V23990-P580-A46-PM preliminary datasheet flowPIM 1 3rd gen 1200V / 35A Features flowPIM1 housing ● 3~ rectifier, BRC, Inverter, NTC ● Very compact housing, easy to route ● IGBT4 / EmCon4 technology for low saturation losses and improved EMC behaviour ● High performance with AlN substrate Target Applications Schematic ● Motor Drives ● Power Generation Types ● V23990-P580-A46-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 50 A 320 A 510 A2s 82 W Tjmax 150 °C VCE 1200 V 49 A 105 A 152 W ±20 V 10 800 μs V 175 °C Input Rectifier Diode Peak repetitive reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM I2t-value I2t Power dissipation per diode Ptot Maximum junction temperature DC current Th=80°C tp=10ms Tj=45°C Tj=Tjmax Th=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum junction temperature Copyright by Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Revision: 1 V23990-P580-A46-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 50 A 70 A 121 W Tjmax 175 °C VCE 1200 V 40 A 75 A 133 W ±20 V 10 800 μs V 175 °C 1200 V 20 A 20 A 59 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Inverter Diode Peak repetitive reverse voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per diode Ptot Tj=Tjmax Maximum junction temperature Th=80°C Brc Transistor Collector-emitter break down voltage DC collector current IC Tj=Tjmax Th=80°C Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum junction temperature Th=80°C Tj≤150°C VGE=15V Tjmax Brc Diode Peak repetitive reverse voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per diode Ptot Tj=Tjmax Maximum junction temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-P580-A46-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0.8 1.29 1.24 0.93 0.82 0.007 0.009 1.6 Input Rectifier Diode Forward voltage VF 50 Threshold voltage (for power loss calc. only) Vto 50 Slope resistance (for power loss calc. only) rt 50 Reverse current Ir 1500 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal foil thickness=76um Kunze foil KU-ALF5 VGE(th) VCE=VGE V V Ω 0.02 2 mA 0.85 K/W N/A Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0.0012 35 15 Collector-emitter cut-off current incl. diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff 5 5.8 6.5 1.6 1.95 2.39 2.3 0.01 200 Rgoff=16Ω Rgon=16Ω Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=960V Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal foil thickness=76um Kunze foil KU-ALF5 600 ±15 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω - td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 92 91.6 18 23.4 213 274 75.3 105 1.62 2.49 1.81 2.82 ns mWs 1950 f=1MHz Tj=25°C 25 0 155 pF 115 ±15 35 Tj=25°C nC 270 0.62 K/W N/A Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF IRRM trr Qrr Rgoff=16Ω 600 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 35 Thermal foil thickness=76um Kunze foil KU-ALF5 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1.83 1.8 68.9 78.7 150 277 3.93 7.47 4100 2080 1.69 3.31 2.2 V A ns μC A/μs mWs 0.78 K/W N/A 3 Revision: 1 V23990-P580-A46-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5.8 6.5 1.6 1.86 2.31 2.2 Brc Transistor Gate emitter threshold voltage VGE(th) 0.00085 VCE=VGE Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl. diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 25 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss 0.005 200 Rgon=32Ω Rgoff=32Ω ±15 600 25 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω - tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 127 129 36 41.8 232 276 73.7 112 1.81 2.42 1.37 2.19 ns mWs 1430 f=1MHz 0 ±15 Reverse transfer capacitance Crss Gate charge QGate Vcc=960V Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal foil thickness=76um Kunze foil KU-ALF5 25 Tj=25°C 115 Tj=25°C 200 pF 85 25 nC 0.71 K/W N/A Brc Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir ±15 600 10 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 10 Rgon=32Ω ±15 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 10 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1.3 1.85 1.76 2.2 5 10.2 12.3 396 624 1.55 3.03 36 32 0.63 1.30 Thermal foil thickness=76um Kunze foil KU-ALF5 V μA A ns μC A/μs mWs 1.62 K/W N/A Thermistor R Tj=25°C Tj=125°C Operating current I Tj=25°C Power dissipation P Tj=25°C 200 mW Tj=25°C 3950 K Rated resistance B(25/50) B-value Copyright by Vincotech Tol. ±3% 4 20.9 22 0.75 23.1 0.3 kΩ mA Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 100 IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 μs 150 °C 7 V to 17 V in steps of 1 V Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 IC (A) IF (A) 40 4 Tj = 25°C 80 Tj = Tjmax-25°C 30 60 20 40 10 Tj = Tjmax-25°C 20 Tj = 25°C 0 0 0 At tp = VCE = 3 250 10 6 9 V GE (V) 12 0 At tp = μs V Copyright by Vincotech 5 1 250 2 3 V F (V) 4 μs Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Output inverter IGBT Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 7 6 8 Eon 7 6 Eon Tj = Tjmax - 25°C Eoff 5 Tj = Tjmax - 25°C 5 Eon 4 4 Tj = 25°C Eoff 3 Eoff 3 Eon 2 Eoff 2 1 1 Tj = 25°C 0 0 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 35 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 4.5 E (mWs) 4.5 E (mWs) 10 Erec 4 Tj = Tjmax -25°C 4 3.5 3.5 3 3 2.5 2.5 Tj = Tjmax -25°C Erec Tj = 25°C Erec 2 2 1.5 1.5 1 1 0.5 0.5 0 Tj = 25°C Erec 0 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Copyright by Vincotech 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 35 A 6 Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdoff tdon tf 0.1 tf 0.1 tdon tr tr 0.01 0.01 0.001 0.001 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 35 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.8 t rr( μs) t rr( μs) 0.4 0.35 trr 0.7 Tj = Tjmax -25°C 0.3 Tj = Tjmax -25°C 0.6 trr 0.25 0.5 0.2 0.4 Tj = 25°C 0.15 trr Tj = 25°C 0.3 trr 0.1 0.2 0.05 0.1 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 50 60 I C (A) 70 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 10 25/150 600 35 ±15 20 30 40 50 60 R g on ( Ω ) 70 °C V A V Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Output inverter FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr ( μC) Qrr ( μC) 10 Qrr Tj = Tjmax -25°C 8 8 6 Tj = Tjmax -25°C Qrr 6 Qrr Tj = 25°C 4 Tj = 25°C 4 Qrr 2 2 0 0 At 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 50 60 I C (A) 70 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 20 25/150 600 35 ±15 30 40 50 60 R g on ( Ω) 70 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 140 IrrM (A) IrrM (A) 120 IRRM 120 100 IRRM Tj = Tjmax -25°C 100 IRRM IRRM 80 Tj = 25°C 80 60 60 Tj = Tjmax - 25°C 40 40 20 20 Tj = 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 50 60 I C (A) 0 70 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 10 25/150 600 35 ±15 20 30 40 50 60 R gon ( Ω ) 70 °C V A V Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 5000 10000 dI0/dt Tj = 25°C direc / dt (A/ μs) direc / dt (A/ μs) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 4500 dIrec/dt 4000 dI0/dt 9000 dIrec/dt 8000 3500 7000 3000 6000 2500 5000 2000 4000 1500 3000 Tj = 25°C 1000 2000 Tj = Tjmax - 25°C 500 1000 Tj = Tjmax - 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 50 60 I C (A) 70 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 25/150 600 35 ±15 20 30 40 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 60 R gon ( Ω) 70 50 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0.62 K/W 10-4 10-3 0.78 R (C/W) 0.04 0.09 0.31 0.09 0.06 0.03 R (C/W) 0.02 0.09 0.24 0.22 0.11 0.09 9 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 3.6E+00 5.8E-01 8.1E-02 1.7E-02 1.6E-03 2.8E-04 10-2 Tau (s) 9.7E+00 9.8E-01 1.0E-01 2.5E-02 2.9E-03 4.1E-04 Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 300 250 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 175 100 °C 150 T h ( o C) 200 0 At Tj = VGE = single heating overall heating Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 250 150 Ptot (W) IF (A) 60 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 175 100 °C Copyright by Vincotech 150 T h ( o C) 200 0 At Tj = single heating overall heating 10 50 175 100 150 T h ( o C) 200 °C Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 17.5 IC (A) VGE (V) 1000.0 15 240V 100.0 12.5 960V 100uS 10 10mS 10.0 1mS 7.5 100mS DC 5 1.0 2.5 0 0.1 1 At D= Th = VGE = Tj = 10 100 1000 V CE (V) 0 10000 At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 11 25 35 50 75 100 125 150 175 Q g (nC) 200 A Revision: 1 V23990-P580-A46-PM preliminary datasheet Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 80 IC (A) IC (A) 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 μs 150 °C 7 V to 17 V in steps of 1 V Brake FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 V CE (V) 4 IF (A) IC (A) 30 25 25 20 20 15 15 10 10 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C 5 5 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 10 12 V GE (V) 14 0 At tp = μs V Copyright by Vincotech 12 0.5 250 1 1.5 2 2.5 3 V F (V) 3.5 μs Revision: 1 V23990-P580-A46-PM preliminary datasheet Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 7 E (mWs) 7 E (mWs) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon 5 Eon Tj = Tjmax -25°C 6 6 5 Eon Eon Tj = Tjmax -25°C 4 4 Eoff 3 3 Eoff Eoff 2 2 1 1 Eoff Tj = 25°C Tj = 25°C 0 0 0 5 10 15 20 25 30 35 40 I C45(A) 50 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 30 60 90 120 R G ( Ω ) 150 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A Brake IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2 E (mWs) E (mWs) 2 1.6 1.6 Erec Tj = Tjmax - 25°C Tj = Tjmax -25°C 1.2 1.2 Erec Erec Tj = 25°C 0.8 0.8 Tj = 25°C Erec 0.4 0.4 0 0 0 5 10 15 20 25 30 35 40 I C45(A) 50 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Copyright by Vincotech 30 60 90 120 R G ( Ω ) 150 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A 13 Revision: 1 V23990-P580-A46-PM preliminary datasheet Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdoff tdon tdoff tf tdon 0.1 0.1 tf tr tr 0.01 0.01 0.001 0.001 0 5 10 15 20 25 30 35 I45 C (A) 40 50 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 60 90 RG(Ω ) 120 150 Brake FRED Figure 12 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 10 30 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A 0 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At D= RthJH = tp / T 0.71 10-3 10-2 10-1 100 t p (s) 101 1 K/W Copyright by Vincotech 14 10-5 10-4 At D= RthJH = tp / T 1.62 10-3 10-2 10-1 100 t p (s) 101 1 K/W Revision: 1 V23990-P580-A46-PM preliminary datasheet Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 300 250 40 200 30 150 20 100 10 50 0 0 0 50 At Tj = 175 100 150 T h ( o C) 0 200 At Tj = VGE = ºC Brake FRED Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 ºC V Brake FRED Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 120 100 20 80 15 60 10 40 5 20 0 0 0 At Tj = 50 175 100 150 Th ( o C) 0 200 At Tj = ºC Copyright by Vincotech 15 50 175 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P580-A46-PM preliminary datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 1 ZthJC (K/W) IF (A) 10 120 100 90 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = Tjmax-25°C 30 Tj = 25°C 0 0 0.5 1 1.5 2 VF (V) 10-2 2.5 10-5 At tp = At D= RthJH = μs 250 10-4 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 101 1 tp / T 0.851 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 200 t p (s) Ptot (W) IF (A) 70 60 160 50 120 40 30 80 20 40 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 16 50 150 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P580-A46-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 17 Revision: 1 V23990-P580-A46-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 16 Ω Rgon Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 350 140 Ic tdoff 120 300 Uce 100 250 Uce 90% Uge 90% 80 200 % Ic %60 150 tEoff Uce 40 100 20 50 tdon Ic 1% 0 Uge Ic10% -20 -0.2 -0.1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0.1 0.2 0.3 time (us) -15 15 600 35 0.27 0.54 Uce3% Uge10% 0 Uge tEon 0.4 0.5 0.6 -50 0.7 2.8 2.9 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3.1 -15 15 600 35 0.09 0.31 3.2 time(us) 3.3 3.5 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3.4 Turn-on Switching Waveforms & definition of tr 140 350 fitted 120 300 Uce 100 250 Ic Ic 90% 80 200 Ic 60% % 60 % 150 Ic 40% 40 Uce 100 20 Ic90% tr 50 Ic10% tf 0 -20 Ic10% Ic 0 -50 0.2 VC (100%) = IC (100%) = tf = 0.25 0.3 600 35 0.11 Copyright by Vincotech time (us) 0.35 0.4 0.45 2.9 VC (100%) = IC (100%) = tr = V A μs 18 3 3.1 600 35 0.02 3.2 time(us) 3.3 3.4 3.5 V A μs Revision: 1 V23990-P580-A46-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 250 Pon Eoff 100 Poff 200 80 150 Eon 60 100 % % 40 50 20 Uge10% Uge90% Uce3% 0 0 tEoff -20 -0.1 tEon Ic 1% -50 0 0.1 Poff (100%) = Eoff (100%) = tEoff = 0.2 0.3 time (us) 21.01 2.82 0.54 0.4 0.5 0.6 2.9 0.7 Pon (100%) = Eon (100%) = tEon = kW mJ μs Figure 7 Gate voltage vs Gate charge (measured) 3 Output inverter FRED 3.1 3.2 time(us) 21.01 2.49 0.31 kW mJ μs 3.3 3.4 3.5 Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 80 15 Id trr 40 10 0 Ud Uge (V) 5 -40 IRRM10% % -80 0 -120 -5 -160 -10 IRRM90% -200 -15 IRRM100% -240 fitted -280 -20 -50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 50 100 150 Qg (nC) -15 15 600 35 1239.53 Copyright by Vincotech 200 250 3 300 3.1 3.2 3.3 3.4 3.5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 19 600 35 -79 0.28 V A A μs Revision: 1 V23990-P580-A46-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Qrr 100 Erec Id 100 50 80 tQrr 0 tErec 60 %-50 % 40 -100 20 -150 Prec 0 -200 -250 -20 2.8 Id (100%) = Qrr (100%) = tQrr = 3 3.2 3.4 35 7.47 1.00 Copyright by Vincotech 3.6 time(us) 3.8 4 4.2 4.4 2.8 Prec (100%) = Erec (100%) = tErec = A μC μs 20 3 3.2 3.4 21.01 3.31 1.00 3.6 time(us) 3.8 4 4.2 4.4 kW mJ μs Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Application flowPIM 1 3rd gen 1200V / 35A General conditions 3phase SPWM VGEon = 15 V VGEoff = -15 V Rgon = 16 Ω Rgoff = 16 Ω IGBT Figure 1 Typical average static loss as a function of output current Ploss = f(Iout) 100 70 90 Ploss (W) Ploss (W) FRED Figure 2 Typical average static loss as a function of output current Ploss = f(Iout) Mi*cosfi = 1 60 Mi*cosf i= -1 80 50 70 60 40 50 30 40 30 20 20 10 10 Mi*cosfi = -1 Mi*cosfi = 1 0 0 0 10 20 30 40 50 60 0 70 10 20 30 40 50 Iout (A) At Tj = 150 At Tj = Mi*cosφ from -1 to 1 in steps of 0.2 150 °C Mi*cosφ from -1 to 1 in steps of 0.2 IGBT Figure 3 Typical average switching loss as a function of output current FRED Figure 4 Typical average switching loss as a function of output current Ploss = f(Iout) Ploss (W) Ploss (W) 70 Iout (A) °C 70.0 60.0 60 Ploss = f(Iout) 40.0 fsw = 16kHz 35.0 fsw = 16kHz 30.0 50.0 25.0 40.0 20.0 30.0 15.0 20.0 10.0 10.0 5.0 fsw = 2kHz fsw = 2kHz 0.0 0.0 0 10 20 30 40 At Tj = 150 DC link = fsw from 600 V 2 kHz to 16 kHz in steps of factor 2 50 60 Iout (A) 0 70 °C Copyright by Vincotech 21 10 20 30 40 At Tj = 150 DC link = fsw from 600 V 2 kHz to 16 kHz in steps of factor 2 50 60 Iout (A) 70 °C Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Application flowPIM 1 3rd gen Phase Figure 5 Typical available 50Hz output current as a function Mi*cosφ Phase Figure 6 Typical available 50Hz output current as a function of switching frequency Iout = f(Mi*cos φ) Iout (A) 60 Iout (A) 1200V / 35A Th = 60°C 50 Iout = f(fsw) 60 Th = 60°C 50 Th = 100°C 40 40 30 30 20 20 10 10 0 Th = 100°C 0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 At Tj = 150 DC link = fsw = Th from 600 V 8 kHz 60 °C to 100 °C in steps of 5 °C 0.4 0.6 0.8 1.0 Mi*cos φ 1 At Tj = °C 10 150 fsw (kHz) 100 °C DC link = 600 V Mi*cos φ = 0.8 Th from 60 °C to 100 °C in steps of 5 °C Phase Figure 7 Typical available 0Hz output current as a function Ioutpeak = f(fsw) of switching frequency Iout (Apeak) -1.00 -0.80 Iout (A) Phase Figure 8 Typical available 50Hz output current as a function of Iout = f(fsw, Mi*cos φ) Mi*cos φ and switching frequency 60 50 Th = 60°C -0.60 -0.40 40.0-45.0 Th = 100°C 40 45.0-50.0 35.0-40.0 30.0-35.0 0.00 25.0-30.0 20.0-25.0 Mi*cosfi -0.20 30 0.20 15.0-20.0 20 0.40 0.60 10 0.80 0 1.00 1 2 4 8 16 32 64 1 fsw 10 At Tj = 150 °C At Tj = 150 DC link = Th = 600 90 V °C DC link = Th from 600 V 60 °C to 100 °C in steps of 5 °C Mi = 0 Copyright by Vincotech 22 fsw (kHz) 100 °C Revision: 1 V23990-P580-A46-PM preliminary datasheet Output Inverter Application flowPIM 1 3rd gen Inverter Figure 9 Typical efficiency as a function of output power efficiency=f(Pout) efficiency (%) Pout (kW) Inverter Figure 10 Typical available peak output power as a function of Pout=f(Th) heatsink temperature 25.0 1200V / 35A 2kHz 100.0 20.0 99.0 2kHz 98.0 97.0 16kHz 15.0 96.0 16kHz 95.0 10.0 94.0 93.0 5.0 92.0 91.0 0.0 90.0 60 65 70 75 80 85 At Tj = 150 DC link = Mi = cos φ= fsw from 600 V 1 0.80 2 kHz to 16 kHz in steps of factor 2 90 95 100 Th ( o C) 0.0 °C 5.0 10.0 15.0 20.0 At Tj = 150 DC link = Mi = cos φ= fsw from 600 V 1 0.80 2 kHz to 16 kHz in steps of factor 2 25.0 30.0 35.0 Pout (kW) °C Inverter Figure 11 Overload (%) Typical available overload factor as a function of Ppeak / Pnom=f(Pnom,fsw) motor power and switching frequency 400 350 300 250 200 Switching frequency (kHz) 150 Motor nominal power (HP/kW) 100 0,08 / 0,06 0,10 / 0,07 0,15 / 0,11 0,20 / 0,15 1 349 262 175 131 2 349 262 175 131 4 349 262 175 131 8 349 262 175 131 16 309 232 155 116 At Tj = 150 °C DC link = Mi = 600 1 V cos φ= fsw from Th = 0.8 1 kHz to 16kHz in steps of factor 2 90 °C Motor eff = 0.85 Copyright by Vincotech 23 Revision: 1 V23990-P580-A46-PM preliminary datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 24 Revision: 1 V23990-P580-A46-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 25 Revision: 1