V23990 P700 F44 P1 14

V23990-P700-F44
preliminary datasheet
flow90PACK 1 2nd gen
1200V/50A
Features
flow90PACK 1 2nd gen
● Trench Fieldstop IGBT4 Technology
● Supports designs with 90° mounting angle between
heatsink and PCB
● Clip-in PCB mounting
● Clip or screw hetasink mounting
Target Applications
Schematic
● Motor Drives
Types
● V23990-P700-F44-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
43
56
A
tp limited by Tjmax
150
A
VCE ≤ 1200V, Tj ≤ Top max
150
A
98
148
W
±20
V
10
800
μs
V
175
°C
1200
V
34
46
A
100
A
59
90
W
175
°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
V23990-P700-F44
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
V23990-P700-F44
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
2,07
2,36
2,1
Inverter IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0017
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,01
600
Rgoff=8 Ω
Rgon=8 Ω
600
±15
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
4
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
105
110
27
32
224
297
53
131
3,39
5,33
2,73
4,70
ns
mWs
2770
f=1MHz
25
0
205
Tj=25°C
pF
160
±15
960
50
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
300
nC
0,97
K/W
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
50
Rgon=8 Ω
600
±15
di(rec)max
/dt
Erec
RthJH
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,35
Thermal grease
thickness≤50um
λ = 1 W/mK
1,85
1,81
49
60
262
441
4,70
9,73
896
360
1,76
3,82
2,05
V
A
ns
μC
A/μs
mWs
1,60
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
5
200
mW
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
3
%
Tj=25°C
Tc=100°C
Power dissipation constant
-5
K
B
Revision: 1
V23990-P700-F44
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IC (A)
IF (A)
50
V CE (V)
4
Tj = 25°C
40
120
30
90
Tj = Tjmax-25°C
20
60
Tj = Tjmax-25°C
10
30
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
μs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
μs
Revision: 1
V23990-P700-F44
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
12
E (mWs)
12
Eon High T
10
Eon High T
10
Eoff High T
8
8
Eon Low T
Eon Low T
6
6
Eoff High T
Eoff Low T
4
4
Eoff Low T
2
2
0
0
0
25
50
75
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG( Ω )
32
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
5
E (mWs)
E (mWs)
Erec
Tj = Tjmax -25°C
4
4
3
3
Erec
Tj = Tjmax -25°C
Erec
Tj = 25°C
2
2
Erec
1
1
Tj = 25°C
0
0
0
25
50
75
I C (A)
100
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
5
Revision: 1
V23990-P700-F44
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( μs)
t ( μs)
1,00
tdoff
tdon
tf
tf
0,10
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
25
50
75
I C (A)
100
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG( Ω )
32
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
Output inverter FWD
Output inverter FWD
0,8
0,8
t rr( μs)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( μs)
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
0,6
0,6
trr
trr
Tj = Tjmax -25°C
0,4
trr
0,4
Tj = Tjmax -25°C
trr
0,2
0,2
Tj = 25°C
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
copyright Vincotech
50
75
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
8
25/150
600
50
±15
16
24
32
R g on ( Ω ) 40
°C
V
A
V
Revision: 1
V23990-P700-F44
preliminary datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
16
Qrr( μC)
Qrr( μC)
12
Qrr
Tj = Tjmax -25°C
10
Qrr
12
8
8
6
Tj = Tjmax -25°C
Tj = 25°C
Qrr
Qrr
4
4
2
Tj = 25°C
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
75
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
Output inverter FWD
8
25/150
600
50
±15
16
24
40
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
125
IrrM (A)
IrrM (A)
80
R g on ( Ω)
32
Tj = Tjmax - 25°C
IRRM
100
IRRM
75
60
Tj = Tjmax -25°C
40
50
Tj = 25°C
Tj = 25°C
IRRM
20
IRRM
25
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
copyright Vincotech
50
75
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/150
600
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 1
V23990-P700-F44
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
5000
direc / dt (A/ μs)
2500
direc / dt (A/μ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
2000
dI0/dt
dIrec/dt
4000
dIo/dtLow T
1500
3000
dIrec/dtLow T
2000
1000
di0/dtHigh T
dIrec/dtHigh T
1000
500
dIo/dtLow T
di0/dtHigh T
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
I C (A)
75
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/150
600
50
±15
16
24
32
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
R gon ( Ω ) 40
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
-2
10-2
10
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,97
Thermal grease
R (C/W)
0,13
0,49
0,26
0,07
0,03
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
1,3E+00
2,0E-01
6,4E-02
8,7E-03
5,6E-04
copyright Vincotech
R (C/W)
0,11
0,39
0,21
0,05
0,03
10-4
R (C/W)
0,03
0,14
0,77
0,42
0,16
0,09
8
10-2
10-1
100
t p (s)
1011
tp / T
1,60
Thermal grease
Tau (s)
1,0E+00
1,6E-01
5,2E-02
7,0E-03
4,5E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
7,8E+00
1,1E+00
1,8E-01
5,9E-02
9,5E-03
6,4E-04
R (C/W)
0,03
0,12
0,62
0,34
0,13
0,07
Tau (s)
6,3E+00
8,9E-01
1,5E-01
4,8E-02
7,7E-03
5,2E-04
Revision: 1
V23990-P700-F44
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
200
Ptot (W)
IC (A)
70
60
150
50
40
100
30
20
50
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
120
150
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
V23990-P700-F44
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
3
IC (A)
VGE (V)
10
100uS
2
10
10uS
20
18
16
240V
14
1mS
100mS
10mS
1
960V
12
10
10
DC
8
100
6
4
-1
10
2
0
10
At
D=
Th =
VGE =
Tj =
0
2
1
V CE (V)
10
10
0
103
100
150
200
250
300
350
400
450
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
50
50
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
500
tsc (μS)
IC(sc)
17,5
450
15
400
12,5
350
300
10
250
7,5
200
150
5
100
2,5
50
0
0
12
13
14
15
16
V GE (V)
12
17
13
14
15
17
18
19
20
V GE (V)
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
16
10
Revision: 1
V23990-P700-F44
preliminary datasheet
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
140
120
ICMAX
Ic CHIP
100
Ic MODULE
80
VCEMAX
60
40
20
0
0
200
400
600
800
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
copyright Vincotech
1000
1200
1400
1600
V CE (V)
11
Revision: 1
V23990-P700-F44
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R/Ω
24000
Thermistor
Figure 2
Typical NTC resistance values
R(T ) = R25 ⋅ e
22000
[Ω]
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
copyright Vincotech
65
85
105
T (°C)
125
12
Revision: 1
V23990-P700-F44
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
250
120
IC
tdoff
200
VCE
100
VGE 90%
VCE 90%
80
150
IC
60
VCE
100
%
VGE
%
tEoff
40
tdon
50
20
IC 1%
VGE
IC10%
VGE10%
0
-20
-0,2
VCE 3%
tEon
0
-50
-0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
50
0,30
0,67
2,85
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3
3,15
3,3
-15
15
600
50
0,11
0,40
3,45
time(us)
3,75
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,6
Turn-on Switching Waveforms & definition of tr
140
250
120
VCE
fitted
IC
200
100
IC 90%
150
80
VCE
100
60
IC 60%
%
40
%
IC 40%
20
Ic
IC10%
0
IC 10%
0
IC90%
tr
50
tf
-50
-20
0
0,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,2
0,3
600
50
0,13
V
A
μs
0,4
3
0,5 time (us) 0,6
3,05
3,1
3,15
3,2
3,25
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
13
600
50
0,03
V
A
μs
Revision: 1
V23990-P700-F44
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
200
120
Poff
IC 1%
Eoff
100
160
Pon
80
120
60
%
Eon
%80
40
40
20
VGE 10%
VGE 90%
VCE 3%
0
0
tEon
tEoff
-20
-0,3
-40
-0,15
0
0,15
0,3
0,45
0,6
0,75
2,8
0,9
2,9
3
3,1
3,2
3,3
3,4
3,5
Poff (100%) =
Eoff (100%) =
tEoff =
30,25
4,70
0,67
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
3,6
time(us)
time (us)
30,25
5,33
0,40
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
150
Id
15
100
10
trr
50
5
0
Vd
0
fitted
IRRM 10%
%
-5
-50
-10
-100
IRRM 90%
-15
IRRM 100%
-150
-20
-50
0
50
100
150
200
250
300
350
2,8
400
3
3,2
3,4
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
600
50
349,14
3,6
3,8
4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
14
600
50
-60
0,44
V
A
A
μs
Revision: 1
V23990-P700-F44
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Id
Erec
Qrr
100
100
80
tQrr
50
tErec
60
%
%
0
40
-50
20
Prec
-100
0
-150
-20
2,8
3
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,2
50
9,73
0,88
3,4
3,6
3,8
4
time(us)
4,2
2,8
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
15
3
3,2
30,25
3,82
0,88
3,4
3,6
3,8
4
time(us)
4,2
kW
mJ
μs
Revision: 1
V23990-P700-F44
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P700-F44
in DataMatrix as
P700-F44
in packaging barcode as
P700-F44
Outline
Pinout
copyright Vincotech
16
Revision: 1
V23990-P700-F44
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 1