V23990-P689-F-PM preliminary datasheet flowPACK 2 3rd gen 1200V/100A Features flow2 housing ● High power flow2 housing ● Trench Fieldstop Technology IGBT4 ● Compact and low inductive design Target Applications Schematic ● Motor Drive ● Power Generation ● UPS ASK MARKETING Types ● V23990-P689-F Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 100 100 300 A A 270 408 W ±20 V 10 900 μs V 175 °C 1200 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 85 100 200 A A 160 242 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C Maximum Junction Temperature Thermal Properties Copyright by Vincotech 1 Revision: 1 V23990-P689-F-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-P689-F-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5.8 6.5 1.5 1.94 2.35 2.5 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0.0034 VCE=VGE 100 tf 0.025 700 Rgoff=8 Ω Rgon=8 Ω Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=960 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK ±15 600 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 2 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 104 108 18 23 219 293 72 111 4.04 6.73 5.25 8.77 ns mWs 5540 f=1MHz 25 0 410 Tj=25°C pF 320 ±15 100 480 Tj=25°C nC 0.35 K/W 0.23 Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Rgon=8 Ω 600 ±15 di(rec)max /dt Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 100 Thermal grease thickness≤50um λ = 1 W/mK 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1.99 2.01 164 187 130 294 9.32 18.66 8743 3702 3.87 7.96 2.5 V A ns μC A/μs mWs 0.60 K/W 0.39 3 Revision: 1 V23990-P689-F-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 μs 150 °C 7 V to 17 V in steps of 1 V Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 4 IC (A) IF (A) 300 Tj = 25°C 250 80 Tj = Tjmax-25°C 200 60 150 40 100 Tj = Tjmax-25°C 20 Tj = 25°C 50 0 0 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 0 At tp = μs V Copyright by Vincotech 4 1 250 2 3 4 V F (V) 5 μs Revision: 1 V23990-P689-F-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 18 E (mWs) E (mWs) 18 Eoff Eon 15 15 Tj = Tjmax - 25°C Tj = Tjmax - 25°C 12 12 Eon Eoff 9 Eon 9 Eoff 6 Eoff Eon 6 3 3 Tj = 25°C Tj = 25°C 0 0 0 40 80 120 160 I C (A) 0 200 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 100 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 10 E (mWs) 10 E (mWs) Erec 8 8 Tj = Tjmax -25°C Tj = Tjmax -25°C Erec 6 6 Erec Tj = 25°C 4 4 2 2 Tj = 25°C Erec 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 100 A 5 Revision: 1 V23990-P689-F-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdoff tdoff tdon tdon 0.1 tf 0.1 tf tr tr 0.01 0.01 0.001 0.001 0 40 80 120 I C (A) 160 200 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 RG(Ω ) 16 20 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 100 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.7 t rr( μs) t rr( μs) 0.7 trr 0.6 0.6 0.5 0.5 Tj = Tjmax -25°C 0.4 0.4 Tj = Tjmax -25°C trr trr 0.3 0.3 Tj = 25°C 0.2 0.2 Tj = 25°C trr 0.1 0.1 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/150 600 ±15 4 80 120 160 I C (A) 200 °C V V Ω Copyright by Vincotech 6 0 4 At Tj = VR = IF = VGE = 25/150 600 100 ±15 8 12 16 R g on ( Ω ) 20 °C V A V Revision: 1 V23990-P689-F-PM preliminary datasheet Output Inverter Output inverter FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 24 Qrr ( μC) 24 Qrr ( μC) Qrr Tj = Tjmax -25°C 20 20 16 16 Tj = Tjmax -25°C Qrr Qrr 12 12 Tj = 25°C Tj = 25°C 8 8 4 4 0 Qrr 0 At 0 At Tj = VCE = VGE = Rgon = 40 25/150 600 ±15 4 80 120 160 I C (A) 200 °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 4 At Tj = VR = IF = VGE = 25/150 600 100 ±15 8 12 R g on ( Ω) 16 20 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 300 IrrM (A) IrrM (A) 250 IRRM 250 Tj = Tjmax -25°C 200 IRRM 200 Tj = 25°C 150 150 IRRM IRRM 100 100 Tj = Tjmax - 25°C 50 Tj = 25°C 50 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/150 600 ±15 4 80 120 160 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/150 600 100 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 1 V23990-P689-F-PM preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 12000 12000 dI0/dt direc / dt (A/ μs) direc / dt (A/ μs) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) Tj = 25°C dIrec/dt 10000 8000 dI0/dt dIrec/dt 10000 8000 Tj = 25°C 6000 6000 4000 4000 2000 2000 Tj = Tjmax - 25°C Tj = Tjmax - 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/150 600 ±15 4 80 120 I C (A) 160 200 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 600 100 ±15 8 12 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 100 ZthJH (K/W) 100 R gon ( Ω) 20 16 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10 10-2 10 -5 -4 10 At D= RthJH = 10 -3 -2 10 10 -1 0 10 t p (s) 10-5 1 10 1 At D= RthJH = tp / T 0.35 K/W 10-4 10-3 0.60 R (C/W) 0.06 0.09 0.14 0.05 0.02 R (C/W) 0.03 0.10 0.14 0.25 0.04 0.04 8 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 3.1E+00 4.1E-01 6.1E-02 1.2E-02 7.0E-04 10-2 Tau (s) 9.1E+00 1.3E+00 1.7E-01 3.1E-02 4.4E-03 4.5E-04 Revision: 1 V23990-P689-F-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 600 Ptot (W) IC (A) 120 100 450 80 300 60 40 150 20 0 0 0 At Tj = 50 175 100 °C 150 T h ( o C) 200 0 At Tj = VGE = single heating overall heating Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 IF (A) Ptot (W) 300 150 250 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 °C Copyright by Vincotech 150 T h ( o C) 200 0 At Tj = single heating overall heating 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 V23990-P689-F-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) IC (A) VGE (V) 103 100u 102 10m 10u 15 240V 1m 100m 960V DC 10 101 5 100 0 10-1 0 10 At D= Th = VGE = Tj = 101 102 103 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 10 100 100 200 300 400 500 Q g (nC) 600 A Revision: 1 V23990-P689-F-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 140 120 Ic tdoff Uce 250 100 Uce 90% Uge 90% 200 80 60 150 Ic % % tEoff 40 Uce 100 Uge 20 tdon Ic 1% 50 Ic10% 0 Uge10% Uge Uce3% 0 -20 tEon -40 -0.2 0 0.2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0.4 time (us) -15 15 600 100 0.29 0.67 0.6 0.8 -50 1 2.6 2.8 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3.2 time(us) -15 15 600 100 0.11 0.34 3.4 3.8 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3.6 Turn-on Switching Waveforms & definition of tr 140 300 fitted 120 250 Uce 100 Ic 200 Ic 90% 80 150 Ic 60% % 60 % Uce 100 Ic 40% 40 tr 50 20 Ic90% Ic10% tf 0 -20 0.15 VC (100%) = IC (100%) = tf = Ic10% Ic 0 -50 0.2 0.25 0.3 600 100 0.11 Copyright by Vincotech 0.35 time (us) 0.4 0.45 0.5 0.55 2.9 VC (100%) = IC (100%) = tr = V A μs 11 3 3.1 600 100 0.02 time(us) 3.2 3.3 3.4 V A μs Revision: 1 V23990-P689-F-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 Eoff 100 Pon Poff 180 80 140 Eon 60 100 % % 40 60 20 Uge10% 20 0 Uge90% -20 -0.2 tEoff Uce3% tEon Ic 1% -20 0 0.2 Poff (100%) = Eoff (100%) = tEoff = 0.4 time (us) 60.25 8.77 0.67 0.6 0.8 2.8 1 2.95 3.25 3.4 3.55 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 3.1 60.25 6.73 0.34 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 15 80 Id trr 40 10 Ud 0 Uge (V) 5 -40 IRRM10% % 0 -80 -5 -120 -10 IRRM90% -160 IRRM100% -15 -200 fitted -20 -200 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -240 0 200 -15 15 600 100 4658.95 Copyright by Vincotech Qg (nC) 400 600 3 800 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 12 3.1 3.2 600 100 -187 0.29 3.3 time(us) 3.4 3.5 3.6 V A A μs Revision: 1 V23990-P689-F-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Id 100 Erec Qrr 100 50 80 tQrr 0 tErec 60 % % -50 40 -100 20 -150 0 Prec -200 -20 2.8 Id (100%) = Qrr (100%) = tQrr = 3 3.2 3.4 time(us) 100 18.66 0.70 A μC μs Copyright by Vincotech 3.6 3.8 4 3 Prec (100%) = Erec (100%) = tErec = 13 3.2 3.4 60.25 7.96 0.70 time(us) 3.6 3.8 4 kW mJ μs Revision: 1 V23990-P689-F-PM preliminary datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 14 Revision: 1 V23990-P689-F-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 1