V23990-P580-A46-PM Maximum Ratings

V23990-P580-A46-PM
preliminary datasheet
flowPIM 1 3rd gen
1200V / 35A
Features
flowPIM1 housing
● 3~ rectifier, BRC, Inverter, NTC
● Very compact housing, easy to route
● IGBT4 / EmCon4 technology for low saturation losses
and improved EMC behaviour
● High performance with AlN substrate
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P580-A46-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
50
A
320
A
510
A2s
82
W
Tjmax
150
°C
VCE
1200
V
49
A
105
A
152
W
±20
V
10
800
μs
V
175
°C
Input Rectifier Diode
Peak repetitive reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per diode
Ptot
Maximum junction temperature
DC current
Th=80°C
tp=10ms
Tj=45°C
Tj=Tjmax
Th=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum junction temperature
Copyright by Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
50
A
70
A
121
W
Tjmax
175
°C
VCE
1200
V
40
A
75
A
133
W
±20
V
10
800
μs
V
175
°C
1200
V
20
A
20
A
59
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Inverter Diode
Peak repetitive reverse voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per diode
Ptot
Tj=Tjmax
Maximum junction temperature
Th=80°C
Brc Transistor
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Th=80°C
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum junction temperature
Th=80°C
Tj≤150°C
VGE=15V
Tjmax
Brc Diode
Peak repetitive reverse voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per diode
Ptot
Tj=Tjmax
Maximum junction temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0.8
1.29
1.24
0.93
0.82
0.007
0.009
1.6
Input Rectifier Diode
Forward voltage
VF
50
Threshold voltage (for power loss calc. only)
Vto
50
Slope resistance (for power loss calc. only)
rt
50
Reverse current
Ir
1500
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal foil
thickness=76um
Kunze foil KU-ALF5
VGE(th)
VCE=VGE
V
V
Ω
0.02
2
mA
0.85
K/W
N/A
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0.0012
35
15
Collector-emitter cut-off current incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
5
5.8
6.5
1.6
1.95
2.39
2.3
0.01
200
Rgoff=16Ω
Rgon=16Ω
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=960V
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal foil
thickness=76um
Kunze foil KU-ALF5
600
±15
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
92
91.6
18
23.4
213
274
75.3
105
1.62
2.49
1.81
2.82
ns
mWs
1950
f=1MHz
Tj=25°C
25
0
155
pF
115
±15
35
Tj=25°C
nC
270
0.62
K/W
N/A
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
IRRM
trr
Qrr
Rgoff=16Ω
600
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
35
Thermal foil
thickness=76um
Kunze foil KU-ALF5
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1.83
1.8
68.9
78.7
150
277
3.93
7.47
4100
2080
1.69
3.31
2.2
V
A
ns
μC
A/μs
mWs
0.78
K/W
N/A
3
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5.8
6.5
1.6
1.86
2.31
2.2
Brc Transistor
Gate emitter threshold voltage
VGE(th)
0.00085
VCE=VGE
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
25
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
0.005
200
Rgon=32Ω
Rgoff=32Ω
±15
600
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
127
129
36
41.8
232
276
73.7
112
1.81
2.42
1.37
2.19
ns
mWs
1430
f=1MHz
0
±15
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=960V
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal foil
thickness=76um
Kunze foil KU-ALF5
25
Tj=25°C
115
Tj=25°C
200
pF
85
25
nC
0.71
K/W
N/A
Brc Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
±15
600
10
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
10
Rgon=32Ω
±15
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
10
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1.3
1.85
1.76
2.2
5
10.2
12.3
396
624
1.55
3.03
36
32
0.63
1.30
Thermal foil
thickness=76um
Kunze foil KU-ALF5
V
μA
A
ns
μC
A/μs
mWs
1.62
K/W
N/A
Thermistor
R
Tj=25°C
Tj=125°C
Operating current
I
Tj=25°C
Power dissipation
P
Tj=25°C
200
mW
Tj=25°C
3950
K
Rated resistance
B(25/50)
B-value
Copyright by Vincotech
Tol. ±3%
4
20.9
22
0.75
23.1
0.3
kΩ
mA
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
100
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
IC (A)
IF (A)
40
4
Tj = 25°C
80
Tj = Tjmax-25°C
30
60
20
40
10
Tj = Tjmax-25°C
20
Tj = 25°C
0
0
0
At
tp =
VCE =
3
250
10
6
9
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
5
1
250
2
3
V F (V)
4
μs
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
7
6
8
Eon
7
6
Eon
Tj = Tjmax - 25°C
Eoff
5
Tj = Tjmax - 25°C
5
Eon
4
4
Tj = 25°C
Eoff
3
Eoff
3
Eon
2
Eoff
2
1
1
Tj = 25°C
0
0
0
10
20
30
40
50
60
I C (A)
70
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
35
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
4.5
E (mWs)
4.5
E (mWs)
10
Erec
4
Tj = Tjmax -25°C
4
3.5
3.5
3
3
2.5
2.5
Tj = Tjmax -25°C
Erec
Tj = 25°C
Erec
2
2
1.5
1.5
1
1
0.5
0.5
0
Tj = 25°C
Erec
0
0
10
20
30
40
50
60
I C (A)
70
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Copyright by Vincotech
10
20
30
40
50
60 R G ( Ω ) 70
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
6
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( μs)
t ( μs)
1
tdoff
tdoff
tdon
tf
0.1
tf
0.1
tdon
tr
tr
0.01
0.01
0.001
0.001
0
10
20
30
40
50
60
I C (A)
70
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
10
20
30
40
50
60 R G ( Ω ) 70
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.8
t rr( μs)
t rr( μs)
0.4
0.35
trr
0.7
Tj = Tjmax -25°C
0.3
Tj = Tjmax -25°C
0.6
trr
0.25
0.5
0.2
0.4
Tj = 25°C
0.15
trr
Tj = 25°C
0.3
trr
0.1
0.2
0.05
0.1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
50
60
I C (A)
70
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
10
25/150
600
35
±15
20
30
40
50
60 R g on ( Ω ) 70
°C
V
A
V
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10
Qrr ( μC)
Qrr ( μC)
10
Qrr
Tj = Tjmax -25°C
8
8
6
Tj = Tjmax -25°C
Qrr
6
Qrr
Tj = 25°C
4
Tj = 25°C
4
Qrr
2
2
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
50
60
I C (A)
70
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
20
25/150
600
35
±15
30
40
50
60 R g on ( Ω) 70
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
140
IrrM (A)
IrrM (A)
120
IRRM
120
100
IRRM
Tj = Tjmax -25°C
100
IRRM
IRRM
80
Tj = 25°C
80
60
60
Tj = Tjmax - 25°C
40
40
20
20
Tj = 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
50
60
I C (A)
0
70
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
10
25/150
600
35
±15
20
30
40
50
60 R gon ( Ω ) 70
°C
V
A
V
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
5000
10000
dI0/dt
Tj = 25°C
direc / dt (A/ μs)
direc / dt (A/ μs)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
4500
dIrec/dt
4000
dI0/dt
9000
dIrec/dt
8000
3500
7000
3000
6000
2500
5000
2000
4000
1500
3000
Tj = 25°C
1000
2000
Tj = Tjmax - 25°C
500
1000
Tj = Tjmax - 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
50
60
I C (A)
70
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
25/150
600
35
±15
20
30
40
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
60 R gon ( Ω) 70
50
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0.62
K/W
10-4
10-3
0.78
R (C/W)
0.04
0.09
0.31
0.09
0.06
0.03
R (C/W)
0.02
0.09
0.24
0.22
0.11
0.09
9
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
3.6E+00
5.8E-01
8.1E-02
1.7E-02
1.6E-03
2.8E-04
10-2
Tau (s)
9.7E+00
9.8E-01
1.0E-01
2.5E-02
2.9E-03
4.1E-04
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
300
250
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
175
100
°C
150
T h ( o C)
200
0
At
Tj =
VGE =
single heating
overall heating
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
250
150
Ptot (W)
IF (A)
60
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
175
100
°C
Copyright by Vincotech
150
T h ( o C)
200
0
At
Tj =
single heating
overall heating
10
50
175
100
150
T h ( o C)
200
°C
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
17.5
IC (A)
VGE (V)
1000.0
15
240V
100.0
12.5
960V
100uS
10
10mS
10.0
1mS
7.5
100mS
DC
5
1.0
2.5
0
0.1
1
At
D=
Th =
VGE =
Tj =
10
100
1000
V CE (V)
0
10000
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
11
25
35
50
75
100
125
150
175
Q g (nC)
200
A
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
80
IC (A)
IC (A)
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
Brake FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
30
V CE (V)
4
IF (A)
IC (A)
30
25
25
20
20
15
15
10
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
5
5
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
10
12
V GE (V) 14
0
At
tp =
μs
V
Copyright by Vincotech
12
0.5
250
1
1.5
2
2.5
3
V F (V) 3.5
μs
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
7
E (mWs)
7
E (mWs)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon
5
Eon
Tj = Tjmax -25°C
6
6
5
Eon
Eon
Tj = Tjmax -25°C
4
4
Eoff
3
3
Eoff
Eoff
2
2
1
1
Eoff
Tj = 25°C
Tj = 25°C
0
0
0
5
10
15
20
25
30
35
40
I C45(A)
50
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
30
60
90
120
R G ( Ω ) 150
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
Brake IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2
E (mWs)
E (mWs)
2
1.6
1.6
Erec
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
1.2
1.2
Erec
Erec
Tj = 25°C
0.8
0.8
Tj = 25°C
Erec
0.4
0.4
0
0
0
5
10
15
20
25
30
35
40
I C45(A)
50
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Copyright by Vincotech
30
60
90
120
R G ( Ω ) 150
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
13
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdon
tdoff
tf
tdon
0.1
0.1
tf
tr
tr
0.01
0.01
0.001
0.001
0
5
10
15
20
25
30
35
I45
C (A)
40
50
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
60
90
RG(Ω )
120
150
Brake FRED
Figure 12
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
10
30
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
0
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
D=
RthJH =
tp / T
0.71
10-3
10-2
10-1
100
t p (s)
101 1
K/W
Copyright by Vincotech
14
10-5
10-4
At
D=
RthJH =
tp / T
1.62
10-3
10-2
10-1
100
t p (s)
101 1
K/W
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
300
250
40
200
30
150
20
100
10
50
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
Brake FRED
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
ºC
V
Brake FRED
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
120
100
20
80
15
60
10
40
5
20
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
15
50
175
100
150
Th ( o C)
200
ºC
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
1
ZthJC (K/W)
IF (A)
10
120
100
90
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = Tjmax-25°C
30
Tj = 25°C
0
0
0.5
1
1.5
2
VF (V)
10-2
2.5
10-5
At
tp =
At
D=
RthJH =
μs
250
10-4
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
101 1
tp / T
0.851
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
200
t p (s)
Ptot (W)
IF (A)
70
60
160
50
120
40
30
80
20
40
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
16
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
17
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 16 Ω
Rgon
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
350
140
Ic
tdoff
120
300
Uce
100
250
Uce 90%
Uge 90%
80
200
%
Ic
%60
150
tEoff
Uce
40
100
20
50
tdon
Ic 1%
0
Uge
Ic10%
-20
-0.2
-0.1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0.1
0.2
0.3
time (us)
-15
15
600
35
0.27
0.54
Uce3%
Uge10%
0
Uge
tEon
0.4
0.5
0.6
-50
0.7
2.8
2.9
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3.1
-15
15
600
35
0.09
0.31
3.2
time(us)
3.3
3.5
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3.4
Turn-on Switching Waveforms & definition of tr
140
350
fitted
120
300
Uce
100
250
Ic
Ic 90%
80
200
Ic 60%
% 60
% 150
Ic 40%
40
Uce
100
20
Ic90%
tr
50
Ic10%
tf
0
-20
Ic10%
Ic
0
-50
0.2
VC (100%) =
IC (100%) =
tf =
0.25
0.3
600
35
0.11
Copyright by Vincotech
time (us)
0.35
0.4
0.45
2.9
VC (100%) =
IC (100%) =
tr =
V
A
μs
18
3
3.1
600
35
0.02
3.2
time(us)
3.3
3.4
3.5
V
A
μs
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
250
Pon
Eoff
100
Poff
200
80
150
Eon
60
100
%
%
40
50
20
Uge10%
Uge90%
Uce3%
0
0
tEoff
-20
-0.1
tEon
Ic 1%
-50
0
0.1
Poff (100%) =
Eoff (100%) =
tEoff =
0.2
0.3
time (us)
21.01
2.82
0.54
0.4
0.5
0.6
2.9
0.7
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Figure 7
Gate voltage vs Gate charge (measured)
3
Output inverter FRED
3.1
3.2
time(us)
21.01
2.49
0.31
kW
mJ
μs
3.3
3.4
3.5
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
80
15
Id
trr
40
10
0
Ud
Uge (V)
5
-40
IRRM10%
% -80
0
-120
-5
-160
-10
IRRM90%
-200
-15
IRRM100%
-240
fitted
-280
-20
-50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
50
100
150
Qg (nC)
-15
15
600
35
1239.53
Copyright by Vincotech
200
250
3
300
3.1
3.2
3.3
3.4
3.5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
19
600
35
-79
0.28
V
A
A
μs
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Qrr
100
Erec
Id
100
50
80
tQrr
0
tErec
60
%-50
%
40
-100
20
-150
Prec
0
-200
-250
-20
2.8
Id (100%) =
Qrr (100%) =
tQrr =
3
3.2
3.4
35
7.47
1.00
Copyright by Vincotech
3.6
time(us)
3.8
4
4.2
4.4
2.8
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
20
3
3.2
3.4
21.01
3.31
1.00
3.6
time(us)
3.8
4
4.2
4.4
kW
mJ
μs
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter Application
flowPIM 1 3rd gen
1200V / 35A
General conditions
3phase SPWM
VGEon = 15 V
VGEoff = -15 V
Rgon = 16 Ω
Rgoff = 16 Ω
IGBT
Figure 1
Typical average static loss as a function of output current
Ploss = f(Iout)
100
70
90
Ploss (W)
Ploss (W)
FRED
Figure 2
Typical average static loss as a function of output current
Ploss = f(Iout)
Mi*cosfi = 1
60
Mi*cosf i= -1
80
50
70
60
40
50
30
40
30
20
20
10
10
Mi*cosfi = -1
Mi*cosfi = 1
0
0
0
10
20
30
40
50
60
0
70
10
20
30
40
50
Iout (A)
At
Tj =
150
At
Tj =
Mi*cosφ from -1 to 1 in steps of 0.2
150
°C
Mi*cosφ from -1 to 1 in steps of 0.2
IGBT
Figure 3
Typical average switching loss
as a function of output current
FRED
Figure 4
Typical average switching loss
as a function of output current
Ploss = f(Iout)
Ploss (W)
Ploss (W)
70
Iout (A)
°C
70.0
60.0
60
Ploss = f(Iout)
40.0
fsw = 16kHz
35.0
fsw = 16kHz
30.0
50.0
25.0
40.0
20.0
30.0
15.0
20.0
10.0
10.0
5.0
fsw = 2kHz
fsw = 2kHz
0.0
0.0
0
10
20
30
40
At
Tj =
150
DC link =
fsw from
600
V
2 kHz to 16 kHz in steps of factor 2
50
60 Iout (A)
0
70
°C
Copyright by Vincotech
21
10
20
30
40
At
Tj =
150
DC link =
fsw from
600
V
2 kHz to 16 kHz in steps of factor 2
50
60
Iout (A)
70
°C
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter Application
flowPIM 1 3rd gen
Phase
Figure 5
Typical available 50Hz output current
as a function Mi*cosφ
Phase
Figure 6
Typical available 50Hz output current
as a function of switching frequency
Iout = f(Mi*cos φ)
Iout (A)
60
Iout (A)
1200V / 35A
Th = 60°C
50
Iout = f(fsw)
60
Th = 60°C
50
Th = 100°C
40
40
30
30
20
20
10
10
0
Th = 100°C
0
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
At
Tj =
150
DC link =
fsw =
Th from
600
V
8
kHz
60 °C to 100 °C in steps of 5 °C
0.4
0.6
0.8
1.0
Mi*cos φ
1
At
Tj =
°C
10
150
fsw (kHz)
100
°C
DC link = 600
V
Mi*cos φ = 0.8
Th from
60 °C to 100 °C in steps of 5 °C
Phase
Figure 7
Typical available 0Hz output current as a function
Ioutpeak = f(fsw)
of switching frequency
Iout (Apeak)
-1.00
-0.80
Iout (A)
Phase
Figure 8
Typical available 50Hz output current as a function of
Iout = f(fsw, Mi*cos φ)
Mi*cos φ and switching frequency
60
50
Th = 60°C
-0.60
-0.40
40.0-45.0
Th = 100°C
40
45.0-50.0
35.0-40.0
30.0-35.0
0.00
25.0-30.0
20.0-25.0
Mi*cosfi
-0.20
30
0.20
15.0-20.0
20
0.40
0.60
10
0.80
0
1.00
1
2
4
8
16
32
64
1
fsw
10
At
Tj =
150
°C
At
Tj =
150
DC link =
Th =
600
90
V
°C
DC link =
Th from
600
V
60 °C to 100 °C in steps of 5 °C
Mi =
0
Copyright by Vincotech
22
fsw (kHz)
100
°C
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Output Inverter Application
flowPIM 1 3rd gen
Inverter
Figure 9
Typical efficiency as a function of output power
efficiency=f(Pout)
efficiency (%)
Pout (kW)
Inverter
Figure 10
Typical available peak output power as a function of
Pout=f(Th)
heatsink temperature
25.0
1200V / 35A
2kHz
100.0
20.0
99.0
2kHz
98.0
97.0
16kHz
15.0
96.0
16kHz
95.0
10.0
94.0
93.0
5.0
92.0
91.0
0.0
90.0
60
65
70
75
80
85
At
Tj =
150
DC link =
Mi =
cos φ=
fsw from
600
V
1
0.80
2 kHz to 16 kHz in steps of factor 2
90
95
100
Th ( o C)
0.0
°C
5.0
10.0
15.0
20.0
At
Tj =
150
DC link =
Mi =
cos φ=
fsw from
600
V
1
0.80
2 kHz to 16 kHz in steps of factor 2
25.0
30.0
35.0
Pout (kW)
°C
Inverter
Figure 11
Overload (%)
Typical available overload factor as a function of
Ppeak / Pnom=f(Pnom,fsw)
motor power and switching frequency
400
350
300
250
200
Switching frequency (kHz)
150
Motor nominal power (HP/kW)
100
0,08 / 0,06
0,10 / 0,07
0,15 / 0,11
0,20 / 0,15
1
349
262
175
131
2
349
262
175
131
4
349
262
175
131
8
349
262
175
131
16
309
232
155
116
At
Tj =
150
°C
DC link =
Mi =
600
1
V
cos φ=
fsw from
Th =
0.8
1 kHz to 16kHz in steps of factor 2
90
°C
Motor eff = 0.85
Copyright by Vincotech
23
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
24
Revision: 1
V23990-P580-A46-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
25
Revision: 1