V23990-P589-A31-PM Maximum Ratings

V23990-P589-A31-PM
preliminary datasheet
flowPIM 1 3rd gen
1200V / 25A
Features
flowPIM1 housing
● 3~ rectifier, BRC, Inverter, NTC
● Very compact housing, easy to route
● IGBT2 phantom speed / EmCon4 technology
● Lower losses than IGBT3 or 4 for fsw > 8kHz
Target Applications
Schematic
● Motor Drives with 8kHz < fsw < 30kHz
● Low audible noise applications (fsw > 16kHz)
● High efficiency applications
● Centered aircon, fans, pumps
Types
● V23990-P589-A31-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
36
A
320
A
510
A2s
40
W
Tjmax
150
°C
VCE
1200
V
27
A
75
A
67
W
Input Rectifier Diode
Peak repetitive reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per diode
Ptot
Maximum junction temperature
Tj=Tjmax
Th=80°C
tp=10ms
Tj=45°C
Tj=Tjmax
Th=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
±20
V
Tjmax
150
°C
Maximum junction temperature
Copyright by Vincotech
1
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
21
A
50
A
37
W
175
°C
Inverter Diode
Peak repetitive reverse voltage
DC forward current
VRRM
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per diode
Ptot
Tj=Tjmax
Maximum junction temperature
Th=80°C
Tjmax
Brc Transistor
Collector-emitter break down voltage
DC collector current
1200
VCE
IC
Tj=Tjmax
Th=80°C
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum junction temperature
tSC
VCC
Th=80°C
Tj≤150°C
VGE=15V
Tjmax
V
15
A
45
A
39
W
±20
V
10
800
μs
V
175
°C
Brc Diode
Peak repetitive reverse voltage
DC forward current
1200
VRRM
IF
Tj=Tjmax
Th=80°C
V
10
A
20
A
21
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per diode
Ptot
Tj=Tjmax
Maximum junction temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Characteristic Values
Parameter
Value
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0.8
1.29
1.24
0.93
0.82
7
9
1.6
Input Rectifier Diode
Forward voltage
VF
50
Threshold voltage (for power loss calc. only)
Vto
50
Slope resistance (for power loss calc. only)
rt
50
Reverse current
Ir
1600
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50μm
λ=0.61W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0.02
2
mA
1.77
K/W
N/A
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0.001
25
15
Collector-emitter cut-off current incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
4.5
5.5
6.5
1.5
2.13
2.32
2.75
0.01
200
Rgoff=16Ω
Rgon=16Ω
±15
600
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
-
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
136
137
13.2
15.8
201
235
58
99
0.94
1.32
1.17
1.74
ns
mWs
2020
f=1MHz
Tj=25°C
25
0
193
pF
64
Thermal grease
thickness≤50μm
λ=0.61W/mK
1.05
K/W
N/A
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Rgoff=16Ω
600
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
25
Thermal grease
thickness≤50μm
λ=0.61W/mK
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1.3
1.9
1.89
60
65
84
153
2.68
4.64
4514
2719
1.25
2.14
2.2
V
A
ns
μC
A/μs
mWs
1.92
K/W
N/A
3
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5.8
6.5
1.6
1.88
2.30
2.2
Brc Transistor
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0.0005
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
15
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
0.005
200
-
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgon=32Ω
Rgoff=32Ω
600
±15
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
87
87
24
28
194
256
77
102
0.95
1.29
0.82
1.17
ns
mWs
900
f=1MHz
0
±15
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=960V
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50μm
λ=0.61W/mK
25
Tj=25°C
80
Tj=25°C
120
pF
55
15
nC
1.8
K/W
N/A
Brc Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
600
±15
10
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
10
Rgon=32Ω
±15
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
10
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1.3
1.85
1.76
2.2
5
10
12
324
489
1.38
2.27
46
46
0.58
0.96
Thermal grease
thickness≤50μm
λ=0.61W/mK
V
μA
A
ns
μC
A/μs
mWs
3.28
K/W
N/A
Thermistor
R
Tj=25°C
Tj=125°C
Operating current
I
Tj=25°C
Power dissipation
P
Tj=25°C
200
mW
Tj=25°C
3950
K
Rated resistance
B(25/50)
B-value
Copyright by Vincotech
Tol. ±3%
4
20.9
22
0.75
23.1
0.3
kΩ
mA
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
75
IC (A)
IC (A)
75
60
60
45
45
30
30
15
15
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
IF (A)
IC (A)
30
Tj = 25°C
25
60
20
Tj = Tjmax-25°C
45
15
30
10
Tj = Tjmax-25°C
5
15
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
μs
V
Copyright by Vincotech
6
8
10
V GE (V)
0
12
At
tp =
5
1
250
2
3
V F (V)
4
μs
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
E (mWs)
E (mWs)
3.5
3.5
Eoff
3
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon
3
Tj = Tjmax - 25°C
Tj = Tjmax - 25°C
2.5
Eon
2.5
Eon
2
2
Eoff
Eon
1.5
Eoff
1.5
Eoff
1
1
0.5
0.5
Tj = 25°C
Tj = 25°C
0
0
0
5
10
15
20
25
30
35
40
(A)
I C45
50
0
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
30
45
60
R G( Ω )
75
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
IC =
25
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3
E (mWs)
E (mWs)
15
2.5
3
2.5
Tj = Tjmax -25°C
Tj = Tjmax -25°C
2
2
Erec
Erec
Tj = 25°C
1.5
1.5
1
1
0.5
0.5
Tj = 25°C
0
Erec
0
0
5
10
15
20
25
30
35
40
I45
C (A)
50
0
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Copyright by Vincotech
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
6
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( μs)
t ( μs)
1
tdon
tdoff
tdon
0.1
tf
0.1
tf
tr
tr
0.01
0.01
0.001
0.001
0
5
10
15
20
25
30
35
40
I 45
C (A)
50
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.25
t rr( μs)
t rr( μs)
0.35
trr
0.3
trr
0.2
Tj = Tjmax -25°C
0.25
Tj = Tjmax -25°C
0.15
0.2
trr
trr
0.15
0.1
Tj = 25°C
Tj = 25°C
0.1
0.05
0.05
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
10
25/125
600
±15
16
15
20
25
30
35
40
I45
C (A)
50
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
15
25/125
600
25
±15
30
45
60
R g on ( Ω )
75
°C
V
A
V
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
7
Qrr ( μC)
Qrr ( μC)
7
Qrr
6
6
Tj = Tjmax -25°C
5
5
Tj = Tjmax -25°C
4
Qrr
Tj = 25°C
Qrr
4
3
3
2
2
1
1
Tj = 25°C
Qrr
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
5
10
25/125
600
±15
16
15
20
25
30
35
40
I45
C (A)
50
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
15
At
Tj =
VR =
IF =
VGE =
25/125
600
25
±15
30
45
60
R g on ( Ω)
75
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
IrrM (A)
IrrM (A)
100
IRRM
80
80
IRRM
Tj = Tjmax -25°C
IRRM
Tj = 25°C
60
60
Tj = Tjmax - 25°C
IRRM
40
40
Tj = 25°C
20
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
10
25/125
600
±15
16
15
20
25
30
35
40
I45
C (A)
50
°C
V
V
Ω
Copyright by Vincotech
8
0
15
At
Tj =
VR =
IF =
VGE =
25/125
600
25
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
6000
6000
dI0/dt
dIrec/dt
direc / dt (A/ μs)
direc / dt (A/ μs)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
Tj = 25°C
5000
dI0/dt
dIrec/dt
5000
Tj = 25°C
4000
4000
3000
3000
2000
2000
Tj = Tjmax - 25°C
1000
1000
Tj = Tjmax - 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
10
25/125
600
±15
16
15
20
25
30
35
I45
C (A)
40
50
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
600
25
±15
30
45
R gon ( Ω) 75
60
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
10
15
0
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
-2
10
10-2
-5
10
10
At
D=
RthJH =
-4
-2
10
10
-1
0
10
t p (s)
10-5
1
10 1
At
D=
RthJH =
tp / T
1.05
Single device heated
R (C/W)
0.09
0.42
0.41
0.09
0.04
-3
10
K/W
RthJH =
1.05
AlI devices heated
K/W
R (C/W)
0.04
0.21
0.80
0.51
0.21
0.14
9
10-3
10-2
10-1
100
t p (s)
1011
tp / T
1.92
Single device heated
IGBT thermal model values
Tau (s)
R (C/W)
2.6E+00
0.09
3.2E-01
0.42
8.5E-02
0.41
1.0E-02
0.09
6.4E-04
0.04
Copyright by Vincotech
10-4
K/W
RthJH =
1.92
AlI devices heated
K/W
FRED thermal model values
Tau (s)
R (C/W)
9.5E+00
0.04
7.9E-01
0.21
1.3E-01
0.80
2.8E-02
0.51
4.1E-03
0.21
4.5E-04
0.14
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
40
IC (A)
Ptot (W)
150
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
150
100
°C
150
T h ( o C)
200
0
At
Tj =
VGE =
single heating
overall heating
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
T h ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
Ptot (W)
IF (A)
100
150
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
100
°C
Copyright by Vincotech
150
T h ( o C)
200
0
At
Tj =
single heating
overall heating
10
50
150
100
150
T h ( o C)
200
°C
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IC (A)
103
102
100uS
1mS
100m
DC
10mS
101
100
10-1 0
10
101
102
V CE (V)
103
At
D=
Th =
VGE =
Tj =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
11
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
Brake FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
15
V CE (V)
4
IF (A)
IC (A)
25
12
20
9
15
Tj = Tjmax-25°C
Tj = Tjmax-25°C
6
10
3
Tj = 25°C
5
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
12
0.5
250
1
1.5
2
2.5
V F (V)
3
μs
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
3
E (mWs)
3.5
E (mWs)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon
3
Eon
Tj = Tjmax -25°C
2.5
Tj = Tjmax -25°C
Eon
2.5
2
Eoff
Eon
2
1.5
1.5
Eoff
Eoff
1
Eoff
1
0.5
0.5
Tj = 25°C
Tj = 25°C
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
30
60
90
120
R G ( Ω ) 150
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
Brake IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1.5
E (mWs)
E (mWs)
1.5
1.2
1.2
Tj = Tjmax - 25°C
Erec
Tj = Tjmax -25°C
0.9
0.9
Erec
Tj = 25°C
Erec
0.6
0.6
Tj = 25°C
Erec
0.3
0.3
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Copyright by Vincotech
30
60
90
120
RG (Ω )
150
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
13
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdon
tdoff
tf
tf
0.1
tdon
0.1
tr
tr
0.01
0.01
0.001
0.001
0
5
10
15
20
I C (A)
25
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
60
90
R G( Ω )
120
150
Brake FRED
Figure 12
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
10
30
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
0
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
-5
10
At
D=
RthJH =
-4
tp / T
1.80
10
-3
-2
10
-1
10
0
10
t p (s)
1
-5
10 1
10
At
D=
RthJH =
K/W
Copyright by Vincotech
14
-4
10
tp / T
3.28
-3
10
-2
10
-1
10
10
0
t p (s)
1
10 1
K/W
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
25
Ptot (W)
IC (A)
100
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
Brake FRED
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
200
ºC
V
Brake FRED
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
50
T h ( o C)
IF (A)
Ptot (W)
12
10
40
8
30
6
20
4
10
2
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
15
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
1
ZthJC (K/W)
IF (A)
10
120
100
90
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
Tj = Tjmax-25°C
30
Tj = 25°C
0
0
0.5
1
1.5
2
VF (V)
10-2
2.5
10-5
At
tp =
At
D=
RthJH =
μs
250
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
101 1
tp / T
1.770
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
t p (s)
70
IF (A)
Ptot (W)
10-4
60
80
50
60
40
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
16
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
17
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 16 Ω
Rgon
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
360
140
Ic
tdoff
120
300
100
240
Uce 90%
Uge 90%
80
180
Ic
%60
%
tEoff
Uce
120
40
tdon
Uge
60
20
Ic10%
Ic 1%
Uce
Uge
0
Uce3%
Uge10%
0
tEon
-20
-0.2
-0.1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
0.1
-15
15
600
25
0.24
0.39
0.2
time (us)
0.3
0.4
0.5
-60
0.6
2.8
2.9
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3.1
-15
15
600
25
0.14
0.36
3.2
time(us)
3.3
3.5
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3.4
Turn-on Switching Waveforms & definition of tr
140
360
fitted
120
Uce
300
100
Ic
240
Ic 90%
80
180
Ic 60%
% 60
%
120
Uce
Ic 40%
40
Ic90%
60
20
tr
Ic10%
0
tf
0
-20
Ic10%
Ic
-60
0.1
VC (100%) =
IC (100%) =
tf =
0.15
0.2
600
25
0.10
Copyright by Vincotech
0.25
0.3
time (us)
0.35
0.4
0.45
2.9
VC (100%) =
IC (100%) =
tr =
V
A
μs
18
3
3.1
600
25
0.02
time(us)
3.2
3.3
3.4
V
A
μs
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
250
Pon
Eoff
Poff
100
200
80
150
60
Eon
100
%
%
40
50
20
Uge10%
Uge90%
Uce3%
0
0
tEoff
-20
-0.1
tEon
Ic 1%
-50
0
Poff (100%) =
Eoff (100%) =
tEoff =
0.1
0.2
0.3
time (us)
14.95
1.74
0.39
0.4
0.5
2.9
0.6
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Figure 7
Gate voltage vs Gate charge (measured)
3
Output inverter FRED
3.1
3.2
time(us)
14.95
1.32
0.36
kW
mJ
μs
3.3
3.4
3.5
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
80
15
Id
trr
40
10
0
Ud
Uge (V)
5
-40
IRRM10%
% -80
0
-120
-5
-160
-10
-200
IRRM90%
-15
-240
IRRM100%
fitted
-280
-20
-50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
50
100
150
Qg (nC)
-15
15
600
25
1175.08
Copyright by Vincotech
200
250
3
300
3.1
3.2
3.3
3.4
3.5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
19
600
25
-65
0.15
V
A
A
μs
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
160
Qrr
Id
100
130
50
tQrr
Erec
0
100
-50
%
-100
% 70
-150
40
tErec
-200
Prec
10
-250
-300
-20
2.8
Id (100%) =
Qrr (100%) =
tQrr =
3
3.2
3.4
25
4.64
1.00
Copyright by Vincotech
3.6
time(us)
3.8
4
4.2
4.4
2.8
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
20
3
3.2
3.4
14.95
2.14
1.00
3.6
time(us)
3.8
4
4.2
4.4
kW
mJ
μs
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
21
Revision: 1
V23990-P589-A31-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
22
Revision: 1