V23990-K438-F60-PM MiniSKiiP®3 PACK 1200V/75A MiniSKiiP®3 housing Features ● Solderless interconnection ● Mitsubishi Generation 6.1 technology Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K438-F60-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 69 A tp limited by Tjmax 150 A VCE≤1200V, Tj≤Top max 150 A 151 W ±20 V 10 850 µs V Tjmax 175 °C VRRM 1200 V 63 A 150 A 127 W 175 °C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 1 V23990-K438-F60-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-K438-F60-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5,4 6 6,6 1,82 2,18 2,4 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0075 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 500 Rgon=8Ω Rgoff=8Ω ±15 600 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V mA nA Ω none tr td(off) 0,3 V 83 82 15 18 157 204 60 96 3,29 5,73 4,07 6,78 ns mWs 7500 f=1MHz 10 0 pF 1500 Tj=25°C 130 ±15 600 75 Tj=25°C Thermal grease thickness≤50µm λ=1W/mK 175 nC 0,63 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 75 IRRM trr Qrr Rgon=8Ω 600 ±15 di(rec)max /dt Erec RthJH 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,67 2,18 54 73 276 602 5,46 15,61 1767 625 2,38 7,29 Thermal grease thickness≤50µm λ=1W/mK 3,4 V A ns µC A/µs mWs 0,75 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R T=25°C R100=1670 Ω T=100°C -3 3 % T=100°C 1670,313 Ω A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² P R100 Vincotech NTC Reference Copyright by Vincotech E 3 Revision: 1 V23990-K438-F60-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 210 IC (A) IC (A) 210 180 180 150 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 350 µs 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IF (A) IC (A) 75 4 60 120 45 90 30 60 15 30 0 0 0 At Tj = tp = VCE = 2 25/150 350 10 4 6 8 10 V GE (V) 12 0 At Tj = tp = °C µs V Copyright by Vincotech 4 0,8 25/150 350 1,6 2,4 3,2 V F (V) 4 °C µs Revision: 1 V23990-K438-F60-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 15 E (mWs) E (mWs) 15 Eon High T Eon High T 12 12 Eoff High T Eon Low T 9 9 Eon Low T Eoff High T 6 6 Eoff Low T Eoff Low T 3 3 0 0 0 25 50 75 100 125 I C (A) 0 150 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 75 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 12 E (mWs) E (mWs) 12 10 10 Erec 8 8 6 6 Erec 4 4 Erec 2 Erec 2 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 75 A 5 Revision: 1 V23990-K438-F60-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tf 0,1 tf tr 0,1 tdon tdon tr 0,01 0,01 0,001 0,001 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 75 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,5 t rr( µs) t rr( µs) 1,5 1,2 1,2 trr 0,9 trr 0,9 0,6 0,6 trr trr 0,3 0,3 0 0 0 25 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 8 50 75 100 125 I C (A) °C V V Ω Copyright by Vincotech 0 8 At Tj = VR = IF = VGE = 25/150 600 75 ±15 16 150 6 24 32 R g on ( Ω ) 40 °C V A V Revision: 1 V23990-K438-F60-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 30 Qrr( µC) Qrr( µC) 30 25 25 Qrr 20 20 15 15 10 Qrr 10 Qrr 5 Qrr 5 0 0 At 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 8 50 75 100 125 I C (A) 150 °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6 FWD 0 8 At Tj = VR = IF = VGE = 16 25/150 600 75 ±15 24 32 R g on ( Ω) 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 200 IrrM (A) IrrM (A) 200 160 160 120 120 80 80 IRRM IRRM 40 40 IRRM IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 8 50 75 100 125 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/150 600 75 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 1 V23990-K438-F60-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ µs) direc / dt (A/µ s) 6000 dI0/dt dIrec/dt D1,D2,D3,D4,D5,D6 FWD 12000 dI0/dt dIrec/dt 4500 9000 3000 6000 1500 3000 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 8 50 75 100 125 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/150 600 75 ±15 16 24 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 100 ZthJH (K/W) 100 R gon ( Ω ) 32 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) At D= RthJH = tp / T 0,63 -2 10-5 10110 K/W 10-4 10-3 R (C/W) 0,05 0,19 0,30 0,06 0,03 R (C/W) 0,06 0,27 0,31 0,08 0,04 8 100 t p (s) 10110 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 0,75 IGBT thermal model values Tau (s) 3,0E+00 3,6E-01 7,9E-02 9,8E-03 5,2E-04 10-2 Tau (s) 2,8E+00 2,8E-01 6,9E-02 8,5E-03 5,3E-04 Revision: 1 V23990-K438-F60-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 300 240 80 180 60 120 40 60 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 Ptot (W) IF (A) 250 150 200 60 150 40 100 20 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 V23990-K438-F60-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 20 18 10uS 16 103 240V 14 960V 100uS 12 102 10 1mS 8 101 10mS 6 100mS 4 DC 10 0 2 0 10-1 0 0 10 10 At D= Th = VGE = 1 10 2 103 80 120 160 200 240 Q g (nC) At IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = 40 V CE (V) 75 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 10 Revision: 1 V23990-K438-F60-PM Switching Definitions Output Inverter General conditions = 150 °C Tj = 8Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 250 % % 120 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) tdoff 200 VCE IC 100 VGE 90% VCE 90% 150 80 IC VCE 60 VGE 100 tEoff 40 tdon 50 IC 1% 20 VGE10% IC10% 0 0 VCE 3% tEon VGE -20 -0,2 0 0,2 0,4 0,6 0,8 -50 1 3,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 75 0,20 0,86 4 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 4,1 -15 15 600 75 0,08 0,31 4,2 4,3 4,4 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 140 250 % % 120 fitted 200 IC 100 VCE IC 90% Ic 150 80 VCE IC 60% 60 IC90% 100 tr 40 IC 40% 50 20 IC10% IC10% 0 0 tf -20 -0,1 0 0,1 0,2 0,3 0,4 -50 0,5 4 4,05 4,1 4,15 time (us) VC (100%) = IC (100%) = tf = 600 75 0,10 Copyright by Vincotech 4,2 4,25 4,3 time(us) VC (100%) = IC (100%) = tr = V A µs 11 600 75 0,02 V A µs Revision: 1 V23990-K438-F60-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 200 % % Eoff Poff 100 Pon 160 80 120 Eon 60 80 40 40 IC 1% 20 VGE 90% VCE 3% VGE 10% 0 0 tEoff -20 -0,2 tEon -40 0 0,2 0,4 0,6 0,8 3,9 1 4 4,1 4,2 4,3 4,4 Poff (100%) = Eoff (100%) = tEoff = 44,94 6,78 0,86 4,5 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 44,94 5,73 0,31 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 fitted -80 IRRM90% IRRM100% -120 3,9 4,1 4,3 4,5 4,7 4,9 5,1 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 12 600 75 -73 0,60 V A A µs Revision: 1 V23990-K438-F60-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Erec % % Id Qrr 100 100 80 tErec tQrr 50 60 40 0 20 Prec -50 0 -100 -20 3,8 4,2 4,6 5 5,4 3,8 4,2 4,6 Id (100%) = Qrr (100%) = tQrr = 75 15,61 1,00 Copyright by Vincotech 5 5,4 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 44,94 7,29 1,00 kW mJ µs Revision: 1 V23990-K438-F60-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K438-F60-/0A/-PM V23990-K438-F60-/1A/-PM V23990-K438-F60-/0B/-PM V23990-K438-F60-/1B/-PM K438F60 K438F60 K438F60 K438F60 in packaging barcode as K438F60-/0A/ K438F60-/1A/ K438F60-/0B/ K438F60-/1B/ Outline Pinout Copyright by Vincotech 14 Revision: 1 V23990-K438-F60-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 1