V23990-P825-F10-PM preliminary datasheet flowPACK 1 3rd gen 600V/100A Features flow1 housing ● Compact flow1 housing ● Compact and Low Inductance Design ● Built-in NTC Target Applications Schematic ● Motor Drive ● Power Generation ● UPS Types ● V23990-P825-F10 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 70 300 107 A A W ±20 V 6 360 μs V 175 °C 600 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C 59 300 72 A A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+150 °C Maximum Junction Temperature Thermal Properties copyright by Vincotech 1 Revision: 2 V23990-P825-F10-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 4000 VDC Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright by Vincotech Vis t=1min 2 Revision: 2 V23990-P825-F10-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,54 1,76 2,25 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0016 100 tf 0,66 650 Rgoff=4 Ω Rgon=4 Ω Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=480V Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK ±15 300 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 2 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 151 157 19 25 205 232 89 101 1,34 2,00 2,35 3,11 ns mWs 6160 f=1MHz 25 0 pF 384 Tj=25°C 183 ±15 100 Tj=25°C 625 nC 0,89 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 100 Rgon=4 Ω ±15 300 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 Thermal grease thickness≤50um λ = 1 W/mK 1,65 1,53 97 117 140 292 4,87 10,01 6149 3433 1,03 2,25 2,4 V A ns nC A/μs mWs 1,31 K/W Thermistor Rated resistance R25 Tol. ±5% Tj=25°C Deviation of R100 DR/R R100=435Ω Tc=100°C Power dissipation given Epcos-Typ B-value copyright by Vincotech P B(25/100) Tol. ±3% 3 4,2 4,7 5,8 kΩ 2,6 %/K Tj=25°C 210 mW Tj=25°C 3530 K Revision: 2 V23990-P825-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 1 2 3 4 VCE (V) 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = 250 μs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 μs 150 °C VGE from 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics Ic = f(VGE) Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 IC (A) IF (A) 300 250 80 Tj = Tjmax-25°C Tj = Tjmax-25°C 200 60 Tj = 25°C 150 40 100 20 50 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 V GE (V) 10 0 At tp = μs V 4 0,5 250 1 1,5 2 2,5 VF (V) 3 μs Revision: 2 V23990-P825-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 6 6 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(Ic) Eoff 5 Eon 5 Eon 4 4 Eoff Eoff Eon 3 3 Eon: 2 2 1 1 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = °C 25/150 VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 300 V VGE = ±15 V IC = 100 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3,5 E (mWs) 3,5 E (mWs) Eoff Erec 3 3 2,5 2,5 2 2 Erec 1,5 1,5 Erec 1 1 Erec 0,5 0,5 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 25/150 °C VCE = 300 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = 25/150 °C VCE = 300 V VGE = ±15 V IC = 100 A 5 Revision: 2 V23990-P825-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Output inverter IGBT 1 1 t ( μs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdon tdoff tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 40 80 120 160 IC (A) 200 0 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 RG (Ω ) 16 20 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V IC = 100 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 trr t rr( μs) t rr( μs) 0,4 trr 0,3 0,3 0,2 0,2 trr trr 0,1 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/150 300 ±15 4 copyright by Vincotech 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 6 4 25/150 300 100 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 2 V23990-P825-F10-PM preliminary datasheet Output Inverter Output inverter FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(Ic) Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 15 Qrr ( μC) 15 Qrr ( μC) Qrr 12 12 9 9 Qrr Qrr 6 6 Qrr 3 3 0 0 At 0 At Tj = VCE = VGE = Rgon = 40 25/150 300 ±15 4 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(Ic) 4 25/150 300 100 ±15 8 12 R Gon ( Ω) 20 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 200 IrrM (A) IrrM (A) 200 16 160 160 IRRM 120 120 IRRM 80 80 IRRM IRRM 40 40 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/150 300 ±15 4 copyright by Vincotech 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 7 4 25/150 300 100 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 2 V23990-P825-F10-PM preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 direc / dt (A/ μs) direc / dt (A/ μs) 12000 dI0/dt dIrec/dt dI0/dt dIrec/dt 10000 6000 8000 4000 6000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/150 300 ±15 4 80 120 I C (A) 160 200 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 300 100 ±15 8 12 20 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 R Gon ( Ω) 16 0 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,89 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = K/W 10-4 10-3 tp / T 1,31 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,03 0,15 0,51 0,14 0,03 0,03 R (C/W) 0,02 0,15 0,59 0,35 0,13 0,07 Tau (s) 9,9E+00 1,1E+00 1,9E-01 3,2E-02 4,7E-03 3,9E-04 copyright by Vincotech 8 10-2 10-1 100 t p (s) 1011 Tau (s) 9,9E+00 1,2E+00 1,8E-01 4,7E-02 8,1E-03 5,3E-04 Revision: 2 V23990-P825-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 125 IC (A) Ptot (W) 200 160 100 120 75 80 50 40 25 0 0 0 At Tj = 50 175 100 °C 150 Th ( o C) 200 0 At Tj = single heating overall heating 175 15 VGE = Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 100 Th ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 160 150 120 75 80 50 40 25 0 0 0 At Tj = 50 175 copyright by Vincotech 100 °C 150 Th ( o C) 200 0 At Tj = single heating overall heating 9 50 175 100 150 Th ( o C) 200 °C Revision: 2 V23990-P825-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 103 IC (A) VGE (V) 20 100u 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 10u 2 15 10m 1m 100m DC 120V 480V 10 101 5 100 0 10-1 0 10 At D= Th = VGE = Tj = 101 102 V CE (V) 0 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright by Vincotech 10 100 100 200 300 400 500 600 700 Qg (nC) A Revision: 2 V23990-P825-F10-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 50 copyright by Vincotech 75 100 T (°C) 125 11 Revision: 2 V23990-P825-F10-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 280 140 tdoff 120 100 200 Uce 90% Uge 90% Ic 240 Uce 80 160 Ic 60 Uce % 120 % tEoff 40 80 20 Uge tdon Ic 1% 40 0 Ic10% Uge -20 0 -40 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 time (us) -15 15 300 99 0,23 0,51 0,4 0,6 tEon -40 0,8 2,8 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 Uce3% Uge10% 3,1 time(us) -15 15 300 99 0,16 0,32 3,25 3,4 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,55 Turn-on Switching Waveforms & definition of tr 140 260 fitted 120 220 Uce 100 Ic 180 Ic 90% 80 140 Ic 60% % 60 % 100 Ic90% Uce Ic 40% 40 tr 60 20 Ic10% tf 0 20 Ic10% Ic -20 0,15 -20 0,2 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,25 300 99 0,10 time (us) 0,3 0,35 0,4 2,9 VC (100%) = IC (100%) = tr = V A μs 12 3 3,1 300 99 0,03 time(us) 3,2 3,3 3,4 V A μs Revision: 2 V23990-P825-F10-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 130 Eoff Poff Pon 100 Eon 100 80 70 60 % % 40 40 20 Uge10% Uce3% 10 0 tEon Uge90% tEoff -20 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 29,79 3,11 0,51 time (us) Ic 1% 0,4 0,6 -20 2,95 0,8 3,05 3,25 3,35 3,45 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 3,15 29,79 2,00 0,32 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 15 80 Id fitted trr 10 40 Uge (V) 5 0 Ud % 0 IRRM10% -40 -5 -80 -10 IRRM90% -20 -150 IRRM100% -120 -15 50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech 250 -15 15 300 99 979,79 450 Qg (nC) 650 850 -160 3,08 1050 3,18 3,28 3,38 3,48 3,58 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 13 300 99 -117 0,29 V A A μs Revision: 2 V23990-P825-F10-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Id Erec Qrr 100 100 80 50 tQint 60 % 0 % tErec 40 -50 20 Prec -100 0 -150 -20 2,9 3,15 Id (100%) = Qrr (100%) = tQint = copyright by Vincotech 3,4 99 10,01 0,60 time(us) 3,65 3,9 4,15 2,9 Prec (100%) = Erec (100%) = tErec = A μC μs 14 3,15 3,4 29,79 2,25 0,60 time(us) 3,65 3,9 4,15 kW mJ μs Revision: 2 V23990-P825-F10-PM preliminary datasheet Package Outline and Pinout Outline Pinout copyright by Vincotech 15 Revision: 2 V23990-P825-F10-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 16 Revision: 2