V23990-P700-F44 preliminary datasheet flow90PACK 1 2nd gen 1200V/50A Features flow90PACK 1 2nd gen ● Trench Fieldstop IGBT4 Technology ● Supports designs with 90° mounting angle between heatsink and PCB ● Clip-in PCB mounting ● Clip or screw hetasink mounting Target Applications Schematic ● Motor Drives Types ● V23990-P700-F44-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 43 56 A tp limited by Tjmax 150 A VCE ≤ 1200V, Tj ≤ Top max 150 A 98 148 W ±20 V 10 800 μs V 175 °C 1200 V 34 46 A 100 A 59 90 W 175 °C Inverter IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Inverter FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 V23990-P700-F44 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 V23990-P700-F44 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 2,07 2,36 2,1 Inverter IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0017 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,01 600 Rgoff=8 Ω Rgon=8 Ω 600 ±15 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 4 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 105 110 27 32 224 297 53 131 3,39 5,33 2,73 4,70 ns mWs 2770 f=1MHz 25 0 205 Tj=25°C pF 160 ±15 960 50 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 300 nC 0,97 K/W Inverter FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 50 Rgon=8 Ω 600 ±15 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,35 Thermal grease thickness≤50um λ = 1 W/mK 1,85 1,81 49 60 262 441 4,70 9,73 896 360 1,76 3,82 2,05 V A ns μC A/μs mWs 1,60 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C 5 200 mW 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference copyright Vincotech Tj=25°C 3 % Tj=25°C Tc=100°C Power dissipation constant -5 K B Revision: 1 V23990-P700-F44 preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 120 120 90 90 60 60 30 30 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 μs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IC (A) IF (A) 50 V CE (V) 4 Tj = 25°C 40 120 30 90 Tj = Tjmax-25°C 20 60 Tj = Tjmax-25°C 10 30 Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 μs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 μs Revision: 1 V23990-P700-F44 preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 12 E (mWs) 12 Eon High T 10 Eon High T 10 Eoff High T 8 8 Eon Low T Eon Low T 6 6 Eoff High T Eoff Low T 4 4 Eoff Low T 2 2 0 0 0 25 50 75 I C (A) 100 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG( Ω ) 32 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 5 E (mWs) E (mWs) Erec Tj = Tjmax -25°C 4 4 3 3 Erec Tj = Tjmax -25°C Erec Tj = 25°C 2 2 Erec 1 1 Tj = 25°C 0 0 0 25 50 75 I C (A) 100 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A 5 Revision: 1 V23990-P700-F44 preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( μs) t ( μs) 1,00 tdoff tdon tf tf 0,10 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 25 50 75 I C (A) 100 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG( Ω ) 32 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 50 A Output inverter FWD Output inverter FWD 0,8 0,8 t rr( μs) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( μs) Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) 0,6 0,6 trr trr Tj = Tjmax -25°C 0,4 trr 0,4 Tj = Tjmax -25°C trr 0,2 0,2 Tj = 25°C Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 8 copyright Vincotech 50 75 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 6 8 25/150 600 50 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 1 V23990-P700-F44 preliminary datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 16 Qrr( μC) Qrr( μC) 12 Qrr Tj = Tjmax -25°C 10 Qrr 12 8 8 6 Tj = Tjmax -25°C Tj = 25°C Qrr Qrr 4 4 2 Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 8 50 75 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) Output inverter FWD 8 25/150 600 50 ±15 16 24 40 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 125 IrrM (A) IrrM (A) 80 R g on ( Ω) 32 Tj = Tjmax - 25°C IRRM 100 IRRM 75 60 Tj = Tjmax -25°C 40 50 Tj = 25°C Tj = 25°C IRRM 20 IRRM 25 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 8 copyright Vincotech 50 75 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/150 600 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 1 V23990-P700-F44 preliminary datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 5000 direc / dt (A/ μs) 2500 direc / dt (A/μ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 2000 dI0/dt dIrec/dt 4000 dIo/dtLow T 1500 3000 dIrec/dtLow T 2000 1000 di0/dtHigh T dIrec/dtHigh T 1000 500 dIo/dtLow T di0/dtHigh T dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 8 50 I C (A) 75 0 100 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/150 600 50 ±15 16 24 32 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 R gon ( Ω ) 40 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 -2 10-2 10 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,97 Thermal grease R (C/W) 0,13 0,49 0,26 0,07 0,03 10-3 K/W IGBT thermal model values Phase change interface Tau (s) 1,3E+00 2,0E-01 6,4E-02 8,7E-03 5,6E-04 copyright Vincotech R (C/W) 0,11 0,39 0,21 0,05 0,03 10-4 R (C/W) 0,03 0,14 0,77 0,42 0,16 0,09 8 10-2 10-1 100 t p (s) 1011 tp / T 1,60 Thermal grease Tau (s) 1,0E+00 1,6E-01 5,2E-02 7,0E-03 4,5E-04 10-3 K/W FWD thermal model values Phase change interface Tau (s) 7,8E+00 1,1E+00 1,8E-01 5,9E-02 9,5E-03 6,4E-04 R (C/W) 0,03 0,12 0,62 0,34 0,13 0,07 Tau (s) 6,3E+00 8,9E-01 1,5E-01 4,8E-02 7,7E-03 5,2E-04 Revision: 1 V23990-P700-F44 preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 200 Ptot (W) IC (A) 70 60 150 50 40 100 30 20 50 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 120 150 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 V23990-P700-F44 preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 3 IC (A) VGE (V) 10 100uS 2 10 10uS 20 18 16 240V 14 1mS 100mS 10mS 1 960V 12 10 10 DC 8 100 6 4 -1 10 2 0 10 At D= Th = VGE = Tj = 0 2 1 V CE (V) 10 10 0 103 100 150 200 250 300 350 400 450 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 50 50 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 500 tsc (μS) IC(sc) 17,5 450 15 400 12,5 350 300 10 250 7,5 200 150 5 100 2,5 50 0 0 12 13 14 15 16 V GE (V) 12 17 13 14 15 17 18 19 20 V GE (V) At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 16 10 Revision: 1 V23990-P700-F44 preliminary datasheet IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 140 120 ICMAX Ic CHIP 100 Ic MODULE 80 VCEMAX 60 40 20 0 0 200 400 600 800 At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3phase SPWM copyright Vincotech 1000 1200 1400 1600 V CE (V) 11 Revision: 1 V23990-P700-F44 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R/Ω 24000 Thermistor Figure 2 Typical NTC resistance values R(T ) = R25 ⋅ e 22000 [Ω] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 copyright Vincotech 65 85 105 T (°C) 125 12 Revision: 1 V23990-P700-F44 preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 8Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 250 120 IC tdoff 200 VCE 100 VGE 90% VCE 90% 80 150 IC 60 VCE 100 % VGE % tEoff 40 tdon 50 20 IC 1% VGE IC10% VGE10% 0 -20 -0,2 VCE 3% tEon 0 -50 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 50 0,30 0,67 2,85 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3 3,15 3,3 -15 15 600 50 0,11 0,40 3,45 time(us) 3,75 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,6 Turn-on Switching Waveforms & definition of tr 140 250 120 VCE fitted IC 200 100 IC 90% 150 80 VCE 100 60 IC 60% % 40 % IC 40% 20 Ic IC10% 0 IC 10% 0 IC90% tr 50 tf -50 -20 0 0,1 VC (100%) = IC (100%) = tf = copyright Vincotech 0,2 0,3 600 50 0,13 V A μs 0,4 3 0,5 time (us) 0,6 3,05 3,1 3,15 3,2 3,25 3,3 time(us) VC (100%) = IC (100%) = tr = 13 600 50 0,03 V A μs Revision: 1 V23990-P700-F44 preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 200 120 Poff IC 1% Eoff 100 160 Pon 80 120 60 % Eon %80 40 40 20 VGE 10% VGE 90% VCE 3% 0 0 tEon tEoff -20 -0,3 -40 -0,15 0 0,15 0,3 0,45 0,6 0,75 2,8 0,9 2,9 3 3,1 3,2 3,3 3,4 3,5 Poff (100%) = Eoff (100%) = tEoff = 30,25 4,70 0,67 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 3,6 time(us) time (us) 30,25 5,33 0,40 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 150 Id 15 100 10 trr 50 5 0 Vd 0 fitted IRRM 10% % -5 -50 -10 -100 IRRM 90% -15 IRRM 100% -150 -20 -50 0 50 100 150 200 250 300 350 2,8 400 3 3,2 3,4 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 600 50 349,14 3,6 3,8 4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 14 600 50 -60 0,44 V A A μs Revision: 1 V23990-P700-F44 preliminary datasheet Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Id Erec Qrr 100 100 80 tQrr 50 tErec 60 % % 0 40 -50 20 Prec -100 0 -150 -20 2,8 3 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,2 50 9,73 0,88 3,4 3,6 3,8 4 time(us) 4,2 2,8 Prec (100%) = Erec (100%) = tErec = A μC μs 15 3 3,2 30,25 3,82 0,88 3,4 3,6 3,8 4 time(us) 4,2 kW mJ μs Revision: 1 V23990-P700-F44 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P700-F44 in DataMatrix as P700-F44 in packaging barcode as P700-F44 Outline Pinout copyright Vincotech 16 Revision: 1 V23990-P700-F44 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 1