45
W
W
E
G
L1
L1
38,6
41,1
43,9
46,7
53,7
56,2
37,2
37,2
37,2
37,2
37,2
37,2
18
19
20
21
G
R1
R2
DC+
28,5
19,3
19,3
12,3
2,8
0
2,8
0
46
47
48
49
L1
L2
L2
L2
58,7
71,2
71,2
71,2
37,2
37,2
34,7
32,2
22
23
24
25
DC+
DC+
DC+
E
9,8
12,3
9,8
2,8
0
2,8
2,8
0
50
51
52
53
L3
L3
L3
BrC
71,2
71,2
71,2
71,2
25,2
22,7
20,2
12,8
0
2,8
0
0
2,8
2,8
54 BrC
55 BrG
56 BrE
68,7
71,2
71,2
12,8
5,6
2,8
1
2
3
4
X
Pin table
Y
Pin
26 DC27 G
28 DC-
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T3,T5,T7,T9, T11
IGBT
1200V
70A
Inverter Switch
D9,D10,D11,
D12,D13,D14
T13
D7
D8
FWD
1200V
75A
Inverter Diode
IGBT
FWD
FWD
1200V
1200V
1200V
D1,D2,D3,D4,D5,D6
NTC
Rectifier
NTC
1600V
-
50A
25A
10A
75A
-
Brake Switch
Brake Diode
Brake Protection Diode
Rectifier
Thermistor
copyright Vincotech
23
Comment
05 Jun 2015 / Revision: 5
V23990-P769-A-PM
V23990-P769-AY-PM
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
24
05 Jun 2015 / Revision: 5