V23990-P868-F49/F48-PM preliminary datasheet flowPACK 0 3rd gen 1200V/15A Features flow0 housing Ɣ 2 clip housing in 12mm and 17mm height Ɣ Trench Fieldstop IGBT4 technology Ɣ Compact and low inductance design Ɣ Built-in NTC Target Applications Schematic Ɣ Motor Drives Ɣ Power Generation Ɣ UPS Types Ɣ V23990-P868-F49-PM: 17mm height Ɣ V23990-P868-F48-PM: 12mm height Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Inverter Transistor Collector-emitter voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings* tSC VCC Maximum Junction Temperature Tjmax Th=80°C Tc=80°C Tj=Tjmax 22 tp limited by Tjmax 45 Th=80°C Tc=80°C Tj=Tjmax 64 Tj150°C VGE=15V A A W ±20 V 10 800 s V 175 °C 1200 V * It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 21 A Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Tjmax 175 °C Storage temperature Tstg -40…..+125 °C Operation junction temperature Top -40…..+Tjmax-25 °C 30 Th=80°C Tc=80°C 45 A W Thermal properties Copyright by Vincotech 1 Revision: 1 V23990-P868-F49/F48-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 4000 V Creepage distance min.12,7 mm Clearance min.12,7 mm Insulation properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-P868-F49/F48-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,84 2,23 2,3 Inverter Transistor Gate emitter threshold voltage VGE(th) 0,0005 VCE=VGE VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time td(off) Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 200 Rgon=32ȍ Rgoff=32ȍ ±15 600 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA nA ȍ none tr tf Fall time 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 86 84 17,8 23,6 201 264 81 130 0,95 1,40 0,83 1,37 ns mWs 900 f=1MHz 0 25 15 960 pF 80 Tj=25°C 55 15 Tj=25°C Thermal grease thickness50um Ȝ = 0,61 W/mK 93 nC 1,47 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 15 Rgon=32ȍ ±15 600 di(rec)max /dt Erec RthJH 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,84 1,77 14,8 16,2 289 447 1,54 2,68 92 59 Tj=150°C 1,08 mWs 2,13 K/W Thermal grease thickness50um Ȝ = 0,61 W/mK 2,4 V Α ns μC A/μs Thermistor Rated resistance R25 Deviation of R100 ΔR/R Power dissipation P B(25/100) B-value Copyright by Vincotech Tol. ±5% Tj=25°C R100=1486ȍ Tj=100°C 2,9 %/K Tj=25°C 210 mW Tj=25°C 4000 K Tol. ±3% 3 20,9 22 23,1 Revision: 1 kȍ V23990-P868-F49/F48-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 1 tp = Tj = VGE from 2 3 VCE (V) 4 0 5 0 250 ȝs 25 °C 7 V to 17 V in steps of 1 V tp = Tj = VGE from Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 ȝs 150 °C 7 V to 17 V in steps of 1 V Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IF (A) IC (A) 15 VCE (V) 4 12 40 9 30 6 20 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C 3 10 Tj = 25°C 0 0 0 2 4 tp = VCE = 250 10 ȝs V 6 Copyright by Vincotech 8 10 V GE (V) 12 0 tp = 4 0,5 250 1 1,5 2 2,5 3 VF (V) ȝs Revision: 1 3,5 V23990-P868-F49/F48-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 3,5 E (mWs) 3,5 E (mWs) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon 3 2,5 Eon 3 2,5 Eoff Eon 2 2 Eon: 1,5 1,5 Eoff Eoff 1 1 0,5 0,5 0 Eoff 0 0 5 inductive load Tj = VCE = VGE = Rgon = Rgoff = 25/150 600 ±15 32 32 10 15 20 25 I C (A) 30 0 inductive load Tj = VCE = VGE = IC = °C V V ȍ ȍ Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) 25 50 25/150 600 ±15 15 75 100 125 R G ( Ω ) 150 °C V V A Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,5 E (mWs) E (mWs) 1,8 Erec 1,5 1,2 Erec 1,2 0,9 0,9 0,6 Erec 0,6 Erec 0,3 0,3 0 0 0 inductive load Tj = VCE = VGE = Rgon = 5 10 25/150 600 ±15 32 15 20 25 I C (A) 0 30 inductive load Tj = VCE = VGE = IC = °C V V ȍ Copyright by Vincotech 5 30 25/150 600 ±15 15 60 90 120 R G( Ω ) °C V V A Revision: 1 150 V23990-P868-F49/F48-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 5 inductive load Tj = 150 VCE = 600 VGE = ±15 Rgon = 32 Rgoff = 32 10 15 20 25 I C (A) 30 0 25 50 inductive load Tj = 150 VCE = 600 VGE = ±15 IC = 15 °C V V ȍ ȍ Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) 75 100 R G ( Ω ) 150 °C V V A Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( μs) 0,8 t rr( μs) 0,75 125 trr 0,6 trr 0,6 0,45 trr 0,4 trr 0,3 0,2 0,15 0 0 0 Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 10 15 20 25 I C (A) 30 0 Tj = VR = IF = VGE = °C V V ȍ Copyright by Vincotech 6 30 25/150 600 15 ±15 60 90 120 R gon ( Ω ) 150 °C V A V Revision: 1 V23990-P868-F49/F48-PM preliminary datasheet Output Inverter Output inverter FRED Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 4 4 Qrr Qrr ( μC) Qrr ( μC) Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 3,2 3,2 Qrr 2,4 2,4 Qrr 1,6 1,6 0,8 0,8 0 0 0 At Qrr Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 10 15 20 25 I C (A) 30 0 Tj = VR = IF = VGE = °C V V ȍ Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 30 25/150 600 15 ±15 60 90 R gon ( Ω) 150 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 20 120 IrrM (A) IrrM (A) 48 40 16 IRRM IRRM 32 12 IRRM 24 8 16 4 8 IRRM 0 0 0 5 Tj = VCE = VGE = Rgon = 25/150 600 ±15 32 10 15 20 25 I C (A) 30 °C V V ȍ Copyright by Vincotech 7 0 30 Tj = VR = IF = VGE = 25/150 600 15 ±15 60 90 120 R gon ( Ω ) °C V A V Revision: 1 150 V23990-P868-F49/F48-PM preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 1200 3500 dI0/dt direc / dt (A/ μs) direc / dt (A/ μs) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 1000 dI0/dt dIrec/dt 3000 2500 800 2000 600 1500 400 1000 200 500 0 0 0 Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 10 15 20 25 I C (A) 30 0 Tj = VR = IF = VGE = °C V V ȍ Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 25/150 600 15 ±15 60 90 120 R gon ( Ω) 150 °C V A V Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) Output inverter FRED 1 ZthJH (K/W) ZthJH (K/W) 10 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 -5 10 D= RthJH = -4 -3 10 10 -2 10 -1 10 0 10 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) 1 10 1 tp / T 1,47 D= RthJH = K/W tp / T 2,13 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,03 0,15 0,65 0,38 0,15 0,11 R (C/W) 0,04 0,17 0,81 0,64 0,28 0,20 Tau (s) 6,2E+00 8,8E-01 1,2E-01 2,5E-02 4,5E-03 4,6E-04 Copyright by Vincotech 8 Tau (s) 8,9E+00 8,9E-01 1,2E-01 2,4E-02 3,9E-03 4,4E-04 Revision: 1 V23990-P868-F49/F48-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 30 IC (A) Ptot (W) 120 100 25 80 20 60 15 40 10 20 5 0 0 0 Tj = 50 175 100 150 Th ( o C) 200 0 Tj = °C VGE = Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 Th ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 150 IF (A) Ptot (W) 30 25 80 20 60 15 40 10 20 5 0 0 0 Tj = 50 175 100 150 Th ( o C) 200 0 Tj = °C Copyright by Vincotech 9 50 175 100 150 Th ( o C) °C Revision: 1 200 V23990-P868-F49/F48-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 IC (A) VGE (V) 20 17,5 102 15 240V 960V 10uS 12,5 100uS 1mS 101 DC 100m 10 10mS 7,5 5 0 10 2,5 0 -1 10 100 D= Th = VGE = 1 10 2 10 3 10 0 V CE (V) IC = single pulse 80 ºC ±15 V Tjmax ºC Tj = 25 15 50 75 100 Qg (nC) A Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/ȍ 25000 20000 15000 10000 5000 0 25 50 75 Copyright by Vincotech 100 T (°C) 125 10 Revision: 1 125 V23990-P868-F49/F48-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 32 ȍ Rgon Rgoff = 32 ȍ Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 240 150 Ic tdoff 120 200 Uce 160 90 Uce 90% Uge 90% %60 Uce 120 % Ic 80 tEoff Uge tdon 30 40 Ic 1% Ic10% Uge10% 0 Uce3% 0 Uge tEon -30 -0,1 0,05 0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,35 0,5 time (us) -15 15 600 15 0,26 0,67 0,65 0,8 -40 0,95 2,8 2,9 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A ȝs ȝs Output inverter IGBT Figure 3 3,1 -15 15 600 15 0,08 0,32 3,2 time(us) 3,3 3,5 V V V A ȝs ȝs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,4 Turn-on Switching Waveforms & definition of tr 140 240 fitted 120 200 100 Ic Uce Ic 90% 160 80 120 Ic 60% % 60 Uce % Ic90% 80 tr Ic 40% 40 40 20 Ic Ic10% tf 0 Ic10% 0 -20 -40 0,2 0,25 VC (100%) = IC (100%) = tf = 0,3 0,35 600 15 0,13 0,4 time (us) 0,45 0,5 0,55 0,6 2,9 VC (100%) = IC (100%) = tr = V A ȝs Copyright by Vincotech 11 3 3,1 time(us) 600 15 0,02 3,2 V A ȝs Revision: 1 3,3 V23990-P868-F49/F48-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 240 Pon Eoff 100 200 Poff 80 160 60 120 % 40 % 80 20 40 Eon Uge10% 0 tEoff Uge90% -20 -0,1 Uce3% 0 tEon Ic 1% -40 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,3 9,03 1,37 0,67 time (us) 0,5 0,7 2,9 0,9 3 Pon (100%) = Eon (100%) = tEon = kW mJ ȝs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 3,1 3,2 time(us) 9,03 1,40 0,32 kW mJ ȝs 3,3 3,4 3,5 Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 Id 15 80 trr 10 40 Uge (V) 5 fitted Ud % 0 0 IRRM10% -5 -40 -10 -80 IRRM90% -15 IRRM100% -120 -20 -30 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 30 -15 15 600 15 113 60 Qg (nC) 90 120 2,9 150 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC Copyright by Vincotech 12 3,05 3,2 600 15 -16 0,45 3,35 time(us) 3,5 3,65 V A A ȝs Revision: 1 3,8 V23990-P868-F49/F48-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Qrr 100 100 Erec Id 80 50 tQrr 60 % 0 % tErec 40 -50 20 Prec -100 0 -150 -20 2,8 Id (100%) = Qrr (100%) = tQrr = 3 3,2 3,4 15 2,68 0,89 3,6 time(us) 3,8 4 4,2 4,4 2,8 Prec (100%) = Erec (100%) = tErec = A ȝC ȝs Copyright by Vincotech 13 3 3,2 3,4 9,03 1,08 0,89 3,6 time(us) 3,8 4 4,2 kW mJ ȝs Revision: 1 4,4 V23990-P868-F49/F48-PM preliminary datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 14 Revision: 1 V23990-P868-F49/F48-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 1