V23990-P589-A31-PM preliminary datasheet flowPIM 1 3rd gen 1200V / 25A Features flowPIM1 housing ● 3~ rectifier, BRC, Inverter, NTC ● Very compact housing, easy to route ● IGBT2 phantom speed / EmCon4 technology ● Lower losses than IGBT3 or 4 for fsw > 8kHz Target Applications Schematic ● Motor Drives with 8kHz < fsw < 30kHz ● Low audible noise applications (fsw > 16kHz) ● High efficiency applications ● Centered aircon, fans, pumps Types ● V23990-P589-A31-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 36 A 320 A 510 A2s 40 W Tjmax 150 °C VCE 1200 V 27 A 75 A 67 W Input Rectifier Diode Peak repetitive reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per diode Ptot Maximum junction temperature Tj=Tjmax Th=80°C tp=10ms Tj=45°C Tj=Tjmax Th=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE ±20 V Tjmax 150 °C Maximum junction temperature Copyright by Vincotech 1 Revision: 1 V23990-P589-A31-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 21 A 50 A 37 W 175 °C Inverter Diode Peak repetitive reverse voltage DC forward current VRRM IF Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per diode Ptot Tj=Tjmax Maximum junction temperature Th=80°C Tjmax Brc Transistor Collector-emitter break down voltage DC collector current 1200 VCE IC Tj=Tjmax Th=80°C Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Maximum junction temperature tSC VCC Th=80°C Tj≤150°C VGE=15V Tjmax V 15 A 45 A 39 W ±20 V 10 800 μs V 175 °C Brc Diode Peak repetitive reverse voltage DC forward current 1200 VRRM IF Tj=Tjmax Th=80°C V 10 A 20 A 21 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per diode Ptot Tj=Tjmax Maximum junction temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-P589-A31-PM preliminary datasheet Characteristic Values Parameter Value Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0.8 1.29 1.24 0.93 0.82 7 9 1.6 Input Rectifier Diode Forward voltage VF 50 Threshold voltage (for power loss calc. only) Vto 50 Slope resistance (for power loss calc. only) rt 50 Reverse current Ir 1600 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50μm λ=0.61W/mK VGE(th) VCE=VGE V V mΩ 0.02 2 mA 1.77 K/W N/A Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0.001 25 15 Collector-emitter cut-off current incl. diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 4.5 5.5 6.5 1.5 2.13 2.32 2.75 0.01 200 Rgoff=16Ω Rgon=16Ω ±15 600 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω - td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 136 137 13.2 15.8 201 235 58 99 0.94 1.32 1.17 1.74 ns mWs 2020 f=1MHz Tj=25°C 25 0 193 pF 64 Thermal grease thickness≤50μm λ=0.61W/mK 1.05 K/W N/A Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Rgoff=16Ω 600 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 25 Thermal grease thickness≤50μm λ=0.61W/mK 25 Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1.3 1.9 1.89 60 65 84 153 2.68 4.64 4514 2719 1.25 2.14 2.2 V A ns μC A/μs mWs 1.92 K/W N/A 3 Revision: 1 V23990-P589-A31-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5.8 6.5 1.6 1.88 2.30 2.2 Brc Transistor Gate emitter threshold voltage VGE(th) VCE=VGE 0.0005 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl. diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 15 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss 0.005 200 - tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgon=32Ω Rgoff=32Ω 600 ±15 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 87 87 24 28 194 256 77 102 0.95 1.29 0.82 1.17 ns mWs 900 f=1MHz 0 ±15 Reverse transfer capacitance Crss Gate charge QGate Vcc=960V Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50μm λ=0.61W/mK 25 Tj=25°C 80 Tj=25°C 120 pF 55 15 nC 1.8 K/W N/A Brc Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir 600 ±15 10 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 10 Rgon=32Ω ±15 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 10 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1.3 1.85 1.76 2.2 5 10 12 324 489 1.38 2.27 46 46 0.58 0.96 Thermal grease thickness≤50μm λ=0.61W/mK V μA A ns μC A/μs mWs 3.28 K/W N/A Thermistor R Tj=25°C Tj=125°C Operating current I Tj=25°C Power dissipation P Tj=25°C 200 mW Tj=25°C 3950 K Rated resistance B(25/50) B-value Copyright by Vincotech Tol. ±3% 4 20.9 22 0.75 23.1 0.3 kΩ mA Revision: 1 V23990-P589-A31-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 75 IC (A) IC (A) 75 60 60 45 45 30 30 15 15 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 μs 125 °C 7 V to 17 V in steps of 1 V Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 IF (A) IC (A) 30 Tj = 25°C 25 60 20 Tj = Tjmax-25°C 45 15 30 10 Tj = Tjmax-25°C 5 15 Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 μs V Copyright by Vincotech 6 8 10 V GE (V) 0 12 At tp = 5 1 250 2 3 V F (V) 4 μs Revision: 1 V23990-P589-A31-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) E (mWs) 3.5 3.5 Eoff 3 Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon 3 Tj = Tjmax - 25°C Tj = Tjmax - 25°C 2.5 Eon 2.5 Eon 2 2 Eoff Eon 1.5 Eoff 1.5 Eoff 1 1 0.5 0.5 Tj = 25°C Tj = 25°C 0 0 0 5 10 15 20 25 30 35 40 (A) I C45 50 0 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 30 45 60 R G( Ω ) 75 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V IC = 25 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3 E (mWs) E (mWs) 15 2.5 3 2.5 Tj = Tjmax -25°C Tj = Tjmax -25°C 2 2 Erec Erec Tj = 25°C 1.5 1.5 1 1 0.5 0.5 Tj = 25°C 0 Erec 0 0 5 10 15 20 25 30 35 40 I45 C (A) 50 0 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Copyright by Vincotech 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 25 A 6 Revision: 1 V23990-P589-A31-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( μs) t ( μs) 1 tdon tdoff tdon 0.1 tf 0.1 tf tr tr 0.01 0.01 0.001 0.001 0 5 10 15 20 25 30 35 40 I 45 C (A) 50 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 25 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.25 t rr( μs) t rr( μs) 0.35 trr 0.3 trr 0.2 Tj = Tjmax -25°C 0.25 Tj = Tjmax -25°C 0.15 0.2 trr trr 0.15 0.1 Tj = 25°C Tj = 25°C 0.1 0.05 0.05 0 0 0 At Tj = VCE = VGE = Rgon = 5 10 25/125 600 ±15 16 15 20 25 30 35 40 I45 C (A) 50 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 15 25/125 600 25 ±15 30 45 60 R g on ( Ω ) 75 °C V A V Revision: 1 V23990-P589-A31-PM preliminary datasheet Output Inverter Output inverter FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 7 Qrr ( μC) Qrr ( μC) 7 Qrr 6 6 Tj = Tjmax -25°C 5 5 Tj = Tjmax -25°C 4 Qrr Tj = 25°C Qrr 4 3 3 2 2 1 1 Tj = 25°C Qrr 0 0 At 0 At Tj = VCE = VGE = Rgon = 5 10 25/125 600 ±15 16 15 20 25 30 35 40 I45 C (A) 50 °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 15 At Tj = VR = IF = VGE = 25/125 600 25 ±15 30 45 60 R g on ( Ω) 75 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 IrrM (A) IrrM (A) 100 IRRM 80 80 IRRM Tj = Tjmax -25°C IRRM Tj = 25°C 60 60 Tj = Tjmax - 25°C IRRM 40 40 Tj = 25°C 20 20 0 0 0 At Tj = VCE = VGE = Rgon = 5 10 25/125 600 ±15 16 15 20 25 30 35 40 I45 C (A) 50 °C V V Ω Copyright by Vincotech 8 0 15 At Tj = VR = IF = VGE = 25/125 600 25 ±15 30 45 60 R gon ( Ω ) 75 °C V A V Revision: 1 V23990-P589-A31-PM preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 6000 6000 dI0/dt dIrec/dt direc / dt (A/ μs) direc / dt (A/ μs) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) Tj = 25°C 5000 dI0/dt dIrec/dt 5000 Tj = 25°C 4000 4000 3000 3000 2000 2000 Tj = Tjmax - 25°C 1000 1000 Tj = Tjmax - 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 5 10 25/125 600 ±15 16 15 20 25 30 35 I45 C (A) 40 50 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 600 25 ±15 30 45 R gon ( Ω) 75 60 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 10 15 0 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 -2 10 10-2 -5 10 10 At D= RthJH = -4 -2 10 10 -1 0 10 t p (s) 10-5 1 10 1 At D= RthJH = tp / T 1.05 Single device heated R (C/W) 0.09 0.42 0.41 0.09 0.04 -3 10 K/W RthJH = 1.05 AlI devices heated K/W R (C/W) 0.04 0.21 0.80 0.51 0.21 0.14 9 10-3 10-2 10-1 100 t p (s) 1011 tp / T 1.92 Single device heated IGBT thermal model values Tau (s) R (C/W) 2.6E+00 0.09 3.2E-01 0.42 8.5E-02 0.41 1.0E-02 0.09 6.4E-04 0.04 Copyright by Vincotech 10-4 K/W RthJH = 1.92 AlI devices heated K/W FRED thermal model values Tau (s) R (C/W) 9.5E+00 0.04 7.9E-01 0.21 1.3E-01 0.80 2.8E-02 0.51 4.1E-03 0.21 4.5E-04 0.14 Revision: 1 V23990-P589-A31-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 40 IC (A) Ptot (W) 150 120 30 90 20 60 10 30 0 0 0 At Tj = 50 150 100 °C 150 T h ( o C) 200 0 At Tj = VGE = single heating overall heating Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 T h ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 Ptot (W) IF (A) 100 150 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 100 °C Copyright by Vincotech 150 T h ( o C) 200 0 At Tj = single heating overall heating 10 50 150 100 150 T h ( o C) 200 °C Revision: 1 V23990-P589-A31-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IC (A) 103 102 100uS 1mS 100m DC 10mS 101 100 10-1 0 10 101 102 V CE (V) 103 At D= Th = VGE = Tj = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 11 Revision: 1 V23990-P589-A31-PM preliminary datasheet Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 μs 125 °C 7 V to 17 V in steps of 1 V Brake FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 15 V CE (V) 4 IF (A) IC (A) 25 12 20 9 15 Tj = Tjmax-25°C Tj = Tjmax-25°C 6 10 3 Tj = 25°C 5 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 0 At tp = μs V Copyright by Vincotech 12 0.5 250 1 1.5 2 2.5 V F (V) 3 μs Revision: 1 V23990-P589-A31-PM preliminary datasheet Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 3 E (mWs) 3.5 E (mWs) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon 3 Eon Tj = Tjmax -25°C 2.5 Tj = Tjmax -25°C Eon 2.5 2 Eoff Eon 2 1.5 1.5 Eoff Eoff 1 Eoff 1 0.5 0.5 Tj = 25°C Tj = 25°C 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 30 60 90 120 R G ( Ω ) 150 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 15 A Brake IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1.5 E (mWs) E (mWs) 1.5 1.2 1.2 Tj = Tjmax - 25°C Erec Tj = Tjmax -25°C 0.9 0.9 Erec Tj = 25°C Erec 0.6 0.6 Tj = 25°C Erec 0.3 0.3 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Copyright by Vincotech 30 60 90 120 RG (Ω ) 150 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 15 A 13 Revision: 1 V23990-P589-A31-PM preliminary datasheet Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdoff tdon tdoff tf tf 0.1 tdon 0.1 tr tr 0.01 0.01 0.001 0.001 0 5 10 15 20 I C (A) 25 30 0 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 60 90 R G( Ω ) 120 150 Brake FRED Figure 12 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 10 30 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 15 A 0 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 10 At D= RthJH = -4 tp / T 1.80 10 -3 -2 10 -1 10 0 10 t p (s) 1 -5 10 1 10 At D= RthJH = K/W Copyright by Vincotech 14 -4 10 tp / T 3.28 -3 10 -2 10 -1 10 10 0 t p (s) 1 10 1 K/W Revision: 1 V23990-P589-A31-PM preliminary datasheet Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 25 Ptot (W) IC (A) 100 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = VGE = ºC Brake FRED Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 200 ºC V Brake FRED Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 50 T h ( o C) IF (A) Ptot (W) 12 10 40 8 30 6 20 4 10 2 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 15 50 150 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P589-A31-PM preliminary datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 1 ZthJC (K/W) IF (A) 10 120 100 90 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 Tj = Tjmax-25°C 30 Tj = 25°C 0 0 0.5 1 1.5 2 VF (V) 10-2 2.5 10-5 At tp = At D= RthJH = μs 250 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 101 1 tp / T 1.770 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 t p (s) 70 IF (A) Ptot (W) 10-4 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 16 50 150 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P589-A31-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 17 Revision: 1 V23990-P589-A31-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 16 Ω Rgon Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 360 140 Ic tdoff 120 300 100 240 Uce 90% Uge 90% 80 180 Ic %60 % tEoff Uce 120 40 tdon Uge 60 20 Ic10% Ic 1% Uce Uge 0 Uce3% Uge10% 0 tEon -20 -0.2 -0.1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 0.1 -15 15 600 25 0.24 0.39 0.2 time (us) 0.3 0.4 0.5 -60 0.6 2.8 2.9 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3.1 -15 15 600 25 0.14 0.36 3.2 time(us) 3.3 3.5 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3.4 Turn-on Switching Waveforms & definition of tr 140 360 fitted 120 Uce 300 100 Ic 240 Ic 90% 80 180 Ic 60% % 60 % 120 Uce Ic 40% 40 Ic90% 60 20 tr Ic10% 0 tf 0 -20 Ic10% Ic -60 0.1 VC (100%) = IC (100%) = tf = 0.15 0.2 600 25 0.10 Copyright by Vincotech 0.25 0.3 time (us) 0.35 0.4 0.45 2.9 VC (100%) = IC (100%) = tr = V A μs 18 3 3.1 600 25 0.02 time(us) 3.2 3.3 3.4 V A μs Revision: 1 V23990-P589-A31-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 250 Pon Eoff Poff 100 200 80 150 60 Eon 100 % % 40 50 20 Uge10% Uge90% Uce3% 0 0 tEoff -20 -0.1 tEon Ic 1% -50 0 Poff (100%) = Eoff (100%) = tEoff = 0.1 0.2 0.3 time (us) 14.95 1.74 0.39 0.4 0.5 2.9 0.6 Pon (100%) = Eon (100%) = tEon = kW mJ μs Figure 7 Gate voltage vs Gate charge (measured) 3 Output inverter FRED 3.1 3.2 time(us) 14.95 1.32 0.36 kW mJ μs 3.3 3.4 3.5 Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 80 15 Id trr 40 10 0 Ud Uge (V) 5 -40 IRRM10% % -80 0 -120 -5 -160 -10 -200 IRRM90% -15 -240 IRRM100% fitted -280 -20 -50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 50 100 150 Qg (nC) -15 15 600 25 1175.08 Copyright by Vincotech 200 250 3 300 3.1 3.2 3.3 3.4 3.5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 19 600 25 -65 0.15 V A A μs Revision: 1 V23990-P589-A31-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 160 Qrr Id 100 130 50 tQrr Erec 0 100 -50 % -100 % 70 -150 40 tErec -200 Prec 10 -250 -300 -20 2.8 Id (100%) = Qrr (100%) = tQrr = 3 3.2 3.4 25 4.64 1.00 Copyright by Vincotech 3.6 time(us) 3.8 4 4.2 4.4 2.8 Prec (100%) = Erec (100%) = tErec = A μC μs 20 3 3.2 3.4 14.95 2.14 1.00 3.6 time(us) 3.8 4 4.2 4.4 kW mJ μs Revision: 1 V23990-P589-A31-PM preliminary datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 21 Revision: 1 V23990-P589-A31-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 22 Revision: 1