V23990 K427 A40 D1 14

V23990-K427-A40-PM
MiniSKiiP® 3 PIM
1200V / 35A
MiniSKiiP® 3 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
● Enhanced input rectifier
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K427-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
45
A
450
A
1020
A2s
77
W
Tjmax
150
°C
VCE
1200
V
40
A
105
A
112
W
±20
V
10
800
µs
V
175
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
tp=10ms
Tj=150°C
Tj=Tjmax
Th=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Revision: 1.1
V23990-K427-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
33
A
170
A
77
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
D1,D2,D3,D4,D5,D6,D7
Repetitive peak reverse voltage
DC forward current
VRRM
IF
Tj=Tjmax
Th=80°C
Surge peak forward current
IFSM
tp=10ms half sine
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 1.1
V23990-K427-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,34
1,27
0,85
0,75
14
15
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
35
1500
RthJH
Thermal grease
thickness≤50µm
λ=1W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0,1
1,1
mA
K/W
0,90
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,0008
15
35
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1,6
1,87
2,30
2,1
0,005
120
Rgoff=16 Ω
Rgon=16 Ω
600
±15
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
78
79
24
29
196
268
77
131
2,54
3,84
1,92
3,18
ns
mWs
1950
f=1MHz
25
0
Tj=25°C
155
pF
115
960
±15
40
Tj=25°C
Thermal grease
thickness≤50µm
λ=1W/mK
203
nC
0,85
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
35
IRRM
trr
Qrr
Rgoff=16 Ω
600
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,37
2,35
16
23
336
550
2,20
5,36
63
67
0,77
2,07
Thermal grease
thickness≤50µm
λ=1W/mK
2,62
2,62
V
A
ns
µC
A/µs
mWs
1,2
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
P
T=100°C
-3
3
T=25°C
Power dissipation constant
%
Ω
1670,313
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 1.1
V23990-K427-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
100
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D1,D2,D3,D4,D5,D6,D7 FWD
100
Tj = 25°C
IF (A)
IC (A)
35
3
30
80
Tj = Tjmax-25°C
25
60
20
15
Tj = Tjmax-25°C
40
10
Tj = 25°C
20
5
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
1
250
2
3
4
V F (V)
5
µs
Revision: 1.1
V23990-K427-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
E (mWs)
10
E (mWs)
Eon High T
8
8
Eon High T
Eon Low T
6
6
Eon Low T
Eoff High T
4
4
Eoff High T
Eoff Low T
2
2
Eoff Low T
0
0
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
35
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3
T1,T2,T3,T4,T5,T6,T7 IGBT
3
E (mWs)
E (mWs)
15
2,5
2,5
Erec
Tj = Tjmax -25°C
2
2
1,5
1,5
Tj = Tjmax -25°C
Erec
Tj = 25°C
1
Erec
1
Tj = 25°C
0,5
Erec
0,5
0
0
0
15
30
45
60
I C (A)
75
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
5
Revision: 1.1
V23990-K427-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
tf
0,1
0,1
tr
tr
tdon
0,01
0,01
0,001
0,001
0
15
30
45
I C (A)
60
75
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1
t rr( µs)
t rr( µs)
1
D1,D2,D3,D4,D5,D6,D7 FWD
0,8
trr
0,8
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,6
0,6
trr
Tj = 25°C
trr
0,4
0,4
Tj = 25°C
0,2
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
copyright Vincotech
30
45
60
I C (A)
75
°C
V
V
Ω
6
0
15
At
Tj =
VR =
IF =
VGE =
25/150
600
35
±15
30
45
60
R g on ( Ω )
75
°C
V
A
V
Revision: 1.1
V23990-K427-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
8
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr( µC)
Qrr( µC)
8
Qrr
Tj = Tjmax -25°C
6
6
Tj = Tjmax -25°C
Qrr
4
4
Qrr
Tj = 25°C
Tj = 25°C
2
2
0
Qrr
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
30
45
60
I C (A)
75
0
15
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
25/150
600
35
±15
30
45
60
R g on ( Ω)
75
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
80
IrrM (A)
IrrM (A)
30
Tj = Tjmax -25°C
25
60
20
IRRM
Tj = 25°C
40
15
IRRM
Tj = Tjmax - 25°C
10
20
5
Tj = 25°C
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
copyright Vincotech
30
45
60
I C (A)
75
°C
V
V
Ω
7
0
15
At
Tj =
VR =
IF =
VGE =
25/150
600
35
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
Revision: 1.1
V23990-K427-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ µs)
6000
direc / dt (A/µ s)
1500
D1,D2,D3,D4,D5,D6,D7 FWD
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
5000
1200
4000
900
3000
600
2000
300
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
30
45
I C (A)
60
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Zth-JH (K/W)
10
0
10
-1
10
-2
10
-2
45
R gon ( Ω )
60
75
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
101
100
-1
25/150
600
35
±15
30
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
0,85
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-3
R (C/W)
0,09
0,26
0,35
0,11
0,03
R (C/W)
0,08
0,33
0,50
0,22
0,10
8
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
1,2
IGBT thermal model values
Tau (s)
1,5E+00
2,7E-01
8,9E-02
1,4E-02
2,8E-03
10-2
Tau (s)
2,1E+00
2,4E-01
6,6E-02
1,3E-02
2,3E-03
Revision: 1.1
V23990-K427-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
240
200
40
160
30
120
20
80
10
40
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
Ptot (W)
IF (A)
150
150
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C) 200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1.1
V23990-K427-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
20
17,5
240V
102
960V
15
100uS
1mS
100mS
12,5
10mS
DC
10
101
7,5
5
100
2,5
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
10
50
35
100
150
200
250
Q g (nC)
300
A
Revision: 1.1
V23990-K427-A40-PM
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
1
ZthJC (K/W)
IF (A)
10
D8,D9,D10,D11,D12,D13 diode
120
100
90
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = Tjmax-25°C
30
Tj = 25°C
0
0
0,4
0,8
1,2
1,6
2
2,4 V F (V)
10-2
2,8
10-5
At
tp =
At
D=
RthJH =
µs
250
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10-4
10-3
10-2
100
t p (s)
10110
tp / T
0,9
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
50
IF (A)
Ptot (W)
200
10-1
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
o
120 T h ( C)
150
0
At
Tj =
ºC
11
30
150
60
90
o
120 T h ( C)
150
ºC
Revision: 1.1
V23990-K427-A40-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
Revision: 1.1
V23990-K427-A40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 16 Ω
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
180
130
%
tdoff
%
VCE
110
90
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
150
VGE 90%
VCE 90%
120
VCE
70
90
IC
VGE
50
tEoff
tdon
60
30
IC 1%
10
30
IC10%
VCE 3%
VGE10%
-10
-30
-0,2
-0,05
0,1
0,25
0,4
0,55
0,7
-30
0,85
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
35
0,27
0,60
tEon
0
VGE
2,8
2,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
-15
15
600
35
0,08
0,39
3
3,1
3,3 time(us) 3,4
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,2
Turn-on Switching Waveforms & definition of tr
140
180
%
%
Ic
fitted
120
VCE
150
100
IC
120
IC 90%
VCE
80
90
IC90%
IC 60%
60
tr
60
40
IC 40%
30
20
-20
0,15
IC10%
IC10%
tf
0
0
-30
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,25
600
35
0,13
0,3
0,35
0,4
0,45
time (us)
2,9
0,5
3
3,1
3,2
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
600
35
0,03
V
A
µs
Revision: 1.1
V23990-K427-A40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
100
Pon
%
Eoff
140
80
Eon
100
60
40
60
20
VGE 10%
20
0
tEoff
VCE 3%
tEon
VGE 90%
IC 1%
-20
-20
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
20,88
3,18
0,60
0,4
0,6
time (us)
2,6
0,8
2,75
2,9
3,05
3,2
3,35
3,5
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
20,88
3,84
0,39
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
IRRM90%
IRRM100%
fitted
-80
-120
2,6
2,8
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3
600
35
23
0,57
3,2
3,4
3,6 time(us) 3,8
V
A
A
µs
14
Revision: 1.1
V23990-K427-A40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Qrr
100
100
Id
80
tQrr
50
tErec
60
40
0
20
Prec
-50
0
-100
-20
2,6
2,8
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3
35
5,40
0,80
3,2
3,4
3,6
3,8 time(us) 4
2,6
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
2,8
3
20,88
2,10
0,80
3,2
3,4
3,6
3,8 time(us) 4
kW
mJ
µs
Revision: 1.1
V23990-K427-A40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K427-A40-/0A/-PM
V23990-K427-A40-/1A/-PM
V23990-K427-A40-/0B/-PM
V23990-K427-A40-/1B/-PM
K427A40
K427A40
K427A40
K427A40
in packaging barcode as
K427A40-/0A/
K427A40-/1A/
K427A40-/0B/
K427A40-/1B/
Outline
Pinout
copyright Vincotech
16
Revision: 1.1
V23990-K427-A40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 1.1