V23990-K428-A40-PM MiniSKiiP® 3 PIM 1200V / 50A MiniSKiiP® 3 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Industrial Drives Types ● V23990-K428-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 69 A 450 A 1020 A2s 77 W Tjmax 150 °C VCE 1200 V 52 A 150 A 133 W ±20 V 10 800 µs V 175 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Tj=150°C VGE=15V Tjmax 1 Th=80°C Revision: 4.1 V23990-K428-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 46 A 335 A 100 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm D1,D2,D3,D4,D5,D6,D7 Repetitive peak reverse voltage DC forward current VRRM IF Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 4.1 V23990-K428-A40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,1 1,02 0,9 0,74 0,004 0,006 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 35 1500 RthJH Thermal grease thickness≤50µm λ=1W/mK VGE(th) VCE=VGE V V Ω 0,1 1,1 mA K/W 0,90 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) Collector-emitter cut-off current incl. Diode ICES Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 50 15 1200 0 20 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,6 1,91 2,39 2,4 0,06 600 Rgoff=8Ω Rgon=8Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 4 td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,0017 106 111 18 25 228 298 84 125 2,66 4,46 2,78 4,58 ns mWs 2770 f=1MHz 25 0 205 Tj=25°C pF 160 Tj=25°C ±15 Thermal grease thickness≤50µm λ=1W/mK 380 nC 0,71 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 50 IRRM trr Qrr Rgon=8Ω ±15 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 Thermal grease thickness≤50µm λ=1W/mK 2,19 2,21 61,3 70,7 144 312 3,74 8,8 3494 950 1,38 3,48 2,9 V A ns µC A/µs mWs 0,95 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P Power dissipation constant -3 3 % Ω 1670,313 T=25°C mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech NTC Reference copyright Vincotech E 3 Revision: 4.1 V23990-K428-A40-PM T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 4 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) D1,D2,D3,D4,D5,D6,D7 FWD 150 IC (A) IF (A) 50 3 40 120 30 90 20 60 10 30 0 0 0 At Tj = tp = VCE = 2 25/150 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At Tj = tp = °C µs V 4 0,8 25/150 250 1,6 2,4 3,2 V F (V) 4 °C µs Revision: 4.1 V23990-K428-A40-PM T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10 T1,T2,T3,T4,T5,T6,T7 IGBT E (mWs) E (mWs) 10 Eon High T Eon High T 8 Eoff High T 8 6 Eon Low T 6 Eon Low T Eoff High T Eoff Low T 4 4 Eoff Low T 2 2 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = A 50 Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 D1,D2,D3,D4,D5,D6,D7 FWD E (mWs) E (mWs) 5 Erec 4 4 3 3 Erec Erec 2 2 1 1 Erec 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A 5 Revision: 4.1 V23990-K428-A40-PM T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG(Ω ) 32 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = A 50 Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr( µs) t rr( µs) 0,8 D1,D2,D3,D4,D5,D6,D7 FWD trr 0,6 0,6 trr trr 0,4 0,4 trr 0,2 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 8 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 6 8 25/150 600 50 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 4.1 V23990-K428-A40-PM T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 15 D1,D2,D3,D4,D5,D6,D7 FWD Qrr( µC) Qrr( µC) 12 10 12 Qrr Qrr 8 9 6 6 Qrr 4 Qrr 3 2 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 8 40 60 80 I C (A) 100 0 8 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 16 25/150 600 50 ±15 24 32 R g on ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 150 IrrM (A) IrrM (A) 100 120 80 IRRM 60 90 IRRM 40 60 20 30 IRRM IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 8 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/150 600 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 4.1 V23990-K428-A40-PM T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 10000 direc / dt (A/ µs) direc / dt (A/µ s) 5000 D1,D2,D3,D4,D5,D6,D7 FWD dI0/dt dIrec/dt 4000 dI0/dt dIrec/dt 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 8 40 60 I C (A) 80 100 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/150 600 50 ±15 16 24 D1,D2,D3,D4,D5,D6,D7 FWD ZthJH (K/W) Zth-JH (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 40 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 R gon ( Ω ) 32 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 -2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 10 -5 At D= RthJH = tp / T 0,71 -2 K/W 10 -4 10 -3 R (C/W) 0,11 0,36 0,16 0,06 0,02 R (C/W) 0,06 0,21 0,44 0,17 0,07 8 10 -1 10 0 t p (s) 1 10 10 K/W FWD thermal model values copyright Vincotech -2 tp / T 0,95 IGBT thermal model values Tau (s) 7,7E-01 1,3E-01 4,6E-02 8,2E-03 1,1E-03 10 Tau (s) 2,5E+00 3,5E-01 7,8E-02 1,7E-02 3,6E-03 Revision: 4.1 V23990-K428-A40-PM T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 IC (A) Ptot (W) 250 70 200 60 50 150 40 100 30 20 50 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = °C D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 Ptot (W) IF (A) 200 150 150 60 100 40 50 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 4.1 V23990-K428-A40-PM T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 IC (A) VGE (V) 16 14 10 1 2 12 960V 240V 100uS 10 101 8 1mS 10 0 6 10mS 4 100mS 10 DC -1 2 0 100 At D= Th = VGE = Tj = 10 1 102 103 0 100 150 200 250 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 50 V CE (V) 10 50 A Revision: 4.1 V23990-K428-A40-PM D8,D9,D10,D11,D12,D13 D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 1 IF (A) ZthJC (K/W) 10 D8,D9,D10,D11,D12,D13 120 100 90 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 30 0 0 0,3 0,6 0,9 1,2 1,5 V F (V) 10-2 1,8 10-5 At 25/125 250 Tj = tp = 10-4 At D= RthJH = °C µs D8,D9,D10,D11,D12,D13 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 100 t p (s) 101 10 tp / T 0,9 K/W D8,D9,D10,D11,D12,D13 Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 80 Ptot (W) IF (A) 180 10-1 150 60 120 90 40 60 20 30 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 11 50 150 100 150 T h ( o C) 200 ºC Revision: 4.1 V23990-K428-A40-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 12 Revision: 4.1 V23990-K428-A40-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 8Ω Rgoff = 8Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 160 250 IC 130 tdoff 200 VCE 100 VGE 90% VCE 90% 150 70 % IC % 40 VCE 100 tEoff IC 1% VGE tdon 50 10 IC10% VGE10% VGE VCE 3% 0 -20 tEon -50 -0,2 -0,05 0,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,25 -15 15 600 50 0,30 0,68 0,4 0,55 0,7 -50 0,85 time (us) 2,8 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 2,9 3 3,1 3,2 -15 15 600 50 0,11 0,35 3,4 3,5 time(us) 3,6 V V V A µs µs T1,T2,T3,T4,T5,T6,T7 IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,3 Turn-on Switching Waveforms & definition of tr 140 250 Ic 120 fitted VCE 200 100 IC IC 90% 150 80 VCE IC 60% % 60 IC90% % 100 tr IC 40% 40 50 20 IC10% IC10% 0 tf 0 -20 -50 0,2 0,25 VC (100%) = IC (100%) = tf = copyright Vincotech 0,3 600 50 0,13 0,35 0,4 0,45 0,5 time (us) 3 VC (100%) = IC (100%) = tr = V A µs 13 3,1 600 50 0,03 3,2 3,3 time(us) V A µs Revision: 4.1 V23990-K428-A40-PM Switching Definitions Output Inverter T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 110 210 Pon Poff 90 Eoff 170 70 130 Eon 50 90 % % 30 50 VGE 90% 10 10 -10 Uce3% Uge10% tEon IC 1% tEoff -30 -0,2 -0,05 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,25 0,4 time (us) 29,95 4,58 0,68 0,55 0,7 -30 2,88 0,85 Pon (100%) = Eon (100%) = tEon = kW mJ µs 2,98 3,08 29,95 4,46 0,35 3,18 time(us) 3,28 3,38 3,48 kW mJ µs D1,D2,D3,D4,D5,D6,D7 FWD Figure 78 Turn-off Switching Waveforms & definition of trr 120 80 trr 40 Id 0 % IRRM10% -40 fitted -80 Vd IRRM90% -120 IRRM100% -160 3 3,2 3,4 3,6 3,8 4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 600 50 -71 0,31 V A A µs 14 Revision: 4.1 V23990-K428-A40-PM Switching Definitions Output Inverter D1,D2,D3,D4,D5,D6,D7 FWD Figure 8 D1,D2,D3,D4,D5,D6,D7 FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec Qrr 100 100 tQrr 80 tErec 50 60 % 0 % Id 40 -50 20 Prec -100 0 -150 -20 3 3,2 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,4 50 8,80 1,00 3,6 time(us) 3,8 4 4,2 4,4 3 Prec (100%) = Erec (100%) = tErec = A µC µs 15 3,2 3,4 29,95 3,48 1,00 3,6 time(us) 3,8 4 4,2 4,4 kW mJ µs Revision: 4.1 V23990-K428-A40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K428-A40-/0A/-PM V23990-K428-A40-/1A/-PM V23990-K428-A40-/0B/-PM V23990-K428-A40-/1B/-PM K428A40 K428A40 K428A40 K428A40 in packaging barcode as K428A40-/0A/ K428A40-/1A/ K428A40-/0B/ K428A40-/1B/ Outline Pinout copyright Vincotech 16 Revision: 4.1 V23990-K428-A40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 4.1