10-F006PPA020SB01-M685B10 preliminary datasheet flowPIM 0 + PFC 2nd 600V/20A Features flowPIM0+PFC 2nd ● Clip in PCB mounting ● Trench Fieldstop IGBT's for low saturation losses ● Latest generation superjunction MOSFET for PFC Target Applications Schematic ● Industrial Drives ● Embedded Drives Types ● 10-F006PPA020SB01-M685B10 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=150°C Tj=Tjmax Tjmax 1 Th=80°C Tc=80°C 26 36 A 200 A 200 A2s 32 48 W 150 °C Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 20 24 A 159 A PFC MOSFET Drain to source breakdown voltage VDS Th=80°C Tc=80°C ID Tj=Tjmax IDpulse Tj=25°C EAS ID=9,3A VDD=50V Tj=25°C 1135 mJ Avalanche energy, repetitive EAR ID=9,3A VDD=50V Tj=25°C 1,72 mJ Avalanche current, repetitive IAR 9,3 A MOSFET dv/dt ruggedness dv/dt 50 V/ns 64 97 W ±20 V 15 V/ns 150 °C 600 V 23 30 A 99 A 36 54 W 150 °C DC drain current Pulsed drain current Avalanche energy, single pulse Power dissipation Ptot Gate-source peak voltage VGS Reverse diode dv/dt dv/dt Maximum Junction Temperature Tjmax VDS=0...480V Tj=Tjmax VDS=0...400V , ISD ≤ ID Th=80°C Tc=80°C Tj=25°C PFC Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax PFC Shunt DC forward current Power dissipation per Shunt IF Tc=25°C 55 A Ptot Tc=25°C 3 W 600 V 20 27 A tp limited by Tjmax 60 A VCE ≤ 600V, Tj ≤ Top max 60 A 41 62 W ±20 V 6 360 µs V 175 °C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 26 34 A 60 A 40 60 W 175 °C 500 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax DC link Capacitor Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 3 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Input Rectifier Diode Forward voltage VF 25 Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 1600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,20 1,17 0,92 0,81 11 14 V V mΩ 0,05 Thermal grease thickness≤50um λ = 1 W/mK 2,20 mA K/W PFC MOSFET Static drain to source ON resistance Gate threshold voltage Gate to Source Leakage Current RDS(on) V(GS)th IDSS Turn On Delay Time td(ON) Turn off delay time Fall time 0,00172 IGSS Zero Gate Voltage Drain Current Rise Time 15 10 20 0 600 0 tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge QGE Gate to source charge QGS Gate to drain charge QGD Input capacitance Ciss Output capacitance Coss Rgoff=8 Ω Rgon=8 Ω Rgon=8 Ω ±15 400 10 480 21 25,8 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,4 70 140 3 mΩ 3,6 100 5 24 23 10 11 228 237 13 11 0,22 0,23 0,12 0,14 V nA nA ns mWs 170 21 nC 87 3800 pF Gate resistance Thermal resistance chip to heatsink per chip f=1MHz 0 Tj=25°C 100 rG RthJH Thermal grease thickness≤50um λ = 1 W/mK 215 0,85 Ω 1,09 K/W PFC Diode Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 24 600 Rgon=8 Ω ±15 400 di(rec)max /dt RthJH Thermal grease thickness≤50um λ = 1 W/mK 21 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,40 1,55 1,7 480 7 6 12 13 0,14 0,13 0,012 0,013 1529 1550 V µA A ns µC mWs A/µs 1,96 K/W PFC Shunt R1 value R Temperature coeficient tc Internal heat resistance Inductance copyright Vincotech mΩ 10 20°C to 60°C 30 ppm/K Rthi 10 K/W L 3 nH 4 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,6 6,5 1,1 1,58 1,76 1,9 Inverter Transistor Gate emitter threshold voltage VGE(th) VCE=VGE 0,00029 VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 20 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 1,1 300 Rgoff=16 Ω Rgon=16 Ω ±15 400 20 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω noen tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 67 67 27 29 126 145 54 75 0,68 0,96 0,48 0,71 ns mWs 1100 f=1MHz 0 25 ±15 480 Tj=25°C 71 pF Tj=25°C 120 nC 2,32 K/W 32 20 Thermal grease thickness≤50um λ = 1 W/mK Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 30 IRRM trr Qrr Rgon=16 Ω ±15 400 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 20 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,25 Thermal grease thickness≤50um λ = 1 W/mK 1,64 1,66 10 13 204 257 1,13 2,01 31 71 0,31 0,54 1,95 V A ns µC A/µs mWs 2,40 K/W 100 nF 22000 Ω DC link Capacitor C value C Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% 5 210 mW Tj=25°C 3,5 mW/K Tj=25°C Tj=25°C 5 % Tc=100°C Tj=25°C Vincotech NTC Reference copyright Vincotech -5 K 4000 K A Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 125 IC (A) IF (A) 75 4 60 100 45 75 30 50 15 25 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 4 250 10 copyright Vincotech 8 12 V GE (V) 0 16 At tp = µs V 6 1 250 2 3 V F (V) 4 µs Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter Output inverter IGBT Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Eon High T 2 Eon High T 1,2 1,5 Eon Low T Eon Low T 0,9 Eoff High T 1 Eoff Low T 0,6 Eoff High T Eoff Low T 0,5 0,3 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 64 RG(Ω) 80 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = ±15 V IC = 20 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,6 0,75 E (mWs) E (mWs) Erec 0,5 Tj = Tjmax -25°C 0,6 Tj = Tjmax -25°C 0,4 0,45 Erec Erec Tj = 25°C 0,3 0,3 0,2 Erec Tj = 25°C 0,15 0,1 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 16 32 48 64 RG(Ω) 80 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = ±15 V IC = 20 A 7 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 1,00 t ( µs) t ( µs) tdoff tdoff tdon tf 0,10 0,10 tf tdon tr 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 125 VCE = 400 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 RG(Ω ) 64 80 With an inductive load at Tj = 125 °C VCE = 400 V VGE = ±15 V IC = 20 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,4 t rr( µs) 0,30 Output inverter FWD trr Tj = Tjmax -25°C Tj = Tjmax -25°C trr 0,25 trr 0,3 trr 0,20 0,15 0,2 Tj = 25°C Tj = 25°C 0,10 0,1 0,05 0,00 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω 8 20 25/125 400 20 ±15 40 60 R g on ( Ω ) 80 °C V A V Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 2,5 Qrr( µC) 2,5 Qrr Tj = Tjmax -25°C Tj = Tjmax -25°C 2,0 2,0 1,5 1,5 Qrr Tj = 25°C Qrr 1,0 Qrr 1,0 Tj = 25°C 0,5 0,5 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 5 25/125 400 ±15 16 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 20 25/125 400 20 ±15 40 60 80 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 40 IrrM (A) 15 R g on ( Ω) IRRM Tj = Tjmax -25°C Tj = Tjmax - 25°C 12 30 IRRM 9 20 Tj = 25°C 6 Tj = 25°C 10 IRRM 3 IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 °C V V Ω 9 0 16 At Tj = VR = IF = VGE = 25/125 400 20 ±15 32 48 64 R gon ( Ω ) 80 °C V A V Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 1000 6000 dI0/dt direc / dt (A/ µs) dI0/dt direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 800 dIrec/dt 5000 4000 600 3000 400 2000 200 1000 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 ±15 16 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 16 25/125 400 20 ±15 32 48 80 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 R gon ( Ω ) 64 10 0 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 0 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10 -5 At D= RthJH = 10 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 10 2,32 K/W RthJH = 1,88 K/W IGBT thermal model values Phase change interface Tau (s) 4,4E+00 3,8E-01 8,1E-02 1,2E-02 1,4E-03 1,3E-04 copyright Vincotech R (C/W) 0,06 0,24 1,02 0,27 0,12 0,17 -5 At D= RthJH = tp / T Thermal grease R (C/W) 0,07 0,30 1,26 0,34 0,14 0,21 -4 10 -4 R (C/W) 0,07 0,27 1,13 0,52 0,20 0,21 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 tp / T 2,40 Thermal grease Tau (s) 3,6E+00 3,1E-01 6,6E-02 9,6E-03 1,1E-03 1,0E-04 10 K/W RthJH = 1,94 K/W FWD thermal model values Phase change interface Tau (s) 4,6E+00 4,8E-01 8,5E-02 2,0E-02 2,8E-03 3,3E-04 R (C/W) 0,06 0,22 0,92 0,42 0,16 0,17 Tau (s) 3,7E+00 3,9E-01 6,9E-02 1,6E-02 2,3E-03 2,7E-04 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 35 Ptot (W) IC (A) 80 30 60 25 20 40 15 10 20 5 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 Ptot (W) IF (A) 75 150 60 30 45 20 30 10 15 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 11 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 16 IC (A) VGE (V) 103 120V 14 10uS 1mS 100mS 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 100uS 2 12 480V 10 DC 10mS 8 101 6 4 100 2 0 10-1 10 0 At D= Th = VGE = Tj = 10 1 10 V CE (V) 2 0 103 20 60 80 100 120 140 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 40 A 20 Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 14 12 300 250 10 200 8 150 6 100 4 50 2 0 0 10 11 12 13 14 V GE (V) 15 12 13 14 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 12 15 16 17 18 19 V GE (V) 20 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Output Inverter IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 50 IC MAX 40 Ic CHIP Ic MODULE 30 VCE MAX 20 10 0 0 100 200 300 400 500 600 700 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 13 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PFC PFC MOSFET Figure 1 Typical output characteristics ID = f(VDS) PFC MOSFET Figure 2 Typical output characteristics ID = f(VDS) 50 ID (A) ID (A) 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGS from 2 4 6 V DS (V) 8 10 0 2 At tp = Tj = VGS from µs 250 25 °C 0 V to 20 V in steps of 2 V PFC MOSFET Figure 3 Typical transfer characteristics 4 6 8 10 250 µs 125 °C 0 V to 20 V in steps of 2 V PFC FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) ID = f(VGS) V DS (V) 100 ID (A) IF (A) 25 20 80 15 60 Tj = 25°C 10 Tj = Tjmax-25°C 40 5 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0 1 At tp = VDS = 250 10 copyright Vincotech 2 3 4 5 V GS (V) 6 0 At tp = µs V 14 1 250 2 3 V F (V) 4 µs Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PFC PFC MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) PFC MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 0,8 E (mWs) 0,4 Eon Eon 0,3 0,6 Eon Tj =25°C Eon Eoff 0,2 0,4 Eoff Tj = Tjmax -25°C 0,2 0,1 Eoff Eoff 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 10 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = A 21 PFC MOSFET Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) PFC MOSFET Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,04 E (mWs) E (mWs) 0,015 Tj = 25°C Erec 0,012 0,03 Erec Erec Tj = Tjmax -25°C 0,009 Erec 0,02 0,006 Tj = 25°C 0,01 0,003 Tj = Tjmax - 25°C 0,000 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 10 V Rgon = 8 Ω Rgoff = 8 Ω copyright Vincotech 10 20 30 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 21 A 15 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PFC PFC MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) PFC MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdoff 0,10 0,10 tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = °C 125 VDS = 400 V VGS = 10 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG (Ω ) 32 40 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = A 21 PFC FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) PFC FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,090 t rr( µs) t rr( µs) 0,015 trr 0,012 trr 0,075 trr trr 0,060 0,009 0,045 0,006 0,030 Tj = Tjmax-25°C 0,003 0,015 Tj = 25°C 0 0,000 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 8 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 16 8 25/125 400 21 10 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PFC PFC FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 0,15 Qrr Qrr ( µC) Qrr ( µC) 0,15 Tj = 25°C Qrr Qrr Tj = Tjmax - 25°C 0,12 0,12 Qrr Tj = Tjmax - 25°C Tj = 25°C 0,09 0,09 0,06 0,06 0,03 0,03 0 0,00 0 At At Tj = VCE = VGE = Rgon = 5 25/125 400 10 8 10 15 20 25 I C (A) 30 0 At Tj = °C V V Ω PFC FWD 8 25/125 400 21 10 VR = IF = VGS = Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 24 32 10 Tj = 25°C 8 R gon ( Ω) 40 °C V A V PFC FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) IrrM (A) PFC FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 20 16 Tj = 25°C Tj = Tjmax - 25°C IRRM 6 12 IRRM 4 8 Tj = Tjmax -25°C IRRM 2 4 IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 8 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 17 8 25/125 400 21 10 16 24 32 R go n ( Ω ) 40 °C V A V Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PFC PFC FWD PFC FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 3000 6000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dt 2500 dI0/dt dIrec/dt 5000 Tj = 25°C 2000 4000 1500 3000 Tj = Tjmax -25°C 1000 2000 Tj = 25°C 500 1000 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 8,01 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω PFC MOSFET Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 R g on ( Ω) 40 °C V A V PFC FWD 10-3 10-2 10-1 100 t p (s) 10110 K/W RthJH = 0,88 10 K/W IGBT thermal model values Phase change interface Tau (s) 3,95E+00 4,91E-01 1,37E-01 2,28E-02 3,27E-03 5,12E-04 copyright Vincotech R (C/W) 0,05 0,23 0,43 0,11 0,04 0,03 -2 -5 At D= RthJH = tp / T 1,09 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10-4 Thermal grease R (C/W) 0,06 0,28 0,53 0,13 0,05 0,03 32 100 -2 At D= RthJH = 24 ZthJH (K/W) ZthJH (K/W) 0 10-5 25/125 400 21 10 16 101 10-1 10 8 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 Tj = Tjmax - 25°C 10 -4 R (C/W) 0,10 0,50 0,95 0,26 0,16 18 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 tp / T 1,96 Thermal grease Tau (s) 3,20E+00 3,98E-01 1,11E-01 1,85E-02 2,66E-03 4,15E-04 10 K/W RthJH = 1,59 K/W FWD thermal model values Phase change interface Tau (s) 3,09E+00 3,43E-01 8,40E-02 1,66E-02 2,77E-03 R (C/W) 0,08 0,41 0,77 0,21 0,13 Tau (s) 2,51E+00 2,78E-01 6,81E-02 1,35E-02 2,24E-03 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PFC PFC MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) PFC MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 35 IC (A) Ptot (W) 150 30 120 25 90 20 15 60 10 30 5 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGS = ºC 150 PFC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 10 100 150 T h ( o C) 200 ºC V PFC FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 80 60 30 40 20 20 10 0 0 0 At Tj = 50 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 19 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PFC PFC MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) PFC MOSFET Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 103 VGS (V) ID (A) 10 8 10uS 102 120V 480V 6 1mS 10 100uS 10mS 1 4 100mS DC 100 2 10-1 0 100 At D= Th = VGS = 10 2 0 103 V DS (V) At ID = single pulse 80 ºC V 10 Tjmax ºC Tj = 30 21 60 90 120 150 Qg (nC) 180 A IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 50 IC MAX 40 Ic MODULE Ic CHIP 30 VCE MAX 20 10 0 0 100 200 300 400 500 600 700 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3phase SPWM copyright Vincotech 20 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 80 1 ZthJC (K/W) IF (A) 10 60 100 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 1 1,5 V F (V) 10 2 10-5 At D= RthJH = µs 250 -2 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 100 10110 tp / T 2,20 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 70 t p (s) 60 40 50 30 40 30 20 20 10 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 21 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e B25/100⋅ 1 − 1 T T 25 [Ω] 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 22 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 16 Ω Rgon Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 200 % % tdoff IC VCE 100 150 VGE 90% VCE 90% 75 VGE VCE 100 IC 50 tdon tEoff 50 25 IC VGE VGE10% 1% tEon 0 -50 -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 time (us) 2,9 0,6 3 3,1 3,2 3,3 3,4 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 400 21 0,15 0,40 Output inverter IGBT Figure 3 -15 15 400 21 0,07 0,24 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 200 fitted % 100 VCE 3% IC10% 0 % VCE IC 150 IC 90% Ic 75 100 IC 60% IC90% 50 tr IC 40% 50 25 0 -25 -0,1 VCE IC 10% IC10% 0 tf 0 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 400 21 0,08 0,2 0,3 time (us) -50 3,05 0,4 VC (100%) = IC (100%) = tr = V A µs 23 3,1 3,15 3,2 400 21 0,03 V A µs 3,25 3,3 time(us) 3,35 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 150 125 Pon % % Poff Eoff 100 125 Eon 100 75 75 50 50 IC 1% 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEoff tEon -25 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 8,37 0,71 0,40 0,4 time (us) 2,9 0,6 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,1 8,37 0,96 0,24 3,2 3,3 time(us) 3,4 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % Id 15 100 10 trr 50 5 Vd 0 fitted 0 IRRM 10% -5 -50 IRRM 90% IRRM 100% -10 -100 -15 -20 -150 -50 0 50 100 150 200 2,9 3,0 3,1 3,2 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 400 21 179,93 3,3 3,4 3,5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 400 21 -13 0,26 V A A µs Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Id Qrr Erec 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 -25 2,9 3,1 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,3 21 2,01 0,52 3,5 3,7 time(us) 3,9 2,8 Prec (100%) = Erec (100%) = tErec = A µC µs 25 3 3,2 8,37 0,54 0,52 3,4 3,6 time(us) 3,8 kW mJ µs Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Switching Definitions PFC General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω PFC MOSFET Figure 1 PFC MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 150 % % tdoff IC 125 100 IC VGE 90% VCE 90% VCE 100 75 VGE 75 50 VGE tdon 50 tEoff IC 1% 25 25 VGE10% VCE 0 VCE3% IC10% 0 tEon -25 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0 10 400 21 0,24 0,27 0,2 -25 2,95 0,3 3 3,1 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs PFC MOSFET Figure 3 3,05 time (us) 0 10 400 21 0,02 0,08 V V V A µs µs PFC MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 150 125 fitted % % IC Ic VCE 100 125 VCE Ic 90% 100 75 IC90% 75 Ic 60% tr 50 50 Ic 40% 25 25 Ic10% IC 10% 0 -25 0,150 0 tf 0,175 0,200 0,225 -25 3,00 0,250 3,02 3,04 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 400 21 0,0110 3,06 3,08 time(us) VC (100%) = IC (100%) = tr = V A µs 26 400 21 0,0110 V A µs Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Switching Definitions PFC PFC MOSFET Figure 5 PFC MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % Pon % Eoff 100 Eon 100 75 75 50 50 Ic 1% 25 25 U ge10% U ge90% Uce 3% Poff 0 0 tEon tEoff -25 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 8,4 0,14 0,27 0,2 time (us) -25 2,95 0,3 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs PFC MOSFET Figure 7 3,05 8,4 0,23 0,0825 time(us) kW mJ µs PFC FWD Figure 8 Gate voltage vs Gate charge (measured) 3,1 Turn-off Switching Waveforms & definition of trr 150 Uge (V) 12 % Id 10 100 8 trr 50 6 fitted Ud 0 IRRM10% 4 IRRM90% IRRM100% -50 2 -100 0 -150 -2 -10 10 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 30 50 0 10 400 21 143,16 70 90 110 130 Qg (nC) 3 150 3,025 3,05 3,075 3,1 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 27 400 21 -6 0,01 V A A µs Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Switching Definitions PFC PFC FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) PFC FWD 150 150 % % Erec Qrr Id 100 100 tErec tQint 50 50 0 0 Prec -50 2,98 3,03 3,08 3,13 -50 2,98 3,18 3,03 3,08 Id (100%) = Qrr (100%) = tQint = copyright Vincotech 21 0,13 0,10 3,13 3,18 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 28 8,40 0,03 0,10 kW mJ µs Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 17mm housing Ordering Code 10-F006PPA020SB01-M685B10 in DataMatrix as M685B10 in packaging barcode as M685B10 Outline Pinout copyright Vincotech 29 Revision: 1 10-F006PPA020SB01-M685B10 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 30 Revision: 1