V23990 K239 F40 D3 14

V23990-K239-F40-PM
datasheet
MiniSKiiP®2 PACK
1200V/50A
Features
MiniSKiiP®2 housing
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K239-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
53
A
tp limited by Tjmax
150
A
VCE ≤ 1200V, Tj ≤ Top max
100
A
133
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
47
A
150
A
100
W
175
°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation
Gate-emitter peak voltage
Short circuit ratings
Maximum Junction Temperature
Ptot
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
VGE
tSC
VCC
Tj≤150°C
VGE=15V
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Th=80°C
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching
condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,92
2,33
2,15
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0017
50
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,06
600
Rgoff=8Ω
Rgon=8Ω
±15
600
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
4
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
101
106
19
25
224
296
89
116
2,64
4,62
2,89
4,75
ns
mWs
2770
f=1MHz
0
Tj=25°C
25
205
pF
160
±15
Tj=25°C
Thermal grease
thickness≤50µm
λ=1W/mK
380
nC
0,71
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
50
IRRM
trr
Qrr
Rgon=8Ω
±15
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,3
Thermal grease
thickness≤50µm
λ=1W/mK
2,2
2,2
53,6
67
121
294
3,25
8,66
2708
467
1,12
3,35
2,6
V
A
ns
µC
A/µs
mWs
K/W
0,95
Thermistor
Rated resistance
Deviation of R100
R100
R
∆R/R
T=25°C
R100=1670 Ω
T=100°C
P
T=100°C
Power dissipation constant
Ω
1000
-3
3
%
Ω
1670,313
T=25°C
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
copyright Vincotech
E
3
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IF (A)
IC (A)
50
4
40
120
30
90
20
60
10
30
0
0
0
2,4
Tj =
tp =
VCE =
25/150
350
10
4,8
7,2
9,6
V GE (V)
12
0
At
0,8
1,6
2,4
3,2
V F (V)
4
At
copyright Vincotech
°C
µs
V
Tj =
tp =
4
25/150
350
°C
µs
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
12
E (mWs)
12
Eon High T
10
10
Eon High T
Eoff High T
8
8
Eon Low T
6
6
Eon Low T
Eoff High T
Eoff Low T
4
4
Eoff Low T
2
2
0
0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
50
A
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
5
E (mWs)
5
Erec
4
4
3
3
2
Erec
2
Erec
1
1
Erec
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
50
A
5
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
tf
0,1
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr( µs)
t rr( µs)
0,5
trr
0,4
0,6
trr
0,3
0,4
0,2
trr
0,2
trr
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
8
25/150
600
50
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
12
Qrr( µC)
Qrr( µC)
12
Qrr
10
10
8
8
6
6
Qrr
Qrr
4
4
2
2
Qrr
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
40
60
80
I C (A)
100
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/150
600
50
±15
24
32
R g on ( Ω)
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
120
IrrM (A)
IrrM (A)
100
100
80
IRRM
80
60
IRRM
60
40
IRRM
40
IRRM
20
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/150
600
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
12000
direc / dt (A/ µs)
direc / dt (A/µ s)
5000
dI0/dt
dIrec/dt
D1,D2,D3,D4,D5,D6 FWD
dI0/dt
dIrec/dt
10000
4000
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
40
60
I C (A)
80
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/150
600
50
±15
16
24
R gon ( Ω )
32
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
100
10
8
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
1
1010
10-5
At
D=
RthJH =
tp / T
0,71
K/W
10-4
10-3
R (C/W)
0,11
0,36
0,16
0,06
0,02
R (C/W)
0,06
0,21
0,44
0,17
0,07
8
100
t p (s)
1
1010
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
0,95
IGBT thermal model values
Tau (s)
7,7E-01
1,3E-01
4,6E-02
8,2E-03
1,1E-03
10-2
Tau (s)
2,5E+00
3,5E-01
7,8E-02
1,7E-02
3,6E-03
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
Ptot (W)
IC (A)
250
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
200
150
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
17,5
15
103
240V
10uS
12,5
960V
10
2
100uS
10
1mS
7,5
101
10mS
5
100mS
100
2,5
DC
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
102
103
0
50
100
150
200
250
Q g (nC)
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
50
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
10
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
Rgon
= 8Ω
Rgoff
= 8Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
240
%
%
120
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
200
tdoff
VCE
100
VGE 90%
160
VCE 90%
80
120
IC
60
80
tEoff
40
VCE
VGE
tdon
IC 1%
40
20
IC10%
VGE10%
0
VCE 3%
0
VGE
tEon
-20
-0,3
-0,15
0
0,15
0,3
0,45
0,6
0,75
-40
3,25
0,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
50
0,30
0,67
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
3,4
3,55
3,7
-15
15
600
50
0,11
0,37
V
V
V
A
µs
µs
time(us)
4,15
Turn-on Switching Waveforms & definition of tr
140
240
%
%
120
100
4
T1,T2,T3,T4,T5,T6 IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,85
fitted
Ic
200
VCE
IC
160
IC 90%
80
120
60
VCE
IC90%
IC 60%
80
40
tr
IC 40%
40
20
IC10%
tf
0
-20
0,15
0,2
0,25
IC10%
0
0,3
0,35
0,4
-40
3,45
0,45
3,55
3,65
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
50
0,12
3,75
3,85
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
50
0,03
V
A
µs
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
Switching Definitions Output Inverter
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
%
Poff
%
Pon
Eoff
100
180
80
140
Eon
60
100
40
60
20
VGE 90%
20
0
VCE 3%
VGE 10%
tEoff
tEon
IC 1%
-20
-0,2
-20
-0,05
0,1
0,25
0,4
0,55
0,7
3,3
0,85
3,45
3,6
3,75
3,9
Poff (100%) =
Eoff (100%) =
tEoff =
30,22
4,75
0,67
4,05
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
30,22
4,62
0,37
kW
mJ
µs
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
0
IRRM10%
Vd
-40
fitted
-80
IRRM90%
-120
IRRM100%
-160
3,3
3,5
3,7
3,9
4,1
4,3
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
12
600
50
-67
0,29
V
A
A
µs
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
Switching Definitions Output Inverter
D1,D2,D3,D4,D5,D6 FWD
Figure 8
D1,D2,D3,D4,D5,D6 FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
%
Id
100
Qrr
Erec
100
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
0
-20
-150
3,2
3,45
3,7
3,95
4,2
4,45
4,7
3,2
4,95
3,45
3,7
3,95
4,2
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
50
8,66
1,00
4,45
4,7
4,95
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
30,22
3,35
1,00
kW
mJ
µs
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K239-F40-/0A/-PM
V23990-K239-F40-/1A/-PM
V23990-K239-F40-/0B/-PM
V23990-K239-F40-/1B/-PM
K239F40
K239F40
K239F40
K239F40
in packaging barcode as
K239F40-/0A/
K239F40-/1A/
K239F40-/0B/
K239F40-/1B/
Outline
Pinout
copyright Vincotech
14
2015.02.16. / Revision: 3
V23990-K239-F40-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
2015.02.16. / Revision: 3