V23990-P588-*88-PM Maximum Ratings

V23990-P588-*88-PM
flow PIM 1
1200V/8A
Features
flow 1 housing
● 3~rectifier, optional BRC, Inverter, NTC
● Very compact housing, easy to route
● IGBT! / EmCon4 technology for low saturation losses
and improved EMC behaviour
Target Applications
Schematic
● Industrial drives
● Embedded drives
Types
● V23990-P588-A88-PM
● V23990-P588-C88-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
33
47
A
250
A
310
A2s
37
60
W
Tjmax
150
°C
VCE
1200
V
12
15
A
tp limited by Tjmax
24
A
VCE ≤ 1200V, Tj ≤ Top max
24
A
44
67
W
±20
V
10
800
µs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
50 Hz half sine wave
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1.1
V23990-P588-*88-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
20
20
A
20
A
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
23
W
32
Tjmax
175
°C
VCE
1200
V
8
10
A
12
A
16
A
32
49
W
±20
V
10
µs
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
800
V
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1.1
V23990-P588-*88-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0,8
1,16
1,13
0,90
0,78
8
11
1,6
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
30
1500
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
VGE(th)
VCE=VGE
V
V
12
2
mΩ
mA
1,89
K/W
1,68
K/W
Inverter Transistor
Gate emitter threshold voltage
0,00085
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Collector-emitter saturation voltage
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1,6
1,87
2,29
2,1
0,0024
100
Rgoff=32 Ω
Rgon=32 Ω
±15
600
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
-
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
71
72
19
22
194
250
79
110
0,50
0,80
0,43
0,66
ns
mWs
1430
Tj=25°C
115
Tj=25°C
53
nC
Thermal grease
thickness≤50um
λ = 1 W/mK
2,16
K/W
Preapplied
Phase change
material
1,87
K/W
f=1MHz
0
25
±15
960
pF
85
8
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
1200
IRRM
trr
Qrr
Rgon=32 Ω
0
600
di(rec)max
/dt
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,88
1,81
8
10
251
411
0,89
1,72
84
64
0,34
0,69
2,05
V
A
ns
µC
A/µs
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
2,68
K/W
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
2,37
K/W
Copyright by Vincotech
3
mWs
Revision: 1.1
V23990-P588-*88-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,96
2,27
2,1
Brake Transistor
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0005
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
15
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
0,002
120
-
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=64 Ω
Rgon=64 Ω
±15
600
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
70
68
11
15
211
243
73
82
0,08
0,13
0,06
0,09
ns
mWs
900
f=1MHz
0
25
pF
80
Tj=25°C
55
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
2,95
K/W
2,55
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
0
600
IRRM
Reverse recovery time
Peak rate of fall of recovery current
10
Rgon=64 Ω
Rgon=64 Ω
600
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
Thermal resistance chip to heatsink per chip
RthJH
Preapplied
Phase change
material
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,88
1,79
2,05
2,7
2,98
3,78
174
333
0,215
0,215
44
43
0,081
0,246
V
ǑA
A
ns
µC
A/µs
mWs
3,86
K/W
3,33
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Tj=25°C
-5
Power dissipation constant
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
Copyright by Vincotech
%
200
mW
Tj=25°C
2
mW/K
Tj=25°C
3950
K
Tj=25°C
3998
Tj=25°C
4
5
K
B
Revision: 1.1
V23990-P588-*88-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
Ǒs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
Ǒs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
10
IF (A)
IC (A)
10
V CE (V)
4
8
8
6
6
Tj = Tjmax-25°C
4
4
Tj = Tjmax-25°C
2
2
Tj = 25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
Ǒs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0,0
At
tp =
5
0,5
1,0
250
Ǒs
1,5
2,0
2,5
V F (V)
3,0
Revision: 1.1
V23990-P588-*88-PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
1,6
E (mWs)
1,8
Eon High T
1,6
Eon High T
1,4
1,4
1,2
1,2
Eon Low T
1
Eoff High T
1
Eon Low T
0,8
Eoff High T
0,8
Eoff Low T
0,6
0,6
Eoff Low T
0,4
0,4
0,2
0,2
0
0
0
3
6
9
12
I C (A)
15
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
20
40
60
80
120 R G ( Ω ) 140
100
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
8
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
1
Erec
Output inverter FWD
0,8
Tj = Tjmax -25°C
0,7
Tj = Tjmax -25°C
Erec
0,8
0,6
0,5
0,6
Tj = 25°C
0,4
Erec
Tj = 25°C
0,4
Erec
0,3
0,2
0,2
0,1
0
0
0
3
6
9
12
I C (A)
0
15
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Copyright by Vincotech
40
80
120
RG(Ω)
160
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
6
Revision: 1.1
V23990-P588-*88-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tf
0,10
tdon
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
2
4
6
8
10
14 I C (A)
12
16
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
20
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,7
trr
t rr( µs)
t rr( µs)
0,6
trr
0,6
0,5
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,5
0,4
Tj = 25°C
trr
0,4
trr
0,3
0,3
Tj = 25°C
0,2
0,2
0,1
0,1
0,0
0,0
0
3
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
32
6
9
12
I C (A)
0
15
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
20
25/150
600
8
±15
40
60
80
100
120
R g on ( Ω )
140
°C
V
A
V
Revision: 1.1
V23990-P588-*88-PM
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
3
Qrr
2,5
Tj = Tjmax -25°C
Qrr( µC)
Qrr( µC)
2
Qrr
1,6
Tj = Tjmax -25°C
2
1,2
Tj = 25°C
1,5
Qrr
Tj = 25°C
Qrr
0,8
1
0,4
0,5
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
3
6
25/150
600
±15
32
9
12
I C (A)
15
0
20
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
40
25/150
600
8
±15
60
80
120 R g on ( Ω) 140
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
12
100
IrrM (A)
IrrM (A)
25
Tj = Tjmax -25°C
10
IRRM
20
IRRM
8
Tj = 25°C
15
IRRM
6
10
Tj = Tjmax - 25°C
4
Tj = 25°C
5
2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/150
600
±15
32
4
6
8
10
12
I C (A)
14
0
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
20
25/150
600
8
±15
40
60
80
100
120
140
R gon ( Ω )
°C
V
A
V
Revision: 1.1
V23990-P588-*88-PM
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
3000
direc / dt (A/ µs)
direc / dt (A/µ s)
500
dI0/dt
450
dIo/dtLow T
400
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
2500
dIrec/dt
350
2000
di0/dtHigh T
300
1500
250
200
1000
150
dIo/dtLow T
500
100
di0/dtHigh T
dIrec/dtLow T
50
0
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/150
600
±15
32
4
6
8
10
14I C (A)
12
20
40
60
80
100
120
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/150
600
8
±15
R gon ( Ω )
140
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
100
100
10
dIrec/dtLow T
dIrec/dtHigh T
dIrec/dtHigh T
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
10-4
10-3
10-2
10-1
100
t p (s)
10110
Copyright by Vincotech
R (C/W)
0,04
0,22
0,85
0,39
0,21
0,16
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-3
10-2
10-1
100
t p (s)
10110
At
tp / T
D=
Thermal grease
RthJH =
2,68
Phase change material
RthJH =
K/W
1,87
K/W
IGBT thermal model values
Thermal grease
Phase change material
Tau (s)
4,1E+00
5,5E-01
1,0E-01
1,9E-02
3,3E-03
4,0E-04
-1
10-5
At
tp / T
D=
Thermal grease
RthJH =
2,16
R (C/W)
0,05
0,25
0,99
0,45
0,24
0,18
10
Phase change material
RthJH =
K/W
2,37
K/W
FWD thermal model values
Thermal grease
Phase change material
Tau (s)
4,1E+00
5,5E-01
1,0E-01
1,9E-02
3,3E-03
4,0E-04
R (C/W)
0,05
0,27
1,07
0,69
0,36
0,25
9
Tau (s)
7,9E+00
7,3E-01
1,3E-01
2,5E-02
3,6E-03
4,3E-04
R (C/W)
0,04
0,24
0,94
0,61
0,32
0,22
Tau (s)
7,9E+00
7,3E-01
1,3E-01
2,5E-02
3,6E-03
4,3E-04
Revision: 1.1
V23990-P588-*88-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
20
IC (A)
Ptot (W)
100
80
16
60
12
40
8
20
4
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
24
IF (A)
Ptot (W)
70
150
60
20
50
16
40
12
30
8
20
4
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 1.1
V23990-P588-*88-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
20
IC (A)
VGE (V)
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
100uS
10
240V
2
15
1mS
960V
10mS
10
101
100mS
DC
5
100
0
10-1
10
0
At
D=
Th =
VGE =
10
1
10
V CE (V)
2
0
103
At
IC =
Output inverter IGBT
Figure 27
50
75
Q g (nC)
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
25
8
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
17,5
100
15
75
12,5
10
50
7,5
5
25
2,5
0
0
12
13
14
15
16
V GE (V)
17
12
14
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
11
16
18
V GE (V)
20
Revision: 1.1
V23990-P588-*88-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
20
16
MODULE
VCE MAX
Ic
8
Ic CHIP
IC MAX
12
4
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
12
Revision: 1.1
V23990-P588-*88-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
12
IC (A)
IC (A)
12
9
9
6
6
3
3
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
Ǒs
250
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
Ǒs
150
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
12
IC (A)
IF (A)
5
5
4
9
3
6
2
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
3
1
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V) 10
0
At
tp =
Ǒs
V
Copyright by Vincotech
13
0,5
250
1
1,5
2
2,5
V F (V)
3
Ǒs
Revision: 1.1
V23990-P588-*88-PM
Brake
Brake IGBT
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,7
0,21
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
0,6
Tj = Tjmax -25°C
Eoff
0,5
Eon
0,18
0,15
Tj = Tjmax -25°C
Eon
Eon
0,12
0,4
Eoff
0,09
0,3
Eoff
0,06
0,2
Eoff
Tj = 25°C
0,03
0,1
Tj = 25°C
0,00
0,0
0
1
2
3
4
5
6
7 I C (A)
0
8
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
50
100
150
200
R G ( Ω ) 300
250
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
1
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,6
E (mWs)
E (mWs)
0,25
Erec
Tj = Tjmax - 25°C
0,5
Erec
Tj = Tjmax -25°C
0,2
0,4
0,15
0,3
0,1
Erec
Erec
0,2
Tj = 25°C
Tj = 25°C
0,05
0,1
0
0
0
1
2
3
4
5
6
7I C (A)
0
8
With an inductive load at
25/150
Tj =
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Copyright by Vincotech
50
100
150
200
250
R G ( Ω ) 300
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
1
A
14
Revision: 1.1
V23990-P588-*88-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdon
tdoff
tf
0,10
0,10
tdon
tf
tr
tr
0,01
0,01
0,00
0,00
0
1
2
3
4
5
7 I C (A)
6
8
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
-1
150
200
R G ( Ω ) 300
250
Brake FWD
101
ZthJH (K/W)
ZthJH (K/W)
0
100
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
50
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
1
A
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-2
10-5
10-4
10-3
At
Thermal grease
RthJH =
2,95
D=
K/W
Copyright by Vincotech
10-2
10-1
100
t p (s)
10-5
101 10
tp / T
Phase change material
RthJH =
2,55
K/W
15
10-4
10-3
At
Thermal grease
RthJH =
3,86
D=
K/W
10-2
10-1
100
t p (s)
101 10
tp / T
Phase change material
RthJH =
3,33
K/W
Revision: 1.1
V23990-P588-*88-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
12
IC (A)
Ptot (W)
60
50
10
40
8
30
6
20
4
10
2
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
50
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
9
IF (A)
Ptot (W)
40
T h ( o C)
30
6
20
3
10
0
0
0
At
Tj =
50
150
100
Th ( o C)
150
0
At
Tj =
ºC
Copyright by Vincotech
16
50
150
100
Th ( o C)
150
ºC
Revision: 1.1
V23990-P588-*88-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
80
1
IF (A)
ZthJC (K/W)
10
Tj = Tjmax-25°C
Tj = 25°C
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
60
100
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
0
0,0
At
tp =
0,5
250
1,0
1,5
10
V F (V) 2,0
10-5
Ǒs
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
-2
10-2
10-1
10-3
At
Thermal grease
RthJH =
1,89
D=
tp / T
K/W
Phase change material
RthJH =
1,66
K/W
10110
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
80
100
t p (s)
10-4
60
45
40
30
20
15
0
0
0
At
Tj =
50
150
100
T h ( o C)
150
0
At
Tj =
ºC
Copyright by Vincotech
17
50
150
100
T h ( o C)
150
ºC
Revision: 1.1
V23990-P588-*88-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
22000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
20000
[Ω]
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
Copyright by Vincotech
65
85
105
T (°C)
125
18
Revision: 1.1
V23990-P588-*88-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 32 Ω
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
225
IC
%
%
200
120
tdoff
VCE
175
100
VGE 90%
VCE 90%
150
80
VGE
IC
125
60
VCE
100
40
VGE
tEoff
75
tdon
20
IC 1%
50
0
25
IC10%
VGE10%
-20
0
-40
-0,4
VCE 3%
tEon
-25
-0,2
0
0,2
0,4
0,6
0,8
2,8
3
3,2
3,4
3,6
3,8
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
8
0,24
0,50
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
Ǒs
Ǒs
Output inverter IGBT
Figure 3
4
time(us)
-15
15
600
8
0,07
0,27
V
V
V
A
Ǒs
Ǒs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
225
Ic
%
%
200
120
fitted
IC
VCE
175
100
IC 90%
150
80
125
VCE
IC 60%
60
100
IC90%
40
75
IC 40%
tr
50
20
IC10%
0
25
IC10%
tf
0
-20
0,1
0,2
0,3
0,4
0,5
-25
0,6
2,9
3
3,1
3,2
3,3
VC (100%) =
IC (100%) =
tf =
600
8
0,11
Copyright by Vincotech
3,4
3,5
3,6
3,7
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
Ǒs
19
600
8
0,02
V
A
Ǒs
Revision: 1.1
V23990-P588-*88-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
%
%
Eoff
100
Pon
180
Poff
80
140
60
Eon
100
40
60
20
VGE 90%
20
0
tEoff
-20
-0,2
VCE 3%
VGE 10%
tEon
IC 1%
-20
0
0,2
0,4
0,6
2,9
0,8
3
3,1
3,2
3,3
3,4
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
4,93
0,62
0,50
3,5
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
Ǒs
4,93
0,75
0,27
kW
mJ
Ǒs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
Id
%
80
trr
40
Vd
0
fitted
IRRM10%
-40
-80
IRRM90%
-120
IRRM100%
-160
2,9
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
20
3,1
3,3
600
8
-10
0,38
3,5
time(us)
3,7
V
A
A
Ǒs
Revision: 1.1
V23990-P588-*88-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Qrr
100
80
tQrr
50
Erec
100
tErec
60
0
40
Prec
-50
20
-100
0
Id
-150
-20
2,8
3
3,2
3,4
3,6
3,8
4
2,8
3
3,2
3,4
4,93
0,63
0,80
kW
mJ
Ǒs
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
8
1,57
0,80
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
ǑC
Ǒs
21
3,6
3,8
time(us)
4
Revision: 1.1
V23990-P588-*88-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
in DataMatrix as
Ordering Code
V23990-P588-A88-PM
V23990-P588-C88-PM
Version
Without thermal paste 17mm housing
Without thermal paste 17mm housing
P588-A88
P588-C88
in packaging barcode as
P588-A88
P588-C88
Features
A version
C version
3-leg
3-leg
Rectifier
Break IGBT
w/o pin
1,31,32
Break FWD
Inverter IGBT
Inverter FWD
Outline
Pin table
X
Pin
Y
1
52,55
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
47,7
44,8
37,8
37,8
35
35
28
25,2
22,4
19,6
16,8
14
11,2
8,4
5,6
2,8
0
0
0
0
0
2,8
0
2,8
0
0
0
0
0
0
0
0
0
0
0
19
20
0
2,8
28,5
28,5
21
22
7,5
14,5
28,5
28,5
25
26
29
31,8
28,5
28,5
29
30
52,55
52,55
25
16,9
23
24
17,3
22
28,5
28,5
27
28
36,5
43,5
28,5
28,5
31
32
52,55
52,55
8,6
2,8
Pin
Pin table
X
Y
Pin
Pin table
X
Y
Pinout
Copyright by Vincotech
22
Revision: 1.1
V23990-P588-*88-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
23
Revision: 1.1