V23990-P700-F40-PM preliminary datasheet flow90PACK 1 2nd gen 1200V/35A Features flow90PACK 1 2nd gen ● Trench Fieldstop IGBT4 Technology ● Supports designs with 90° mounting angle between heatsink and PCB ● Clip-in PCB mounting ● Clip or screw hetasink mounting Target Applications Schematic ● Motor Drives Types ● V23990-P700-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 35 46 A tp limited by Tjmax 105 A VCE ≤ 1200V, Tj ≤ Top max 105 A 85 128 W ±20 V 10 800 μs V 175 °C 1200 V 31 41 A 70 A 58 89 W 175 °C Inverter IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Inverter FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 V23990-P700-F40-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 V23990-P700-F40-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,3 1,96 2,28 2,5 Inverter IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0012 35 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,01 600 Rgoff=16 Ω Rgon=16 Ω ±15 300 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 95 104 24 26 204 273 63 129 2,08 3,13 1,88 3,24 ns mWs 1950 f=1MHz 0 25 155 Tj=25°C pF 115 ±15 960 35 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 200 nC 1,12 K/W Inverter FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 35 Rgon=16 Ω ±15 300 di(rec)max /dt Erec RthJH 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,4 Thermal grease thickness≤50um λ = 1 W/mK 1,77 1,74 39 46 245 403 3,24 6,46 923 233 1,25 2,79 2,3 V A ns μC A/μs mWs 1,63 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -5 5 T=25°C 200 mW T=25°C 2 mW/K K B-value B(25/50) Tol. ±3% T=25°C 3950 B-value B(25/100) Tol. ±3% T=25°C 3996 Vincotech NTC Reference copyright Vincotech % K B 3 Revision: 1 V23990-P700-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 125 IC (A) IC (A) 105 90 100 75 75 60 45 50 30 25 15 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 μs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 35 V CE (V) 4 IF (A) IC (A) 105 30 88 25 70 20 53 15 35 10 Tj = Tjmax-25°C 18 5 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = μs V 4 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 μs Revision: 1 V23990-P700-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 8 E (mWs) 8 Eon High T 6 Eon High T 6 Eoff High T Eon Low T Eon Low T 4 4 Eoff High T Eoff Low T Eoff Low T 2 2 0 0 0 18 35 53 I C (A) 70 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 64 RG( Ω ) 80 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 35 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 E (mWs) E (mWs) 5 4 4 Erec Tj = Tjmax -25°C 3 3 Erec Erec Tj = Tjmax -25°C 2 2 Tj = 25°C 1 Erec 1 Tj = 25°C 0 0 0 18 35 53 I C (A) 70 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 16 32 48 64 RG( Ω ) 80 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 35 A 5 Revision: 1 V23990-P700-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( μs) t ( μs) 1,00 tdoff tdoff tdon tf tf 0,10 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 18 35 53 I C (A) 70 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 RG( Ω ) 64 80 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 35 A Output inverter FWD Output inverter FWD 0,8 0,8 t rr( μs) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( μs) Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) 0,6 0,6 trr trr Tj = Tjmax -25°C 0,4 trr 0,4 Tj = Tjmax -25°C trr 0,2 0,2 Tj = 25°C Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 18 25/150 600 ±15 16 copyright Vincotech 35 53 I C (A) 70 °C V V Ω 6 0 16 At Tj = VR = IF = VGE = 25/150 600 35 ±15 32 48 64 R g on ( Ω ) 80 °C V A V Revision: 1 V23990-P700-F40-PM preliminary datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr( μC) 8 Qrr( μC) Qrr Tj = Tjmax -25°C Qrr 8 6 6 Tj = Tjmax -25°C Qrr 4 Qrr 4 Tj = 25°C 2 2 Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 18 35 25/150 600 ±15 16 53 I C (A) 70 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) Output inverter FWD 16 25/150 600 35 ±15 32 48 R g on ( Ω) 64 80 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 125 IrrM (A) IrrM (A) 60 IRRM 50 100 IRRM Tj = Tjmax -25°C 40 75 Tj = 25°C 30 50 20 Tj = Tjmax - 25°C 25 IRRM 10 IRRM Tj = 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 18 25/150 600 ±15 16 copyright Vincotech 35 53 I C (A) 70 0 At Tj = VR = IF = VGE = °C V V Ω 7 16 25/150 600 35 ±15 32 48 64 R gon ( Ω ) 80 °C V A V Revision: 1 V23990-P700-F40-PM preliminary datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 8000 2500 dI0/dt dIrec/dt dIo/dtLow T 2000 dI0/dt direc / dt (A/ μs) direc / dt (A/μ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T dIrec/dt 7000 6000 di0/dtHigh T 5000 1500 4000 dIrec/dtLow T 1000 3000 2000 500 dIrec/dtHigh T 1000 0 0 0 At Tj = VCE = VGE = Rgon = 18 25/150 600 ±15 16 35 I C (A) 53 0 70 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) dIo/dtLow T di0/dtHigh T dIrec/dtHigh T 16 25/150 600 35 ±15 32 48 64 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 R gon ( Ω ) 80 100 10 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 -2 10-2 10 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 1011 10-5 At D= RthJH = tp / T 1,12 Thermal grease R (C/W) 0,17 0,66 0,21 0,05 0,04 10-3 K/W RthJC= 0,91 IGBT thermal model values Phase change interface Tau (s) 1,0E+00 1,5E-01 2,3E-02 2,8E-03 3,1E-04 copyright Vincotech R (C/W) 0,14 0,53 0,17 0,04 0,03 10-4 R (C/W) 0,05 0,14 0,85 0,33 0,15 0,10 8 10-2 10-1 100 t p (s) 1011 tp / T 1,63 Thermal grease Tau (s) 8,4E-01 1,2E-01 1,8E-02 2,3E-03 2,5E-04 10-3 K/W RthJC= 1,32 FWD thermal model values Phase change interface Tau (s) 5,1E+00 8,0E-01 1,3E-01 3,4E-02 6,2E-03 5,5E-04 R (C/W) 0,04 0,12 0,69 0,27 0,12 0,08 Tau (s) 4,1E+00 6,5E-01 1,1E-01 2,7E-02 5,0E-03 4,5E-04 Revision: 1 V23990-P700-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 160 Ptot (W) IC (A) 60 50 120 40 80 30 20 40 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 120 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 V23990-P700-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge IC (A) VGE (V) VGE = f(QGE) 20 18 103 16 240V 14 2 10 960V 10uS 12 100uS 100mS 1mS 10mS 10 1 10 8 DC 0 6 10 4 10-1 2 0 10 101 0 At D= Th = VGE = Tj = 103 2 10 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 30 60 90 35 120 150 210 240 Q g (nC) 270 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 180 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 400 IC(sc) tsc (μS) 18 16 350 14 300 12 250 10 200 8 150 6 100 4 50 2 0 0 12 13 14 15 16 V GE (V) 12 17 14 16 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 10 18 V GE (V) 20 Revision: 1 V23990-P700-F40-PM preliminary datasheet IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 80 IC MAX 70 50 Ic MODULE 40 30 VCE MAX Ic CHIP 60 20 10 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3phase SPWM copyright Vincotech 11 Revision: 1 V23990-P700-F40-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 R/Ω R(T ) = R25 ⋅ e 22000 [Ω] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 copyright Vincotech 45 65 85 105 T (°C) 125 12 Revision: 1 V23990-P700-F40-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 16 Ω Rgon Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 250 IC 120 tdoff 200 VCE 100 VGE 90% VCE 90% 150 80 IC % VCE % 60 100 VGE IC 1% 40 tdon tEoff 50 20 VGE -20 -0,2 VGE10% 0 0 VCE 3% IC10% tEon -50 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 35 0,27 0,67 2,85 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3 3,15 3,3 -15 15 600 35 0,10 0,32 3,45 time(us) 3,75 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,6 Turn-on Switching Waveforms & definition of tr 140 250 120 fitted VCE IC 200 100 IC 90% 150 80 % % 60 40 VCE 100 IC 60% tr IC 40% 20 Ic IC10% 0 IC90% 50 IC10% 0 tf -20 -50 0,1 0,15 VC (100%) = IC (100%) = tf = copyright Vincotech 0,2 600 35 0,13 0,25 0,3 0,35 0,4 time (us) 0,45 3 VC (100%) = IC (100%) = tr = V A μs 13 3,05 3,1 3,15 600 35 0,03 V A μs 3,2 3,25 time(us) 3,3 Revision: 1 V23990-P700-F40-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 240 120 IC 1% Eoff Poff 100 Pon 200 80 160 60 120 % % 40 80 Eon 40 20 VGE 90% VGE 10% VCE 3% 0 0 tEon tEoff -20 -0,3 -40 -0,15 0 0,15 0,3 0,45 0,6 0,75 2,8 0,9 2,9 3 3,1 3,2 3,3 3,4 3,5 time (us) Poff (100%) = Eoff (100%) = tEoff = 21,02 3,24 0,67 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 3,6 time(us) 21,02 3,13 0,32 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 150 Id 15 100 10 trr 50 5 Vd 0 fitted 0 % IRRM 10% -5 -50 -10 -100 -15 IRRM 90% IRRM 100% -150 -20 -50 0 50 100 150 200 2,8 250 3 3,2 3,4 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 600 35 231,03 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 14 600 35 -46 0,40 3,6 time(us) 3,8 V A A μs Revision: 1 V23990-P700-F40-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Id 100 Erec Qrr 100 tQrr 50 80 0 tErec 60 % % -50 40 -100 20 -150 0 Prec -200 -20 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 2,8 3 3,2 3,4 3,6 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 35 6,46 1,00 Prec (100%) = Erec (100%) = tErec = A μC μs 15 21,02 2,79 1,00 3,8 4 4,2 4,4 time(us) kW mJ μs Revision: 1 V23990-P700-F40-PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P700-F40 in DataMatrix as P700-F40 in packaging barcode as P700-F40 Outline Pinout copyright Vincotech 16 Revision: 1 V23990-P700-F40-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 1