V23990-P588-*88-PM flow PIM 1 1200V/8A Features flow 1 housing ● 3~rectifier, optional BRC, Inverter, NTC ● Very compact housing, easy to route ● IGBT! / EmCon4 technology for low saturation losses and improved EMC behaviour Target Applications Schematic ● Industrial drives ● Embedded drives Types ● V23990-P588-A88-PM ● V23990-P588-C88-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 33 47 A 250 A 310 A2s 37 60 W Tjmax 150 °C VCE 1200 V 12 15 A tp limited by Tjmax 24 A VCE ≤ 1200V, Tj ≤ Top max 24 A 44 67 W ±20 V 10 800 µs V 175 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms 50 Hz half sine wave Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1.1 V23990-P588-*88-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 20 20 A 20 A Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 23 W 32 Tjmax 175 °C VCE 1200 V 8 10 A 12 A 16 A 32 49 W ±20 V 10 µs Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V 800 V Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1.1 V23990-P588-*88-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0,8 1,16 1,13 0,90 0,78 8 11 1,6 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir 30 1500 Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material VGE(th) VCE=VGE V V 12 2 mΩ mA 1,89 K/W 1,68 K/W Inverter Transistor Gate emitter threshold voltage 0,00085 VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Collector-emitter saturation voltage Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1,6 1,87 2,29 2,1 0,0024 100 Rgoff=32 Ω Rgon=32 Ω ±15 600 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω - tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 71 72 19 22 194 250 79 110 0,50 0,80 0,43 0,66 ns mWs 1430 Tj=25°C 115 Tj=25°C 53 nC Thermal grease thickness≤50um λ = 1 W/mK 2,16 K/W Preapplied Phase change material 1,87 K/W f=1MHz 0 25 ±15 960 pF 85 8 Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 1200 IRRM trr Qrr Rgon=32 Ω 0 600 di(rec)max /dt 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,88 1,81 8 10 251 411 0,89 1,72 84 64 0,34 0,69 2,05 V A ns µC A/µs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 2,68 K/W Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material 2,37 K/W Copyright by Vincotech 3 mWs Revision: 1.1 V23990-P588-*88-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 1,96 2,27 2,1 Brake Transistor Gate emitter threshold voltage VGE(th) VCE=VGE 0,0005 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 15 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss 0,002 120 - tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=64 Ω Rgon=64 Ω ±15 600 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 70 68 11 15 211 243 73 82 0,08 0,13 0,06 0,09 ns mWs 900 f=1MHz 0 25 pF 80 Tj=25°C 55 Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material 2,95 K/W 2,55 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy 0 600 IRRM Reverse recovery time Peak rate of fall of recovery current 10 Rgon=64 Ω Rgon=64 Ω 600 di(rec)max /dt Erec Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK Thermal resistance chip to heatsink per chip RthJH Preapplied Phase change material 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,88 1,79 2,05 2,7 2,98 3,78 174 333 0,215 0,215 44 43 0,081 0,246 V ǑA A ns µC A/µs mWs 3,86 K/W 3,33 K/W 22000 Ω Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Tj=25°C -5 Power dissipation constant B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% Vincotech NTC Reference Copyright by Vincotech % 200 mW Tj=25°C 2 mW/K Tj=25°C 3950 K Tj=25°C 3998 Tj=25°C 4 5 K B Revision: 1.1 V23990-P588-*88-PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 Ǒs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 Ǒs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 10 IF (A) IC (A) 10 V CE (V) 4 8 8 6 6 Tj = Tjmax-25°C 4 4 Tj = Tjmax-25°C 2 2 Tj = 25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 Ǒs V Copyright by Vincotech 6 8 10 V GE (V) 12 0,0 At tp = 5 0,5 1,0 250 Ǒs 1,5 2,0 2,5 V F (V) 3,0 Revision: 1.1 V23990-P588-*88-PM Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 1,6 E (mWs) 1,8 Eon High T 1,6 Eon High T 1,4 1,4 1,2 1,2 Eon Low T 1 Eoff High T 1 Eon Low T 0,8 Eoff High T 0,8 Eoff Low T 0,6 0,6 Eoff Low T 0,4 0,4 0,2 0,2 0 0 0 3 6 9 12 I C (A) 15 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 20 40 60 80 120 R G ( Ω ) 140 100 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 8 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 1 Erec Output inverter FWD 0,8 Tj = Tjmax -25°C 0,7 Tj = Tjmax -25°C Erec 0,8 0,6 0,5 0,6 Tj = 25°C 0,4 Erec Tj = 25°C 0,4 Erec 0,3 0,2 0,2 0,1 0 0 0 3 6 9 12 I C (A) 0 15 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Copyright by Vincotech 40 80 120 RG(Ω) 160 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 8 A 6 Revision: 1.1 V23990-P588-*88-PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tf 0,10 tdon tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 2 4 6 8 10 14 I C (A) 12 16 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 8 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,7 trr t rr( µs) t rr( µs) 0,6 trr 0,6 0,5 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,5 0,4 Tj = 25°C trr 0,4 trr 0,3 0,3 Tj = 25°C 0,2 0,2 0,1 0,1 0,0 0,0 0 3 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 32 6 9 12 I C (A) 0 15 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 20 25/150 600 8 ±15 40 60 80 100 120 R g on ( Ω ) 140 °C V A V Revision: 1.1 V23990-P588-*88-PM Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 3 Qrr 2,5 Tj = Tjmax -25°C Qrr( µC) Qrr( µC) 2 Qrr 1,6 Tj = Tjmax -25°C 2 1,2 Tj = 25°C 1,5 Qrr Tj = 25°C Qrr 0,8 1 0,4 0,5 0 0 At 0 At Tj = VCE = VGE = Rgon = 3 6 25/150 600 ±15 32 9 12 I C (A) 15 0 20 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 40 25/150 600 8 ±15 60 80 120 R g on ( Ω) 140 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 12 100 IrrM (A) IrrM (A) 25 Tj = Tjmax -25°C 10 IRRM 20 IRRM 8 Tj = 25°C 15 IRRM 6 10 Tj = Tjmax - 25°C 4 Tj = 25°C 5 2 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/150 600 ±15 32 4 6 8 10 12 I C (A) 14 0 16 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 20 25/150 600 8 ±15 40 60 80 100 120 140 R gon ( Ω ) °C V A V Revision: 1.1 V23990-P588-*88-PM Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 3000 direc / dt (A/ µs) direc / dt (A/µ s) 500 dI0/dt 450 dIo/dtLow T 400 Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 2500 dIrec/dt 350 2000 di0/dtHigh T 300 1500 250 200 1000 150 dIo/dtLow T 500 100 di0/dtHigh T dIrec/dtLow T 50 0 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/150 600 ±15 32 4 6 8 10 14I C (A) 12 20 40 60 80 100 120 16 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 600 8 ±15 R gon ( Ω ) 140 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 100 100 10 dIrec/dtLow T dIrec/dtHigh T dIrec/dtHigh T D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 10-4 10-3 10-2 10-1 100 t p (s) 10110 Copyright by Vincotech R (C/W) 0,04 0,22 0,85 0,39 0,21 0,16 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-3 10-2 10-1 100 t p (s) 10110 At tp / T D= Thermal grease RthJH = 2,68 Phase change material RthJH = K/W 1,87 K/W IGBT thermal model values Thermal grease Phase change material Tau (s) 4,1E+00 5,5E-01 1,0E-01 1,9E-02 3,3E-03 4,0E-04 -1 10-5 At tp / T D= Thermal grease RthJH = 2,16 R (C/W) 0,05 0,25 0,99 0,45 0,24 0,18 10 Phase change material RthJH = K/W 2,37 K/W FWD thermal model values Thermal grease Phase change material Tau (s) 4,1E+00 5,5E-01 1,0E-01 1,9E-02 3,3E-03 4,0E-04 R (C/W) 0,05 0,27 1,07 0,69 0,36 0,25 9 Tau (s) 7,9E+00 7,3E-01 1,3E-01 2,5E-02 3,6E-03 4,3E-04 R (C/W) 0,04 0,24 0,94 0,61 0,32 0,22 Tau (s) 7,9E+00 7,3E-01 1,3E-01 2,5E-02 3,6E-03 4,3E-04 Revision: 1.1 V23990-P588-*88-PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 20 IC (A) Ptot (W) 100 80 16 60 12 40 8 20 4 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 24 IF (A) Ptot (W) 70 150 60 20 50 16 40 12 30 8 20 4 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 1.1 V23990-P588-*88-PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 20 IC (A) VGE (V) 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 100uS 10 240V 2 15 1mS 960V 10mS 10 101 100mS DC 5 100 0 10-1 10 0 At D= Th = VGE = 10 1 10 V CE (V) 2 0 103 At IC = Output inverter IGBT Figure 27 50 75 Q g (nC) single pulse 80 ºC ±15 V Tjmax ºC Tj = 25 8 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 17,5 100 15 75 12,5 10 50 7,5 5 25 2,5 0 0 12 13 14 15 16 V GE (V) 17 12 14 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 11 16 18 V GE (V) 20 Revision: 1.1 V23990-P588-*88-PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 20 16 MODULE VCE MAX Ic 8 Ic CHIP IC MAX 12 4 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 12 Revision: 1.1 V23990-P588-*88-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 12 IC (A) IC (A) 12 9 9 6 6 3 3 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from Ǒs 250 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 Ǒs 150 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 12 IC (A) IF (A) 5 5 4 9 3 6 2 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 3 1 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0 At tp = Ǒs V Copyright by Vincotech 13 0,5 250 1 1,5 2 2,5 V F (V) 3 Ǒs Revision: 1.1 V23990-P588-*88-PM Brake Brake IGBT Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,7 0,21 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 0,6 Tj = Tjmax -25°C Eoff 0,5 Eon 0,18 0,15 Tj = Tjmax -25°C Eon Eon 0,12 0,4 Eoff 0,09 0,3 Eoff 0,06 0,2 Eoff Tj = 25°C 0,03 0,1 Tj = 25°C 0,00 0,0 0 1 2 3 4 5 6 7 I C (A) 0 8 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 64 Ω Rgoff = 64 Ω 50 100 150 200 R G ( Ω ) 300 250 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 1 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,6 E (mWs) E (mWs) 0,25 Erec Tj = Tjmax - 25°C 0,5 Erec Tj = Tjmax -25°C 0,2 0,4 0,15 0,3 0,1 Erec Erec 0,2 Tj = 25°C Tj = 25°C 0,05 0,1 0 0 0 1 2 3 4 5 6 7I C (A) 0 8 With an inductive load at 25/150 Tj = °C VCE = 600 V VGE = ±15 V Rgon = 64 Ω Copyright by Vincotech 50 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 1 A 14 Revision: 1.1 V23990-P588-*88-PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdon tdoff tf 0,10 0,10 tdon tf tr tr 0,01 0,01 0,00 0,00 0 1 2 3 4 5 7 I C (A) 6 8 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 64 Ω Rgoff = 64 Ω Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 -1 150 200 R G ( Ω ) 300 250 Brake FWD 101 ZthJH (K/W) ZthJH (K/W) 0 100 Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 50 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 1 A 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-2 10-5 10-4 10-3 At Thermal grease RthJH = 2,95 D= K/W Copyright by Vincotech 10-2 10-1 100 t p (s) 10-5 101 10 tp / T Phase change material RthJH = 2,55 K/W 15 10-4 10-3 At Thermal grease RthJH = 3,86 D= K/W 10-2 10-1 100 t p (s) 101 10 tp / T Phase change material RthJH = 3,33 K/W Revision: 1.1 V23990-P588-*88-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 12 IC (A) Ptot (W) 60 50 10 40 8 30 6 20 4 10 2 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 50 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 9 IF (A) Ptot (W) 40 T h ( o C) 30 6 20 3 10 0 0 0 At Tj = 50 150 100 Th ( o C) 150 0 At Tj = ºC Copyright by Vincotech 16 50 150 100 Th ( o C) 150 ºC Revision: 1.1 V23990-P588-*88-PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) 80 1 IF (A) ZthJC (K/W) 10 Tj = Tjmax-25°C Tj = 25°C Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 60 100 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 0 0,0 At tp = 0,5 250 1,0 1,5 10 V F (V) 2,0 10-5 Ǒs Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) -2 10-2 10-1 10-3 At Thermal grease RthJH = 1,89 D= tp / T K/W Phase change material RthJH = 1,66 K/W 10110 Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 80 100 t p (s) 10-4 60 45 40 30 20 15 0 0 0 At Tj = 50 150 100 T h ( o C) 150 0 At Tj = ºC Copyright by Vincotech 17 50 150 100 T h ( o C) 150 ºC Revision: 1.1 V23990-P588-*88-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 22000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e 20000 [Ω] 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 Copyright by Vincotech 65 85 105 T (°C) 125 18 Revision: 1.1 V23990-P588-*88-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 32 Ω Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 225 IC % % 200 120 tdoff VCE 175 100 VGE 90% VCE 90% 150 80 VGE IC 125 60 VCE 100 40 VGE tEoff 75 tdon 20 IC 1% 50 0 25 IC10% VGE10% -20 0 -40 -0,4 VCE 3% tEon -25 -0,2 0 0,2 0,4 0,6 0,8 2,8 3 3,2 3,4 3,6 3,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 8 0,24 0,50 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A Ǒs Ǒs Output inverter IGBT Figure 3 4 time(us) -15 15 600 8 0,07 0,27 V V V A Ǒs Ǒs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 140 225 Ic % % 200 120 fitted IC VCE 175 100 IC 90% 150 80 125 VCE IC 60% 60 100 IC90% 40 75 IC 40% tr 50 20 IC10% 0 25 IC10% tf 0 -20 0,1 0,2 0,3 0,4 0,5 -25 0,6 2,9 3 3,1 3,2 3,3 VC (100%) = IC (100%) = tf = 600 8 0,11 Copyright by Vincotech 3,4 3,5 3,6 3,7 time(us) time (us) VC (100%) = IC (100%) = tr = V A Ǒs 19 600 8 0,02 V A Ǒs Revision: 1.1 V23990-P588-*88-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 % % Eoff 100 Pon 180 Poff 80 140 60 Eon 100 40 60 20 VGE 90% 20 0 tEoff -20 -0,2 VCE 3% VGE 10% tEon IC 1% -20 0 0,2 0,4 0,6 2,9 0,8 3 3,1 3,2 3,3 3,4 time (us) Poff (100%) = Eoff (100%) = tEoff = 4,93 0,62 0,50 3,5 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ Ǒs 4,93 0,75 0,27 kW mJ Ǒs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 Id % 80 trr 40 Vd 0 fitted IRRM10% -40 -80 IRRM90% -120 IRRM100% -160 2,9 Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 20 3,1 3,3 600 8 -10 0,38 3,5 time(us) 3,7 V A A Ǒs Revision: 1.1 V23990-P588-*88-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Qrr 100 80 tQrr 50 Erec 100 tErec 60 0 40 Prec -50 20 -100 0 Id -150 -20 2,8 3 3,2 3,4 3,6 3,8 4 2,8 3 3,2 3,4 4,93 0,63 0,80 kW mJ Ǒs time(us) Id (100%) = Qrr (100%) = tQrr = 8 1,57 0,80 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A ǑC Ǒs 21 3,6 3,8 time(us) 4 Revision: 1.1 V23990-P588-*88-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking in DataMatrix as Ordering Code V23990-P588-A88-PM V23990-P588-C88-PM Version Without thermal paste 17mm housing Without thermal paste 17mm housing P588-A88 P588-C88 in packaging barcode as P588-A88 P588-C88 Features A version C version 3-leg 3-leg Rectifier Break IGBT w/o pin 1,31,32 Break FWD Inverter IGBT Inverter FWD Outline Pin table X Pin Y 1 52,55 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 47,7 44,8 37,8 37,8 35 35 28 25,2 22,4 19,6 16,8 14 11,2 8,4 5,6 2,8 0 0 0 0 0 2,8 0 2,8 0 0 0 0 0 0 0 0 0 0 0 19 20 0 2,8 28,5 28,5 21 22 7,5 14,5 28,5 28,5 25 26 29 31,8 28,5 28,5 29 30 52,55 52,55 25 16,9 23 24 17,3 22 28,5 28,5 27 28 36,5 43,5 28,5 28,5 31 32 52,55 52,55 8,6 2,8 Pin Pin table X Y Pin Pin table X Y Pinout Copyright by Vincotech 22 Revision: 1.1 V23990-P588-*88-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 23 Revision: 1.1