V23990 P825 F10 P2 14

V23990-P825-F10-PM
preliminary datasheet
flowPACK 1 3rd gen
600V/100A
Features
flow1 housing
● Compact flow1 housing
● Compact and Low Inductance Design
● Built-in NTC
Target Applications
Schematic
● Motor Drive
● Power Generation
● UPS
Types
● V23990-P825-F10
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
70
300
107
A
A
W
±20
V
6
360
μs
V
175
°C
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
59
300
72
A
A
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+150
°C
Maximum Junction Temperature
Thermal Properties
copyright by Vincotech
1
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright by Vincotech
Vis
t=1min
2
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,54
1,76
2,25
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0016
100
tf
0,66
650
Rgoff=4 Ω
Rgon=4 Ω
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=480V
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
±15
300
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
2
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
151
157
19
25
205
232
89
101
1,34
2,00
2,35
3,11
ns
mWs
6160
f=1MHz
25
0
pF
384
Tj=25°C
183
±15
100
Tj=25°C
625
nC
0,89
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
100
Rgon=4 Ω
±15
300
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
Thermal grease
thickness≤50um
λ = 1 W/mK
1,65
1,53
97
117
140
292
4,87
10,01
6149
3433
1,03
2,25
2,4
V
A
ns
nC
A/μs
mWs
1,31
K/W
Thermistor
Rated resistance
R25
Tol. ±5%
Tj=25°C
Deviation of R100
DR/R
R100=435Ω
Tc=100°C
Power dissipation given Epcos-Typ
B-value
copyright by Vincotech
P
B(25/100)
Tol. ±3%
3
4,2
4,7
5,8
kΩ
2,6
%/K
Tj=25°C
210
mW
Tj=25°C
3530
K
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
μs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
μs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
IC (A)
IF (A)
300
250
80
Tj = Tjmax-25°C
Tj = Tjmax-25°C
200
60
Tj = 25°C
150
40
100
20
50
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
V GE (V) 10
0
At
tp =
μs
V
4
0,5
250
1
1,5
2
2,5
VF (V)
3
μs
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
6
6
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
Eoff
5
Eon
5
Eon
4
4
Eoff
Eoff
Eon
3
3
Eon:
2
2
1
1
0
0
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
IC =
100
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3,5
E (mWs)
3,5
E (mWs)
Eoff
Erec
3
3
2,5
2,5
2
2
Erec
1,5
1,5
Erec
1
1
Erec
0,5
0,5
0
0
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
5
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Output inverter IGBT
1
1
t ( μs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdon
tdoff
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
40
80
120
160
IC (A)
200
0
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
RG (Ω )
16
20
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
trr
t rr( μs)
t rr( μs)
0,4
trr
0,3
0,3
0,2
0,2
trr
trr
0,1
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
300
±15
4
copyright by Vincotech
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
4
25/150
300
100
±15
8
12
16
R Gon ( Ω ) 20
°C
V
A
V
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
15
Qrr ( μC)
15
Qrr ( μC)
Qrr
12
12
9
9
Qrr
Qrr
6
6
Qrr
3
3
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
300
±15
4
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
4
25/150
300
100
±15
8
12
R Gon ( Ω)
20
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
200
IrrM (A)
IrrM (A)
200
16
160
160
IRRM
120
120
IRRM
80
80
IRRM
IRRM
40
40
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
300
±15
4
copyright by Vincotech
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
4
25/150
300
100
±15
8
12
16
R Gon ( Ω )
20
°C
V
A
V
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
direc / dt (A/ μs)
direc / dt (A/ μs)
12000
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
10000
6000
8000
4000
6000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
300
±15
4
80
120
I C (A)
160
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
300
100
±15
8
12
20
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
R Gon ( Ω)
16
0
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,89
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
K/W
10-4
10-3
tp / T
1,31
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,03
0,15
0,51
0,14
0,03
0,03
R (C/W)
0,02
0,15
0,59
0,35
0,13
0,07
Tau (s)
9,9E+00
1,1E+00
1,9E-01
3,2E-02
4,7E-03
3,9E-04
copyright by Vincotech
8
10-2
10-1
100
t p (s)
1011
Tau (s)
9,9E+00
1,2E+00
1,8E-01
4,7E-02
8,1E-03
5,3E-04
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
125
IC (A)
Ptot (W)
200
160
100
120
75
80
50
40
25
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
175
15
VGE =
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
100
Th ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
160
150
120
75
80
50
40
25
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
9
50
175
100
150
Th ( o C)
200
°C
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
103
IC (A)
VGE (V)
20
100u
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
10u
2
15
10m
1m
100m
DC
120V
480V
10
101
5
100
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
101
102
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright by Vincotech
10
100
100
200
300
400
500
600
700
Qg (nC)
A
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
11
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
280
140
tdoff
120
100
200
Uce 90%
Uge 90%
Ic
240
Uce
80
160
Ic
60
Uce
%
120
%
tEoff
40
80
20
Uge
tdon
Ic 1%
40
0
Ic10%
Uge
-20
0
-40
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
time (us)
-15
15
300
99
0,23
0,51
0,4
0,6
tEon
-40
0,8
2,8
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
Uce3%
Uge10%
3,1
time(us)
-15
15
300
99
0,16
0,32
3,25
3,4
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,55
Turn-on Switching Waveforms & definition of tr
140
260
fitted
120
220
Uce
100
Ic
180
Ic 90%
80
140
Ic 60%
% 60
%
100
Ic90%
Uce
Ic 40%
40
tr
60
20
Ic10%
tf
0
20
Ic10%
Ic
-20
0,15
-20
0,2
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,25
300
99
0,10
time (us)
0,3
0,35
0,4
2,9
VC (100%) =
IC (100%) =
tr =
V
A
μs
12
3
3,1
300
99
0,03
time(us)
3,2
3,3
3,4
V
A
μs
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
130
Eoff
Poff
Pon
100
Eon
100
80
70
60
%
%
40
40
20
Uge10%
Uce3%
10
0
tEon
Uge90%
tEoff
-20
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
29,79
3,11
0,51
time (us)
Ic 1%
0,4
0,6
-20
2,95
0,8
3,05
3,25
3,35
3,45
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
3,15
29,79
2,00
0,32
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
80
Id
fitted
trr
10
40
Uge (V)
5
0
Ud
%
0
IRRM10%
-40
-5
-80
-10
IRRM90%
-20
-150
IRRM100%
-120
-15
50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
250
-15
15
300
99
979,79
450
Qg (nC)
650
850
-160
3,08
1050
3,18
3,28
3,38
3,48
3,58
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
13
300
99
-117
0,29
V
A
A
μs
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Id
Erec
Qrr
100
100
80
50
tQint
60
% 0
%
tErec
40
-50
20
Prec
-100
0
-150
-20
2,9
3,15
Id (100%) =
Qrr (100%) =
tQint =
copyright by Vincotech
3,4
99
10,01
0,60
time(us)
3,65
3,9
4,15
2,9
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
14
3,15
3,4
29,79
2,25
0,60
time(us)
3,65
3,9
4,15
kW
mJ
μs
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
copyright by Vincotech
15
Revision: 2
V23990-P825-F10-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
16
Revision: 2