V23990-P689-F-PM Maximum Ratings

V23990-P689-F-PM
preliminary datasheet
flowPACK 2 3rd gen
1200V/100A
Features
flow2 housing
● High power flow2 housing
● Trench Fieldstop Technology IGBT4
● Compact and low inductive design
Target Applications
Schematic
● Motor Drive
● Power Generation
● UPS
ASK MARKETING
Types
● V23990-P689-F
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
100
100
300
A
A
270
408
W
±20
V
10
900
μs
V
175
°C
1200
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
85
100
200
A
A
160
242
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
Maximum Junction Temperature
Thermal Properties
Copyright by Vincotech
1
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5.8
6.5
1.5
1.94
2.35
2.5
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0.0034
VCE=VGE
100
tf
0.025
700
Rgoff=8 Ω
Rgon=8 Ω
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=960
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
±15
600
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
2
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
104
108
18
23
219
293
72
111
4.04
6.73
5.25
8.77
ns
mWs
5540
f=1MHz
25
0
410
Tj=25°C
pF
320
±15
100
480
Tj=25°C
nC
0.35
K/W
0.23
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgon=8 Ω
600
±15
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
100
Thermal grease
thickness≤50um
λ = 1 W/mK
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1.99
2.01
164
187
130
294
9.32
18.66
8743
3702
3.87
7.96
2.5
V
A
ns
μC
A/μs
mWs
0.60
K/W
0.39
3
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
4
IC (A)
IF (A)
300
Tj = 25°C
250
80
Tj = Tjmax-25°C
200
60
150
40
100
Tj = Tjmax-25°C
20
Tj = 25°C
50
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
4
1
250
2
3
4
V F (V)
5
μs
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
18
E (mWs)
E (mWs)
18
Eoff
Eon
15
15
Tj = Tjmax - 25°C
Tj = Tjmax - 25°C
12
12
Eon
Eoff
9
Eon
9
Eoff
6
Eoff
Eon
6
3
3
Tj = 25°C
Tj = 25°C
0
0
0
40
80
120
160
I C (A)
0
200
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
100
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
10
E (mWs)
10
E (mWs)
Erec
8
8
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Erec
6
6
Erec
Tj = 25°C
4
4
2
2
Tj = 25°C
Erec
0
0
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
100
A
5
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdoff
tdon
tdon
0.1
tf
0.1
tf
tr
tr
0.01
0.01
0.001
0.001
0
40
80
120
I C (A)
160
200
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
RG(Ω )
16
20
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
100
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.7
t rr( μs)
t rr( μs)
0.7
trr
0.6
0.6
0.5
0.5
Tj = Tjmax -25°C
0.4
0.4
Tj = Tjmax -25°C
trr
trr
0.3
0.3
Tj = 25°C
0.2
0.2
Tj = 25°C
trr
0.1
0.1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
600
±15
4
80
120
160
I C (A)
200
°C
V
V
Ω
Copyright by Vincotech
6
0
4
At
Tj =
VR =
IF =
VGE =
25/150
600
100
±15
8
12
16
R g on ( Ω )
20
°C
V
A
V
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
24
Qrr ( μC)
24
Qrr ( μC)
Qrr
Tj = Tjmax -25°C
20
20
16
16
Tj = Tjmax -25°C
Qrr
Qrr
12
12
Tj = 25°C
Tj = 25°C
8
8
4
4
0
Qrr
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
600
±15
4
80
120
160
I C (A)
200
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
4
At
Tj =
VR =
IF =
VGE =
25/150
600
100
±15
8
12
R g on ( Ω)
16
20
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
300
IrrM (A)
IrrM (A)
250
IRRM
250
Tj = Tjmax -25°C
200
IRRM
200
Tj = 25°C
150
150
IRRM
IRRM
100
100
Tj = Tjmax - 25°C
50
Tj = 25°C
50
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
600
±15
4
80
120
160
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/150
600
100
±15
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
12000
12000
dI0/dt
direc / dt (A/ μs)
direc / dt (A/ μs)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
Tj = 25°C
dIrec/dt
10000
8000
dI0/dt
dIrec/dt
10000
8000
Tj = 25°C
6000
6000
4000
4000
2000
2000
Tj = Tjmax - 25°C
Tj = Tjmax - 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
600
±15
4
80
120
I C (A)
160
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
600
100
±15
8
12
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
100
ZthJH (K/W)
100
R gon ( Ω) 20
16
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10
10-2
10
-5
-4
10
At
D=
RthJH =
10
-3
-2
10
10
-1
0
10
t p (s)
10-5
1
10 1
At
D=
RthJH =
tp / T
0.35
K/W
10-4
10-3
0.60
R (C/W)
0.06
0.09
0.14
0.05
0.02
R (C/W)
0.03
0.10
0.14
0.25
0.04
0.04
8
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
3.1E+00
4.1E-01
6.1E-02
1.2E-02
7.0E-04
10-2
Tau (s)
9.1E+00
1.3E+00
1.7E-01
3.1E-02
4.4E-03
4.5E-04
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
600
Ptot (W)
IC (A)
120
100
450
80
300
60
40
150
20
0
0
0
At
Tj =
50
175
100
°C
150
T h ( o C)
200
0
At
Tj =
VGE =
single heating
overall heating
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
120
IF (A)
Ptot (W)
300
150
250
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
°C
Copyright by Vincotech
150
T h ( o C)
200
0
At
Tj =
single heating
overall heating
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
IC (A)
VGE (V)
103
100u
102
10m
10u
15
240V
1m
100m
960V
DC
10
101
5
100
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
101
102
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
10
100
100
200
300
400
500
Q g (nC)
600
A
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
140
120
Ic
tdoff
Uce
250
100
Uce 90%
Uge 90%
200
80
60
150
Ic
%
%
tEoff
40
Uce
100
Uge
20
tdon
Ic 1%
50
Ic10%
0
Uge10%
Uge
Uce3%
0
-20
tEon
-40
-0.2
0
0.2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0.4
time (us)
-15
15
600
100
0.29
0.67
0.6
0.8
-50
1
2.6
2.8
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3.2
time(us)
-15
15
600
100
0.11
0.34
3.4
3.8
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3.6
Turn-on Switching Waveforms & definition of tr
140
300
fitted
120
250
Uce
100
Ic
200
Ic 90%
80
150
Ic 60%
% 60
%
Uce
100
Ic 40%
40
tr
50
20
Ic90%
Ic10%
tf
0
-20
0.15
VC (100%) =
IC (100%) =
tf =
Ic10%
Ic
0
-50
0.2
0.25
0.3
600
100
0.11
Copyright by Vincotech
0.35
time (us)
0.4
0.45
0.5
0.55
2.9
VC (100%) =
IC (100%) =
tr =
V
A
μs
11
3
3.1
600
100
0.02
time(us)
3.2
3.3
3.4
V
A
μs
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
Eoff
100
Pon
Poff
180
80
140
Eon
60
100
%
%
40
60
20
Uge10%
20
0
Uge90%
-20
-0.2
tEoff
Uce3%
tEon
Ic 1%
-20
0
0.2
Poff (100%) =
Eoff (100%) =
tEoff =
0.4
time (us)
60.25
8.77
0.67
0.6
0.8
2.8
1
2.95
3.25
3.4
3.55
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
3.1
60.25
6.73
0.34
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
80
Id
trr
40
10
Ud
0
Uge (V)
5
-40
IRRM10%
%
0
-80
-5
-120
-10
IRRM90%
-160
IRRM100%
-15
-200
fitted
-20
-200
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-240
0
200
-15
15
600
100
4658.95
Copyright by Vincotech
Qg (nC)
400
600
3
800
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
12
3.1
3.2
600
100
-187
0.29
3.3
time(us)
3.4
3.5
3.6
V
A
A
μs
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Id
100
Erec
Qrr
100
50
80
tQrr
0
tErec
60
%
%
-50
40
-100
20
-150
0
Prec
-200
-20
2.8
Id (100%) =
Qrr (100%) =
tQrr =
3
3.2
3.4
time(us)
100
18.66
0.70
A
μC
μs
Copyright by Vincotech
3.6
3.8
4
3
Prec (100%) =
Erec (100%) =
tErec =
13
3.2
3.4
60.25
7.96
0.70
time(us)
3.6
3.8
4
kW
mJ
μs
Revision: 1
V23990-P689-F-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
14
Revision: 1
V23990-P689-F-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 1