V23990-K427-A40-PM MiniSKiiP® 3 PIM 1200V / 35A MiniSKiiP® 3 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT4 technology ● Enhanced input rectifier Target Applications Schematic ● Industrial Motor Drives Types ● V23990-K427-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 45 A 450 A 1020 A2s 77 W Tjmax 150 °C VCE 1200 V 40 A 105 A 112 W ±20 V 10 800 µs V 175 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C tp=10ms Tj=150°C Tj=Tjmax Th=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Revision: 1.1 V23990-K427-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 33 A 170 A 77 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm D1,D2,D3,D4,D5,D6,D7 Repetitive peak reverse voltage DC forward current VRRM IF Tj=Tjmax Th=80°C Surge peak forward current IFSM tp=10ms half sine Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 1.1 V23990-K427-A40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,34 1,27 0,85 0,75 14 15 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip 35 1500 RthJH Thermal grease thickness≤50µm λ=1W/mK VGE(th) VCE=VGE V V mΩ 0,1 1,1 mA K/W 0,90 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,0008 15 35 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1,6 1,87 2,30 2,1 0,005 120 Rgoff=16 Ω Rgon=16 Ω 600 ±15 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω - td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 78 79 24 29 196 268 77 131 2,54 3,84 1,92 3,18 ns mWs 1950 f=1MHz 25 0 Tj=25°C 155 pF 115 960 ±15 40 Tj=25°C Thermal grease thickness≤50µm λ=1W/mK 203 nC 0,85 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 35 IRRM trr Qrr Rgoff=16 Ω 600 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,37 2,35 16 23 336 550 2,20 5,36 63 67 0,77 2,07 Thermal grease thickness≤50µm λ=1W/mK 2,62 2,62 V A ns µC A/µs mWs 1,2 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C P T=100°C -3 3 T=25°C Power dissipation constant % Ω 1670,313 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech NTC Reference copyright Vincotech E 3 Revision: 1.1 V23990-K427-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 100 IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 4 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) D1,D2,D3,D4,D5,D6,D7 FWD 100 Tj = 25°C IF (A) IC (A) 35 3 30 80 Tj = Tjmax-25°C 25 60 20 15 Tj = Tjmax-25°C 40 10 Tj = 25°C 20 5 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 1 250 2 3 4 V F (V) 5 µs Revision: 1.1 V23990-K427-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10 E (mWs) 10 E (mWs) Eon High T 8 8 Eon High T Eon Low T 6 6 Eon Low T Eoff High T 4 4 Eoff High T Eoff Low T 2 2 Eoff Low T 0 0 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 30 45 60 RG( Ω ) 75 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 35 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3 T1,T2,T3,T4,T5,T6,T7 IGBT 3 E (mWs) E (mWs) 15 2,5 2,5 Erec Tj = Tjmax -25°C 2 2 1,5 1,5 Tj = Tjmax -25°C Erec Tj = 25°C 1 Erec 1 Tj = 25°C 0,5 Erec 0,5 0 0 0 15 30 45 60 I C (A) 75 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 35 A 5 Revision: 1.1 V23990-K427-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf tf 0,1 0,1 tr tr tdon 0,01 0,01 0,001 0,001 0 15 30 45 I C (A) 60 75 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 35 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1 t rr( µs) t rr( µs) 1 D1,D2,D3,D4,D5,D6,D7 FWD 0,8 trr 0,8 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,6 0,6 trr Tj = 25°C trr 0,4 0,4 Tj = 25°C 0,2 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/150 600 ±15 16 copyright Vincotech 30 45 60 I C (A) 75 °C V V Ω 6 0 15 At Tj = VR = IF = VGE = 25/150 600 35 ±15 30 45 60 R g on ( Ω ) 75 °C V A V Revision: 1.1 V23990-K427-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 8 D1,D2,D3,D4,D5,D6,D7 FWD Qrr( µC) Qrr( µC) 8 Qrr Tj = Tjmax -25°C 6 6 Tj = Tjmax -25°C Qrr 4 4 Qrr Tj = 25°C Tj = 25°C 2 2 0 Qrr 0 At 0 At Tj = VCE = VGE = Rgon = 15 25/150 600 ±15 16 30 45 60 I C (A) 75 0 15 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 25/150 600 35 ±15 30 45 60 R g on ( Ω) 75 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 80 IrrM (A) IrrM (A) 30 Tj = Tjmax -25°C 25 60 20 IRRM Tj = 25°C 40 15 IRRM Tj = Tjmax - 25°C 10 20 5 Tj = 25°C IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/150 600 ±15 16 copyright Vincotech 30 45 60 I C (A) 75 °C V V Ω 7 0 15 At Tj = VR = IF = VGE = 25/150 600 35 ±15 30 45 60 R gon ( Ω ) 75 °C V A V Revision: 1.1 V23990-K427-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ µs) 6000 direc / dt (A/µ s) 1500 D1,D2,D3,D4,D5,D6,D7 FWD dI0/dt dIrec/dt dI0/dt dIrec/dt 5000 1200 4000 900 3000 600 2000 300 1000 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/150 600 ±15 16 30 45 I C (A) 60 75 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Zth-JH (K/W) 10 0 10 -1 10 -2 10 -2 45 R gon ( Ω ) 60 75 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD 101 100 -1 25/150 600 35 ±15 30 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = tp / T 0,85 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-3 R (C/W) 0,09 0,26 0,35 0,11 0,03 R (C/W) 0,08 0,33 0,50 0,22 0,10 8 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 1,2 IGBT thermal model values Tau (s) 1,5E+00 2,7E-01 8,9E-02 1,4E-02 2,8E-03 10-2 Tau (s) 2,1E+00 2,4E-01 6,6E-02 1,3E-02 2,3E-03 Revision: 1.1 V23990-K427-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 240 200 40 160 30 120 20 80 10 40 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 Ptot (W) IF (A) 150 150 120 30 90 20 60 10 30 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 1.1 V23990-K427-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 IC (A) VGE (V) 20 17,5 240V 102 960V 15 100uS 1mS 100mS 12,5 10mS DC 10 101 7,5 5 100 2,5 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 10 50 35 100 150 200 250 Q g (nC) 300 A Revision: 1.1 V23990-K427-A40-PM D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 1 ZthJC (K/W) IF (A) 10 D8,D9,D10,D11,D12,D13 diode 120 100 90 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = Tjmax-25°C 30 Tj = 25°C 0 0 0,4 0,8 1,2 1,6 2 2,4 V F (V) 10-2 2,8 10-5 At tp = At D= RthJH = µs 250 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-4 10-3 10-2 100 t p (s) 10110 tp / T 0,9 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 50 IF (A) Ptot (W) 200 10-1 160 40 120 30 80 20 40 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 o 120 T h ( C) 150 0 At Tj = ºC 11 30 150 60 90 o 120 T h ( C) 150 ºC Revision: 1.1 V23990-K427-A40-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 12 Revision: 1.1 V23990-K427-A40-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 16 Ω Rgoff = 16 Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 180 130 % tdoff % VCE 110 90 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC 150 VGE 90% VCE 90% 120 VCE 70 90 IC VGE 50 tEoff tdon 60 30 IC 1% 10 30 IC10% VCE 3% VGE10% -10 -30 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 -30 0,85 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 35 0,27 0,60 tEon 0 VGE 2,8 2,9 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 -15 15 600 35 0,08 0,39 3 3,1 3,3 time(us) 3,4 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,2 Turn-on Switching Waveforms & definition of tr 140 180 % % Ic fitted 120 VCE 150 100 IC 120 IC 90% VCE 80 90 IC90% IC 60% 60 tr 60 40 IC 40% 30 20 -20 0,15 IC10% IC10% tf 0 0 -30 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,25 600 35 0,13 0,3 0,35 0,4 0,45 time (us) 2,9 0,5 3 3,1 3,2 3,3 time(us) VC (100%) = IC (100%) = tr = V A µs 13 600 35 0,03 V A µs Revision: 1.1 V23990-K427-A40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff 100 Pon % Eoff 140 80 Eon 100 60 40 60 20 VGE 10% 20 0 tEoff VCE 3% tEon VGE 90% IC 1% -20 -20 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 20,88 3,18 0,60 0,4 0,6 time (us) 2,6 0,8 2,75 2,9 3,05 3,2 3,35 3,5 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 20,88 3,84 0,39 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 IRRM90% IRRM100% fitted -80 -120 2,6 2,8 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3 600 35 23 0,57 3,2 3,4 3,6 time(us) 3,8 V A A µs 14 Revision: 1.1 V23990-K427-A40-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Qrr 100 100 Id 80 tQrr 50 tErec 60 40 0 20 Prec -50 0 -100 -20 2,6 2,8 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3 35 5,40 0,80 3,2 3,4 3,6 3,8 time(us) 4 2,6 Prec (100%) = Erec (100%) = tErec = A µC µs 15 2,8 3 20,88 2,10 0,80 3,2 3,4 3,6 3,8 time(us) 4 kW mJ µs Revision: 1.1 V23990-K427-A40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K427-A40-/0A/-PM V23990-K427-A40-/1A/-PM V23990-K427-A40-/0B/-PM V23990-K427-A40-/1B/-PM K427A40 K427A40 K427A40 K427A40 in packaging barcode as K427A40-/0A/ K427A40-/1A/ K427A40-/0B/ K427A40-/1B/ Outline Pinout copyright Vincotech 16 Revision: 1.1 V23990-K427-A40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 1.1